九年級數學教案合集
編寫教案的過程也是教師學習和成長的過程,有助于提高教師的專業水平。寫好九年級數學教案合集是有技巧的,接下來給大家分享九年級數學教案合集,方便大家學習。
九年級數學教案合集篇1
目標
了解中心對稱圖形的概念及中心對稱圖形的對稱中心的概念,掌握這兩個概念的應用。
復習兩個圖形關于中心對稱的有關概念,利用這個所學知識探索一個圖形是中心對稱圖形的有關概念及其他的運用。
重點
中心對稱圖形的有關概念及其它們的運用。
難點
區別關于中心對稱的兩個圖形和中心對稱圖形。
一、復習引入
1、(老師口問)口答:關于中心對稱的兩個圖形具有什么性質?
(老師口述):關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。
關于中心對稱的兩個圖形是全等圖形。
2、(學生活動)作圖題。
(1)作出線段AO關于O點的對稱圖形,如圖所示。
(2)作出三角形AOB關于O點的對稱圖形,如圖所示。
延長AO使OC=AO,延長BO使OD=BO,連接CD,則△COD即為所求,如圖所示。
二、探索新知
從另一個角度看,上面的(1)題就是將線段AB繞它的中點旋轉180°,因為OA=OB,所以,就是線段AB繞它的中點旋轉180°后與它本身重合。
上面的(2)題,連接AD,BC,則剛才的關于中心O對稱的兩個圖形就成了平行四邊形,如圖所示。
∵AO=OC,BO=OD,∠AOB=∠COD
∴△AOB≌△COD
∴AB=CD
也就是,ABCD繞它的兩條對角線交點O旋轉180°后與它本身重合。
因此,像這樣,把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
(學生活動)例1從剛才講的線段、平行四邊形都是中心對稱圖形外,每一位同學舉出三個圖形,它們也是中心對稱圖形。
老師點評:老師邊提問學生邊解答的特點。
(學生活動)例2請說出中心對稱圖形具有什么特點?
老師點評:中心對稱圖形具有勻稱美觀、平穩的特點。
例3求證:如圖,任何具有對稱中心的四邊形是平行四邊形。
分析:中心對稱圖形的對稱中心是對應點連線的交點,也是對應點間的線段中點,因此,直接可得到對角線互相平分。
證明:如圖,O是四邊形ABCD的對稱中心,根據中心對稱性質,線段AC,BD點O,且AO=CO,BO=DO,即四邊形ABCD的對角線互相平分,因此,四邊形ABCD是平行四邊形。
三、課堂小結(學生歸納,老師點評)
本節課應掌握:
1、中心對稱圖形的有關概念;
2、應用中心對稱圖形解決有關問題。
四、作業布置
教材第70頁習題8,9,10。
九年級數學教案合集篇2
教學目標
(一)教學知識點
1.掌握相似三角形的定義、表示法,并能根據定義判斷兩個三角形是否相似.
2.能根據相似比進行計算.
(二)能力訓練要求
1.能根據定義判斷兩個三角形是否相似,訓練學生的判斷能力.
2.能根據相似比求長度和角度,培養學生的運用能力.
(三)情感與價值觀要求
通過與相似多邊形有關概念的類比,滲透類比的教學思想,并領會特殊與一般的關系.
教學重點
相似三角形的定義及運用.
教學難點
根據定義求線段長或角的度數.
教學方法
類比討論法
教具準備
投影片三張
第一張(記作§4.5 A)
第二張(記作§4.5 B)
第三張(記作§4.5 C)
教學過程
Ⅰ.創設問題情境,引入新課
[師]上節課我們學習了相似多邊形的定義及記法.現在請大家回憶一下.
[生]對應角相等,對應邊成比例的兩個多邊形叫做相似多邊形.
相似多邊形對應邊的比叫做相似比.
[師]很好.請問相似多邊形指的是哪些多邊形呢?
[生]只要邊數相同,滿足對應角相等、對應邊成比例的多邊形都包括.比如相似三角形,相似五邊形等.
[師]由此看來,相似三角形是相似多邊形的一種.今天,我們就來研究相似三角形.
九年級數學教案合集篇3
活動目標
1、嘗試實驗,獲得有關容量守恒的經驗。
2、樂意動手動腦探究水的變化,了解它的主要特性。
活動準備
1、趣味練習:容量比較)
2、標有刻度的瓶子,水,記錄紙,筆。
活動過程
一、觀察提問
1.出示趣味練習:容量比較
教師:小朋友看一看這六瓶水是一樣多的嗎?你是怎么知道的?
小結:現在我們想辦法做一下實驗,比較一下水的多少吧。
二、實驗操作
1、教師:用什么辦法驗證呢?怎么操作?
要求:實驗用的兩瓶水不能混在一起,實驗時動作慢一點,避免將水灑出影響實驗結果。
2、記錄實驗結果
(1)高矮不同的兩只瓶子
方法是通過比較水位的高低,我們可以看出瓶子的水是一樣的。
原來瓶子的高矮是不影響水的多少的。
(2)粗細不同的兩只瓶子小
選擇兩個相同的空瓶,把裝在大小不同的瓶內的飲料倒入其中,比較出飲料一樣多。
方法,任選一個瓶子,將一瓶飲料倒入,用筆畫或粘紙條的方法做標記,
把飲料倒出后再將另一瓶飲料倒入該瓶,看飲料位置與原來留下的標記是否一致,
比較出飲料一樣多原來瓶子的粗細是不影響水的多少的。
(3)一只含內容物的的瓶子內容物為石子
方法是取出瓶中石子,比較水位的高低。
內容物為海綿小結:方法是將海綿中的水擠回瓶中,比較水位的高低。
原來瓶子里面是否有物體是不影響水的多少的。
3、總結:瓶子的高矮、粗細、內含物是不影響水的多少的,這種現象就叫做容量守恒。
三、活動延伸
想一想,如果把兩塊一樣重的橡皮泥塞進不同形狀的瓶子里,橡皮泥會變重嗎?
回去試試看吧!
九年級數學教案合集篇4
1、教材分析
(1)知識結構
(2)重點、難點分析
重點:三角形內切圓的概念及內心的性質。因為它是三角形的重要概念之一。
難點:①難點是“接”與“切”的含義,學生容易混淆;②畫三角形內切圓,學生不易畫好。
2、教學建議
本節內容需要一個課時。
(1)在教學中,組織學生自己畫圖、類比、分析、深刻理解三角形內切圓的概念及內心的性質;
(2)在教學中,類比“三角形外接圓的畫圖、概念、性質”,開展活動式教學。
教學目標:
1、使學生了解尺規作的方法,理解三角形和多邊形的內切圓、圓的外切三角形和圓的外切多邊形、三角形內心的概念;
2、應用類比的數學思想方法研究內切圓,逐步培養學生的研究問題能力;
3、激發學生動手、動腦主動參與課堂教學活動。
教學重點:
三角形內切圓的作法和三角形的內心與性質。
教學難點:
三角形內切圓的作法和三角形的內心與性質。
教學活動設計
(一)提出問題
1、提出問題:如圖,你能否在△ABC中畫出一個圓?畫出一個的圓?想一想,怎樣畫?
2、分析、研究問題:
讓學生動腦筋、想辦法,使學生認識作三角形內切圓的實際意義。
3、解決問題:
例1作圓,使它和已知三角形的各邊都相切。
引導學生結合圖,寫出已知、求作,然后師生共同分析,尋找作法。
提出以下幾個問題進行討論:
①作圓的關鍵是什么?
②假設⊙I是所求作的圓,⊙I和三角形三邊都相切,圓心I應滿足什么條件?
③這樣的點I應在什么位置?
④圓心I確定后半徑如何找。
A層學生自己用直尺圓規準確作圖,并敘述作法;B層學生在老師指導下完成。
完成這個題目后,啟發學生得出如下結論:和三角形的各邊都相切的圓可以作一個且只可以作出一個。
(二)類比聯想,學習新知識。
1、概念:和三角形各邊都相切的圓叫做,內切圓的圓心叫做三角形的內心,這個三角形叫做圓的外切三角形。
2、類比:
名稱
確定方法
圖形
性質
外心(三角形外接圓的圓心)
三角形三邊中垂線的交點
(1)OA=OB=OC;
(2)外心不一定在三角形的內部。
內心(三角形內切圓的圓心)
三角形三條角平分線的交點
(1)到三邊的距離相等;
(2)OA、OB、OC分別平分∠BAC、∠ABC、∠ACB;
(3)內心在三角形內部。
3、概念推廣:和多邊形各邊都相切的圓叫做多邊形的內切圓,這個多邊形叫做圓的外切多邊形。
4、概念理解:
引導學生理解及圓的外切三角形的概念,并與三角形的外接圓與圓的內接三角形概念相比較,以加深對這四個概念的理解。使學生弄清“內”與“外”、“接”與“切”的含義。“接”與“切”是說明三角形的頂點和邊與圓的關系:三角形的頂點都在圓上,叫做“接”;三角形的邊都與圓相切叫做“切”。
(三)應用與反思
例2如圖,在△ABC中,∠ABC=50°,∠ACB=75°,點O是三角形的內心。
求∠BOC的度數
分析:要求∠BOC的度數,只要求出∠OBC和∠0CB的度數之和就可,即求∠l十∠3的度數。因為O是△ABC的內心,所以OB和OC分別為∠ABC和∠BCA的平分線,于是有∠1十∠3=(∠ABC十∠ACB),再由三角形的內角和定理易求出∠BOC的度數。
解:(引導學生分析,寫出解題過程)
例3如圖,△ABC中,E是內心,∠A的平分線和△ABC的外接圓相交于點D
求證:DE=DB
分析:從條件想,E是內心,則E在∠A的平分線上,同時也在∠ABC的平分線上,考慮連結BE,得出∠3=∠4.
從結論想,要證DE=DB,只要證明BDE為等腰三角形,同樣考慮到連結BE.于是得到下述法。
證明:連結BE.
E是△ABC的內心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
練習分析作出已知的銳角三角形、直角三角形、鈍角,并說明三角形的內心是否都在三角形內。
(四)小結
1.教師先向學生提出問題:這節課學習了哪些概念?怎樣作已知?學習時互該注意哪些問題?
2.學生回答的基礎上,歸納總結:
(1)學習了三角形內切圓、三角形的內心、圓的外切三角形、多邊形的內切圓、圓的外切多邊形的概念。
(2)利用作三角形的內角平分線,任意兩條角平分線的交點就是內切圓的圓心,交點到任意一邊的距離是圓的半徑。
(3)在學習有關概念時,應注意區別“內”與“外”,“接”與“切”;還應注意“連結內心和三角形頂點”這一輔助線的添加和應用。
(五)作業
教材P115習題中,A組1(3),10,11,12題;A層學生多做B組3題。
探究活動
問題:如圖1,有一張四邊形ABCD紙片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.
(1)要把該四邊形裁剪成一個面積的圓形紙片,你能否用折疊的方法找出圓心,若能請你度量出圓的半徑(精確到0.1cm);
(2)計算出的圓形紙片的半徑(要求精確值).
提示:(1)由條件可得AC為四邊形似的對稱軸,存在內切圓,能用折疊的方法找出圓心:
如圖2,①以AC為軸對折;②對折∠ABC,折線交AC于O;③使折線過O,且EB與EA邊重合。則點O為所求圓的圓心,OE為半徑。
(2)如圖3,設內切圓的半徑為r,則通過面積可得:6r+8r=48,∴r=.
九年級數學教案合集篇5
1、正確認識什么是中心對稱、對稱中心,理解關于中心對稱圖形的性質特點。
2、能根據中心對稱的性質,作出一個圖形關于某點成中心對稱的對稱圖形。
重點
中心對稱的概念及性質。
難點
中心對稱性質的推導及理解。
復習引入
問題:作出下圖的兩個圖形繞點O旋轉180°后的圖案,并回答下列的問題:
1、以O為旋轉中心,旋轉180°后兩個圖形是否重合?
2、各對應點繞O旋轉180°后,這三點是否在一條直線上?
老師點評:可以發現,如圖所示的兩個圖案繞O旋轉180°后都是重合的,即甲圖與乙圖重合,△OAB與△COD重合。
像這樣,把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱,這個點叫做對稱中心。
這兩個圖形中的對應點叫做關于中心的對稱點。
探索新知
(老師)在黑板上畫一個三角形ABC,分兩種情況作兩個圖形:
(1)作△ABC一頂點為對稱中心的對稱圖形;
(2)作關于一定點O為對稱中心的對稱圖形。
第一步,畫出△ABC。
第二步,以△ABC的C點(或O點)為中心,旋轉180°畫出△A′B′C和△A′B′C′,如圖(1)和圖(2)所示。
從圖(1)中可以得出△ABC與△A′B′C是全等三角形;
分別連接對稱點AA′,BB′,CC′,點O在這些線段上且O平分這些線段。
下面,我們就以圖(2)為例來證明這兩個結論。
證明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可證:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;
(2)點A′是點A繞點O旋轉180°后得到的,即線段OA繞點O旋轉180°得到線段OA′,所以點O在線段AA′上,且OA=OA′,即點O是線段AA′的中點。
同樣地,點O也在線段BB′和CC′上,且OB=OB′,OC=OC′,即點O是BB′和CC′的中點。
因此,我們就得到
1、關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。
2、關于中心對稱的兩個圖形是全等圖形。
例題精講
例1如圖,已知△ABC和點O,畫出△DEF,使△DEF和△ABC關于點O成中心對稱。
分析:中心對稱就是旋轉180°,關于點O成中心對稱就是繞O旋轉180°,因此,我們連AO,BO,CO并延長,取與它們相等的線段即可得到。
解:(1)連接AO并延長AO到D,使OD=OA,于是得到點A的對稱點D,如圖所示。
(2)同樣畫出點B和點C的對稱點E和F。
(3)順次連接DE,EF,FD,則△DEF即為所求的三角形。
例2(學生練習,老師點評)如圖,已知四邊形ABCD和點O,畫四邊形A′B′C′D′,使四邊形A′B′C′D′和四邊形ABCD關于點O成中心對稱(只保留作圖痕跡,不要求寫出作法)。
課堂小結(學生總結,老師點評)
本節課應掌握:
中心對稱的兩條基本性質:
1、關于中心對稱的兩個圖形,對應點所連線都經過對稱中心,而且被對稱中心所平分;
2、關于中心對稱的兩個圖形是全等圖形及其它們的應用。
作業布置
教材第66頁練習
九年級數學教案合集篇6
第1課時解決代數問題
1.經歷用一元二次方程解決實際問題的過程,總結列一元二次方程解決實際問題的一般步驟.
2.通過學生自主探究,會根據傳播問題、百分率問題中的數量關系列一元二次方程并求解,熟悉解題的具體步驟.
3.通過實際問題的解答,讓學生認識到對方程的解必須要進行檢驗,方程的解是否舍去要以是否符合問題的實際意義為標準.
重點
利用一元二次方程解決傳播問題、百分率問題.
難點
如果理解傳播問題的傳播過程和百分率問題中的增長(降低)過程,找到傳播問題和百分率問題中的數量關系.
一、引入新課
1.列方程解應用題的基本步驟有哪些?應注意什么?
2.科學家在細胞研究過程中發現:
(1)一個細胞一次可分裂成2個,經過3次分裂后共有多少個細胞?
(2)一個細胞一次可分裂成x個,經過3次分裂后共有多少個細胞?
(3)如是一個細胞一次可分裂成2個,分裂后原有細胞仍然存在并能再次分裂,試問經過3次分裂后共有多少個細胞?
二、教學活動
活動1:自學教材第19頁探究1,思考教師所提問題.
有一人患了流感,經過兩輪傳染后,有121人患了流感,每輪傳染中平均一個人傳染了幾個人?
(1)如何理解“兩輪傳染”?如果設每輪傳染中平均一個人傳染了x個人,第一輪傳染后共有________人患流感.第二輪傳染后共有________人患流感.
(2)本題中有哪些數量關系?
(3)如何利用已知的數量關系選取未知數并列出方程?
解答:設每輪傳染中平均一個人傳染了x個人,則依題意第一輪傳染后有(x+1)人患了流感,第二輪有x(1+x)人被傳染上了流感.于是可列方程:
1+x+x(1+x)=121
解方程得x1=10,x2=-12(不合題意舍去)
因此每輪傳染中平均一個人傳染了10個人.
變式練習:如果按這樣的傳播速度,三輪傳染后有多少人患了流感?
活動2:自學教材第19頁~第20頁探究2,思考老師所提問題.
兩年前生產1噸甲種藥品的成本是5000元,生產1噸乙種藥品的成本是6000元,隨著生產技術的進步,現在生產1噸甲種藥品的成本是3000元,生產1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?
(1)如何理解年平均下降額與年平均下降率?它們相等嗎?
(2)若設甲種藥品年平均下降率為x,則一年后,甲種藥品的成本下降了________元,此時成本為________元;兩年后,甲種藥品下降了________元,此時成本為________元.
(3)增長率(下降率)公式的歸納:設基準數為a,增長率為x,則一月(或一年)后產量為a(1±x);
二月(或二年)后產量為a(1±x)2;
n月(或n年)后產量為a(1±x)n;
如果已知n月(n年)后總產量為M,則有下面等式:M=a(1±x)n.
(4)對甲種藥品而言根據等量關系列方程為:________________.
三、課堂小結與作業布置
課堂小結
1.列一元二次方程解應用題的步驟:審、設、找、列、解、答.最后要檢驗根是否符合實際.
2.傳播問題解決的關鍵是傳播源的確定和等量關系的建立.
3.若平均增長(降低)率為x,增長(或降低)前的基準數是a,增長(或降低)n次后的量是b,則有:a(1±x)n=b(常見n=2).
4.成本下降額較大的藥品,它的下降率不一定也較大,成本下降額較小的藥品,它的下降率不一定也較小.
作業布置
教材第21-22頁習題21.3第2-7題.第2課時解決幾何問題
1.通過探究,學會分析幾何問題中蘊含的數量關系,列出一元二次方程解決幾何問題.
2.通過探究,使學生認識在幾何問題中可以將圖形進行適當變換,使列方程更容易.
3.通過實際問題的解答,再次讓學生認識到對方程的解必須要進行檢驗,方程的解是否舍去要以是否符合問題的實際意義為標準.
重點
通過實際圖形問題,培養學生運用一元二次方程分析和解決幾何問題的能力.
難點
在探究幾何問題的過程中,找出數量關系,正確地建立一元二次方程.
活動1創設情境
1.長方形的周長________,面積________,長方體的體積公式________.
2.如圖所示:
(1)一塊長方形鐵皮的長是10cm,寬是8cm,四角各截去一個邊長為2cm的小正方形,制成一個長方體容器,這個長方體容器的底面積是________,高是________,體積是________.
(2)一塊長方形鐵皮的長是10cm,寬是8cm,四角各截去一個邊長為xcm的小正方形,制成一個長方體容器,這個長方體容器的底面積是________,高是________,體積是________.
活動2自學教材第20頁~第21頁探究3,思考老師所提問題
要設計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應如何設計四周邊襯的寬度(精確到0.1cm).
(1)要設計書本封面的長與寬的比是________,則正中央矩形的長與寬的比是________.
(2)為什么說上下邊襯寬與左右邊襯寬之比為9∶7?試與同伴交流一下.
(3)若設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則中央矩形的長為________cm,寬為________cm,面積為________cm2.
(4)根據等量關系:________,可列方程為:________.
(5)你能寫出解題過程嗎?(注意對結果是否合理進行檢驗.)
(6)思考如果設正中央矩形的長與寬分別為9xcm和7xcm,你又怎樣去求上下、左右邊襯的寬?
活動3變式練習
如圖所示,在一個長為50米,寬為30米的矩形空地上,建造一個花園,要求花園的面積占整塊面積的75%,等寬且互相垂直的兩條路的面積占25%,求路的寬度.
答案:路的寬度為5米.
活動4課堂小結與作業布置
課堂小結
1.利用已學的特殊圖形的面積(或體積)公式建立一元二次方程的數學模型,并運用它解決實際問題的關鍵是弄清題目中的數量關系.
2.根據面積與面積(或體積)之間的等量關系建立一元二次方程,并能正確解方程,最后對所得結果是否合理要進行檢驗.
作業布置
教材第22頁習題21.3第8,10題.
九年級數學教案合集篇7
教材內容
1.本單元教學的主要內容:
二次根式的概念;二次根式的加減;二次根式的乘除;最簡二次根式.
2.本單元在教材中的地位和作用:
二次根式是在學完了八年級下冊第十七章《反比例正函數》、第十八章《勾股定理及其應用》等內容的基礎之上繼續學習的,它也是今后學習其他數學知識的基礎.
教學目標
1.知識與技能
(1)理解二次根式的概念.
(2)理解(a≥0)是一個非負數,()2=a(a≥0),=a(a≥0).
(3)掌握?=(a≥0,b≥0),=?;
=(a≥0,b>0),=(a≥0,b>0).
(4)了解最簡二次根式的概念并靈活運用它們對二次根式進行加減.
2.過程與方法
(1)先提出問題,讓學生探討、分析問題,師生共同歸納,得出概念.再對概念的內涵進行分析,得出幾個重要結論,并運用這些重要結論進行二次根式的計算和化簡.
(2)用具體數據探究規律,用不完全歸納法得出二次根式的乘(除)法規定,并運用規定進行計算.
(3)利用逆向思維,得出二次根式的乘(除)法規定的逆向等式并運用它進行化簡.
(4)通過分析前面的計算和化簡結果,抓住它們的共同特點,給出最簡二次根式的概念.利用最簡二次根式的概念,來對相同的二次根式進行合并,達到對二次根式進行計算和化簡的目的.
3.情感、態度與價值觀
通過本單元的學習培養學生:利用規定準確計算和化簡的嚴謹的科學精神,經過探索二次根式的重要結論,二次根式的乘除規定,發展學生觀察、分析、發現問題的能力.
教學重點
1.二次根式(a≥0)的內涵.(a≥0)是一個非負數;()2=a(a≥0);=a(a≥0)及其運用.
2.二次根式乘除法的規定及其運用.
3.最簡二次根式的概念.
4.二次根式的加減運算.
教學難點
1.對(a≥0)是一個非負數的理解;對等式()2=a(a≥0)及=a(a≥0)的理解及應用.
2.二次根式的乘法、除法的條件限制.
3.利用最簡二次根式的概念把一個二次根式化成最簡二次根式.
教學關鍵
1.潛移默化地培養學生從具體到一般的推理能力,突出重點,突破難點.
2.培養學生利用二次根式的規定和重要結論進行準確計算的能力,培養學生一絲不茍的科學精神.
單元課時劃分
本單元教學時間約需11課時,具體分配如下:
21.1二次根式3課時
21.2二次根式的乘法3課時
21.3二次根式的加減3課時
教學活動、習題課、小結2課時
21.1二次根式
第一課時
教學內容
二次根式的概念及其運用
教學目標
理解二次根式的概念,并利用(a≥0)的意義解答具體題目.
提出問題,根據問題給出概念,應用概念解決實際問題.
教學重難點關鍵
1.重點:形如(a≥0)的式子叫做二次根式的概念;
2.難點與關鍵:利用“(a≥0)”解決具體問題.
教學過程
一、復習引入
(學生活動)請同學們獨立完成下列三個問題:
問題1:已知反比例函數y=,那么它的圖象在第一象限橫、縱坐標相等的點的坐標是___________.
問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長是__________.
問題3:甲射擊6次,各次擊中的環數如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.
老師點評:
問題1:橫、縱坐標相等,即x=y,所以x2=3.因為點在第一象限,所以x=,所以所求點的坐標(,).
問題2:由勾股定理得AB=
問題3:由方差的概念得S=.
二、探索新知
很明顯、、,都是一些正數的算術平方根.像這樣一些正數的算術平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號.
(學生活動)議一議:
1.-1有算術平方根嗎?
2.0的算術平方根是多少?
3.當a<0,有意義嗎?
老師點評:(略)
例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).
分析:二次根式應滿足兩個條件:第一,有二次根號“”;第二,被開方數是正數或0.
解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.
例2.當x是多少時,在實數范圍內有意義?
分析:由二次根式的定義可知,被開方數一定要大于或等于0,所以3x-1≥0,才能有意義.
解:由3x-1≥0,得:x≥
當x≥時,在實數范圍內有意義.
三、鞏固練習
教材P練習1、2、3.
四、應用拓展
例3.當x是多少時,+在實數范圍內有意義?
分析:要使+在實數范圍內有意義,必須同時滿足中的≥0和中的x+1≠0.
解:依題意,得
由①得:x≥-
由②得:x≠-1
當x≥-且x≠-1時,+在實數范圍內有意義.
例4(1)已知y=++5,求的值.(答案:2)
(2)若+=0,求a20__+b20__的值.(答案:)
五、歸納小結(學生活動,老師點評)
本節課要掌握:
1.形如(a≥0)的式子叫做二次根式,“”稱為二次根號.
2.要使二次根式在實數范圍內有意義,必須滿足被開方數是非負數.
六、布置作業
1.教材P8復習鞏固1、綜合應用5.
2.選用課時作業設計.
3.課后作業:《同步訓練》
第一課時作業設計
一、選擇題1.下列式子中,是二次根式的是()
A.-B.C.D.x
2.下列式子中,不是二次根式的是()
A.B.C.D.
3.已知一個正方形的面積是5,那么它的邊長是()
A.5B.C.D.以上皆不對
二、填空題
1.形如________的式子叫做二次根式.
2.面積為a的正方形的邊長為________.
3.負數________平方根.
三、綜合提高題
1.某工廠要制作一批體積為1m3的產品包裝盒,其高為0.2m,按設計需要,底面應做成正方形,試問底面邊長應是多少?
2.當x是多少時,+x2在實數范圍內有意義?
3.若+有意義,則=_______.
4.使式子有意義的未知數x有()個.
A.0B.1C.2D.無數
5.已知a、b為實數,且+2=b+4,求a、b的值.
第一課時作業設計答案:
一、1.A2.D3.B
二、1.(a≥0)2.3.沒有
三、1.設底面邊長為x,則0.2x2=1,解答:x=.
2.依題意得:,
∴當x>-且x≠0時,+x2在實數范圍內沒有意義.
3.
4.B
5.a=5,b=-4
九年級數學教案合集篇8
教學目標
1、在把實際問題轉化為一元二次方程的模型的過程中,形成對一元二次方程的感性認識。
2、理解一元二次方程的定義,能識別一元二次方程。
3、知道一元二次方程的一般形式,能熟練地把一元二次方程整理成一般形式,能寫出一般形式的二次項系數、一次項系數和常數項。
重點難點
重點:能建立一元二次方程模型,把一元二次方程整理成一般形式。
難點:把實際問題轉化為一元二次方程的模型。
教學過程
(一)創設情境
前面我們曾把實際問題轉化成一元一次方程和二元一次方程組的模型,大家已經感受到了方程是刻畫現實世界數量關系的工具。本節課我們將繼續進行建立方程模型的探究。
1、展示課本P.2問題一
引導學生設人行道寬度為xm,表示草坪邊長為35-2xm,找等量關系,列出方程。
(35-2x)2=900①
2、展示課本P.2問題二
引導思考:小明與小亮第一次相遇以后要再次相遇,他們走的路程有何關系?怎樣用他們再次相遇的時間表示他們各自行駛的路程?
通過思考上述問題,引導學生設經過ts小明與小亮相遇,用s表示他們各自行駛的路程,利用路程方面的等量關系列出方程2t+×0.01t2=3t②
3、能把①,②化成右邊為0,而左邊是只含有一個未知數的二次多項式的形式嗎?讓學生展開討論,并引導學生把①,②化成下列形式:
4x2-140x+32③
0.01t2-2t=0④
(二)探究新知
1、觀察上述方程③和④,啟發學生歸納得出:
如果一個方程通過移項可以使右邊為0,而左邊是只含有一個未知數的二次多項式,那么這樣的方程叫作一元二次方程,它的一般形式是:
ax2+bx+c=0,(a,b,c是已知數且a≠0),
其中a,b,c分別叫作二次項系數、一次項系數、常數項。
2、讓學生指出方程③,④中的二次項系數、一次項系數和常數項。
(三)講解例題
例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次項系數、一次項系數和常數項。
[解]去括號,得3x2+5x-12=x2+4x+4,
化簡,得2x2+x-16=0。
二次項系數是2,一次項系數是1,常數項是-16。
點評:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有兩個特征:一是方程的右邊為0,二是左邊二次項系數不能為0。此外要使學生認識到:二次項系數、一次項系數和常數項都是包括符號的。
例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?
(1)2x+3=5x-2;(2)x2=25;
(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。
[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。
點評:通過一元一次方程與一元二次方程的比較,使學生深刻理解一元二次方程的意義。
(四)應用新知
課本P.4,練習第3題,
(五)課堂小結
1、一元二次方程的顯著特征是:只有一個未知數,并且未知數的次數是2。
2、一元二次方程的一般形式為:ax2+bx+c=0(a≠0),一元二次方程的二次項系數、一次項系數、常數項都是根據一般形式確定的。
3、在把實際問題轉化為一元二次方程模型的過程中,體會學習一元二次方程的必要性和重要性。
(六)思考與拓展
當常數a,b,c滿足什么條件時,方程(a-1)x2-bx+c=0是一元二次方程?這時方程的二次項系數、一次項系數分別是什么?當常數a,b,c滿足什么條件時,方程(a-1)x2-bx+c=0是一元一次方程?
當a≠1時是一元二次方程,這時方程的二次項系數是a-1,一次項系數是-b;當a=1,b≠0時是一元一次方程。
布置作業
課本習題1.1中A組第1,2,3題。
教學后記:
九年級數學教案合集篇9
一、上學期工作回顧及學生情況分析:
上學期期末參加考試人數31人,及格率%,平均分86分,最高分98分,最低分43,優生率61%。
本班學生總體上說比較愛學,對一些基礎的知識大部分學生能扎實的掌握。但也有部分學生接受知識的能力相對較弱,學習基礎又不扎實,從而導致學習成績不理想。本學期將針對班級實際情況,切實提高每位學生的學習能力和學習成績。
二、本冊教材的教學任務、要求及重點:
教學任務:
本冊教材內容包括:比例,圓柱、圓錐和球,簡單的統計,整理和復習等四個部分。
教學要求:
1、掌握圓柱、圓錐的特征,掌握幾何體體積的計算公式,學會正確計算它們的體積。
2、學會繪制復式統計表和統計圖,并能看懂、分析統計圖表中的數據所說明的問題。
3、理解比例的意義和性質,解比例,能正確判別成正比例或反比例的量,學會解答比較容易的比例應用題。
4、通過小學數學知識的系統復習整理,鞏固和深化所學的數學知識,提高計算和解題能力,培養獨立思考、不怕困難的精神。
教學重點:
圓柱、圓錐,比例的應用,小學階段主要數學知識的復習。
三、教學措施:
1、在教學中,為學生提供創造參與教學活動的情境,努力構建“和諧有效”課堂,通過操作、觀察、討論、比較等活動,先形象具體,后抽象概括,幫助學生理解和掌握知識點。
2、在教學中還要注意抓住新舊知識的內在聯系,教給學生恰當的學習方法,使學生了解知識間的橫向聯系。
3、在教學中要重視學生的學法指導,培養學生的遷移、類推能力。
4、抓好育尖補差工作,利用課余時間為他們補課。
九年級數學教案合集篇10
今學期是九年級的第二個學期,總復習教學時間緊,任務重,要求高,如何提高數學總復習的質量和效益,是每位畢業班數學教師必須面對的問題。下面我談談本學期的教學計劃和中考總復習具體做法。
一、預備階段(第1周——第4周):完成未學完的新課。
由于各種原因,我校九年級下冊的新課沒有上完,《圓》的知識沒有講授,從而嚴重影響中考備考,所以盡可能地盡早結束新課。
二、第一階段(第4周——第12周):全面復習基礎知識,加強基本技能訓練。
這個階段的復習目的是讓學生全面掌握初中數學基礎知識,提高基本技能,做到全面、扎實、系統,形成知識網絡。
1、重視課本,系統復習。現在中考命題仍然以基礎題為主,有些基礎題是課本上的原題或改造,后面的大題雖是“高于教材”,但原型一般還是教材中的例題或習題,是教材中題目的引伸、變形或組合,所以第一階段復習應以課本為主。
2、按知識板塊組織復習。把知識進行歸類,將全初中數學知識分為十一講:第一講數與式;第二講方程與不等式;第三講函數;第四講統計與概率;第五講基本圖形;第六講圖形與變換;第七講角、相交線和平行線;第八講三角形;第九講四邊形;第十講三角函數學;第十一講圓。復習中由教師提出每個講節的復習提要,指導學生按“提要”復習,同時要注意引導學生根據個人具體情況把遺忘了知識重溫一遍,邊復習邊作知識歸類,加深記憶,注意引導學生弄清概念的內涵和外延,掌握法則、公式、定理的推導或證明,例題的選擇要有針對性、典型性、層次性,并注意分析例題解答的思路和方法。
3、重視對基礎知識的理解和基本方法的指導。基礎知識即初中數學課程中所涉及的概念、公式、公理、定理等。要求學生掌握各知識點之間的內在聯系,理清知識結構,形成整體的認識,并能綜合運用。例如一元二次方程的根與二次函數圖形與x軸交點之間的關系,是中考常常涉及的內容,在復習時,應從整體上理解這部分內容,從結構上把握教材,達到熟練地將這兩部分知識相互轉化。又如一元二次方程與幾何知識的聯系的題目有非常明顯的特點,應掌握其基本解法。
中考數學命題除了著重考查基礎知識外,還十分重視對數學方法的考查,如配方法,判別式法等操作性較強的數學方法。在復習時應對每一種方法的內涵,它所適應的題型,包括解題步驟都應熟練掌握。
4、重視對數學思想的理解及運用。如函數的思想,方程思想,數形結合的思想等
三。第二階段(第13周——第18周):綜合運用知識,加強能力培養
中考復習的第二階段應以構建初中數學知識結構和網絡為主,從整體上把握數學內容,提高能力。培養綜合運用數學知識解題的能力,是學習數學的重要目的之一。這個階段的復習目的是使學生能把各個講節中的知識聯系起來,并能綜合運用,做到舉一反三、觸類旁通。這個階段的例題和練習題要有一定的難度,但又不是越難越好,要讓學生可接受,這樣才能既激發學生解難求進的學習欲望,又使學生從解決較難問題中看到自己的力量,增強前進的信心,產生更強的求知欲。第二階段就是第一階段復習的延伸和提高,應側重培養學生的數學能力。這一階段尤其要精心設計每一節復習課,注意數學思想的形成和數學方法的掌握。初中總復習的內容多,復習必須突出重點,抓住關鍵,解決疑難,這就需要充分發揮教師的主導作用。而復習內容是學生已經學習過的,各個學生對教材內容掌握的程度又各有差異,這就需要教師千方百計地激發學生復習的主動性、積極性,引導學生有針對性的復習,根據個人的具體情況,查漏補缺,做知識歸類、解題方法歸類,在形成知識結構的基礎上加深記憶。除了復習形式要多樣,題型要新穎,能引起學生復習的興趣外,還要精心設計復習課的教學方法,提高復習效益。
九年級數學教案合集篇11
【知識與技能】
1.會用描點法畫二次函數y=ax2+bx+c的圖象.
2.會用配方法求拋物線y=ax2+bx+c的頂點坐標、開口方向、對稱軸、y隨x的增減性.
3.能通過配方求出二次函數y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函數的性質求實際問題中的最大值或最小值.
【過程與方法】
1.經歷探索二次函數y=ax2+bx+c(a≠0)的圖象的作法和性質的過程,體會建立二次函數y=ax2+bx+c(a≠0)對稱軸和頂點坐標公式的必要性.
2.在學習y=ax2+bx+c(a≠0)的性質的過程中,滲透轉化(化歸)的思想.
【情感態度】
進一步體會由特殊到一般的化歸思想,形成積極參與數學活動的意識.
【教學重點】
①用配方法求y=ax2+bx+c的頂點坐標;②會用描點法畫y=ax2+bx+c的圖象并能說出圖象的性質.
【教學難點】
能利用二次函數y=ax2+bx+c(a≠0)的對稱軸和頂點坐標公式,解決一些問題,能通過對稱性畫出二次函數y=ax2+bx+c(a≠0)的圖象.
一、情境導入,初步認識
請同學們完成下列問題.
1.把二次函數y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.寫出二次函數y=-2x2+6x-1的開口方向,對稱軸及頂點坐標.
3.畫y=-2x2+6x-1的圖象.
4.拋物線y=-2x2如何平移得到y=-2x2+6x-1的圖象.
5.二次函數y=-2x2+6x-1的y隨x的增減性如何?
【教學說明】上述問題教師應放手引導學生逐一完成,從而領會y=ax2+bx+c與y=a(x-h)2+k的轉化過程.
二、思考探究,獲取新知
探究1如何畫y=ax2+bx+c圖象,你可以歸納為哪幾步?
學生回答、教師點評:
一般分為三步:
1.先用配方法求出y=ax2+bx+c的對稱軸和頂點坐標.
2.列表,描點,連線畫出對稱軸右邊的部分圖象.
3.利用對稱點,畫出對稱軸左邊的部分圖象.
探究2 二次函數y=ax2+bx+c圖象的性質有哪些?你能試著歸納嗎?
九年級數學教案合集篇12
(一)知識教學點
1.使學生初步了解統計知識是應用廣泛的數學內容.
2.了解平均數的意義,會計算一組數據的平均數.
3.當一組數據的數值較大時,會用簡算公式計算一組數據的平均數.
(二)能力訓練點培養學生的觀察能力、計算能力.
(三)德育滲透點
1.培養學生認真、耐心、細致的學習態度和學習習慣.
2.滲透數學來源于實踐,反地來又作用于實踐的觀點.
(四)美育滲透點通過本課的學習,滲透數學公式的簡單美和結構的嚴謹美,展示了寓深奧于淺顯,寓紛繁于嚴謹的辯證統一的數學美.
重點·難點·疑點及解決辦法
1.教學重點:平均數的概念及其計算.
2.教學難點:平均數的簡化計算.
3.教學疑點:平均數簡化公式的應用,a如何選擇.
4.解決辦法:分清兩個公式,公式②的運用要選擇一個適當的a.
教學步驟
(一)明確目標在日常生活中,我們常與數據打交道,例如,電視臺每天晚上都要預報第二天當地的最低氣溫與氣溫,商店每天都要結算一下當天的營業額,每個班次的飛機都要統計一下乘客的人數等.這些都涉及數據的計算問題.請同學們思考下面問題.(教師出示幻燈片)為了從甲乙兩名學生中選拔一人參加射擊比賽,對他們的射擊水平進行了測驗.兩人在相同條件下各射靶10次,命中的環數如下:甲78686591074乙95787686771.怎樣比較兩個人的成績?2.應選哪一個人參加射擊比賽?教師要引導學生觀察,給學生充分的時間去思考,并可以分成小組討論解決辦法.對于這個問題,部分學生可能感到無從下手,部分學生可能想到去比較兩組數據的平均,讓學生動手具體算一下兩組數據的平均數結果它們相等在學生無法解決此問題的情況下,教師說明,這正是本章要解決的問題之一(寫出課題).這樣做的目的是教師有意創設問題情境、制造懸念,這不僅能激發學生學習的積極性和自覺性,引起學生對所學課程的注意,還能誘發學生探求新知識的濃厚興趣.
(二)整體感知解決類似上述的問題要用到統計學的知識,統計學是一門研究如何收集、整理、分析數據并據之做出推斷的科學,它以概率論為基礎,著重研究如何根據樣本的性質去推測總體的性質.在當今的信息時代,統計學的應用非常廣泛,以至于它已滲透到整個社會生活的各個方面.本章我們將學習統計學的一些初步知識.
(三)教學過程這節課我們首先來學平均數.
1.(出示幻燈片)請同學看下面問題:某班第一小組一次數學測驗的成績如下:869110072938990857595這個小組的平均成績是多少?教師引導學生動筆計算,并找一名學生到黑板板演,講完引例后,引導學生歸納出求平均數方法,這樣做使學生對平均數的計算公式能有深刻的認識.
2.平均數的概念及計算公式一般地,如果有n個數x1、x2、x3、x4…xn,那么x=(x1+x2+x3+x4+…+xn)/n①叫做這n個數的平均數,讀作“x撥”.這是在初中數學課本中第一次出現帶有省略號的用字母表示的n個數相加的一般寫法.學生對此可能會感到比較抽象,不太習慣,要向學生強調,采用這種寫法是簡化表示,是為了使問題的討論具有一般性.教師應通過對公式的剖析,使學生正確理解公式,并掌握公式中各元素的意義.
3.平均數計算公式①的應用例1一個地區某年1月上旬各天的最低氣溫依次是(單位:℃):-6,-5,-7,-6,-4,-5,-7,-8,-7求它們的平均氣溫.讓學生動手計算,以鞏固平均數計算公式(一名學生板演)教師應強調:①解題格式.②在統計學里處理的數據包括負數.③在本章中,如無特殊說明,平均數計算結果保留的位數與原數據相同.例2從一批機器零件毛坯中取出20件,稱得它們的質量如下(單位:千克):210208200205202218206214215207195207218192202216185227187215計算它們的平均質量.(用投影儀打出)引導學生兩人一組完成計算,然后一起對答案.由于數據較大,計算較繁,可能會出現不同的答案.正好為下面提出簡化計算公式作好鋪墊.
教師提出問題:像例2這樣,數據較大,計算較繁,因而容易出錯,有沒有較為簡便的算法呢?引導學生觀察數據有什么特點?都接近于哪一個數?啟發學生討論,尋找簡便算法.學生回答:數據都在200左右波動,可將各數據同時減去200,轉而計算一組數值較小的新數據的平均數,至此讓學生再一次兩人一組用簡便方法計算例2,并與前面計算的結果相比較是否一樣.講完例2后,教師指出幾點:常數a的取法不是惟一的;讀作“x——撇——撥”;;簡化計算的結果與前面毛算的結果相同.通過學生的動手計算,若產生困難或錯誤,教師及時點撥,引導學生尋找解決問題的方法,這不僅可以激發學生學習的興趣,更培養了學生的發散思維能力,同時也使學生對公式②的推導更容易接受.3.推導公式②一般地,當一組數據的各個數值較大時,可將各數據同時減去一個適當的常數a,得到x1▎=x1-a,x2▎=x2-a,x3▎=x3-a,┅xn▎=xn-a,那么x▎=x-a②為了加深學生對公式②的認識,再讓學生指出例2的平均質量各是什么?(學生回答)
課堂練習:教材P148中~P149中1,2,3
(四)總結、擴展
知識小結:1.統計學是一門與數據打交道的學問,應用十分廣泛.本章將要學習的是統計學的初步知識.2.求n個數據的平均數的公式①.3.平均數的簡化計算公式②.這個公式很重要,要學會運用.方法小結:通過本節課我們學到了示一組數據平均數的方法.當數據比較小時,可用公式①直接計算.當數據比較大,而且都在某一個數左右波動時,可選用公式②進行計算.
布置作業教材P153中1、2、3、4.
九年級數學教案合集篇13
圓
經歷圓的概念的形成過程,理解圓、弧、弦等與圓有關的概念,了解等圓、等弧的概念.
重點
經歷形成圓的概念的過程,理解圓及其有關概念.
難點
理解圓的概念的形成過程和圓的集合性定義.
活動1 創設情境,引出課題
1.多媒體展示生活中常見的給我們以圓的形象的物體.
2.提出問題:我們看到的物體給我們什么樣的形象?
活動2 動手操作,形成概念
在沒有圓規的情況下,讓學生用鉛筆和細線畫一個圓.
教師巡視,展示學生的作品,提出問題:我們畫的圓的位置和大小一樣嗎?畫的圓的位置和大小分別由什么決定?
教師強調指出:位置由固定的一個端點決定,大小由固定端點到鉛筆尖的細線的長度決定.
1.從以上圓的形成過程,總結概念:在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點所形成的圖形叫做圓.固定的端點O叫做圓心,線段OA叫做半徑.以點O為圓心的圓,記作“⊙O”,讀作“圓O”.
2.小組討論下面的兩個問題:
問題1:圓上各點到定點(圓心O)的距離有什么規律?
問題2:到定點的距離等于定長的點又有什么特點?
3.小組代表發言,教師點評總結,形成新概念.
(1)圓上各點到定點(圓心O)的距離都等于定長(半徑r);
(2)到定點的距離等于定長的點都在同一個圓上.
因此,我們可以得到圓的新概念:圓心為O,半徑為r的圓可以看成是所有到定點O的距離等于定長r的點的集合.(一個圖形看成是滿足條件的點的集合,必須符合兩點:在圖形上的每個點,都滿足這個條件;滿足這個條件的每個點,都在這個圖形上.)
活動3 學以致用,鞏固概念
1.教材第81頁 練習第1題.
2.教材第80頁 例1.
多媒體展示例1,引導學生分析要證明四個點在同一圓上,實際是要證明到定點的距離等于定長,即四個點到O的距離相等.
活動4 自學教材,辨析概念
1.自學教材第80頁例1后面的內容,判斷下列問題正確與否:
(1)直徑是弦,弦是直徑;半圓是弧,弧是半圓.
(2)圓上任意兩點間的線段叫做弧.
(3)在同圓中,半徑相等,直徑是半徑的2倍.
(4)長度相等的兩條弧是等弧.(教師強調:長度相等的弧不一定是等弧,等弧必須是在同圓或等圓中的弧.)
(5)大于半圓的弧是劣弧,小于半圓的弧是優弧.
2.指出圖中所有的弦和弧.
活動5 達標檢測,反饋新知
教材第81頁 練習第2,3題.
活動6 課堂小結,作業布置
課堂小結
1.圓、弦、弧、等圓、等弧的概念.要特別注意“直徑和弦”“弧和半圓”以及“同圓、等圓”這些概念的區別和聯系.等圓和等弧的概念是建立在“能夠完全重合”這一前提條件下的,它將作為今后判斷兩圓或兩弧相等的依據.
2.證明幾點在同一圓上的方法.
3.集合思想.
作業布置
1.以定點O為圓心,作半徑等于2厘米的圓.
2.如圖,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,點O是AB的中點.
求證:A,B,C,D四個點在以點O為圓心的同一圓上.
答案:1.略;2.證明OA=OB=OC=OD即可.
九年級數學教案合集篇14
教學目標:
1、培養學生看圖識圖的能力.
2、在識圖過程中,滲透數形結合的數學思想.
3、從不同知識的背景提取的對象,可以使學生認識到數學的廣泛應用性.
4、激發學生學習數學的興趣,培養學生的探索精神
教學重點:培養學生看圖識圖的能力
教學難點:滲透數形結合的數學思想
教學用具:計算機、投影機
教學方法:談話法、分組討論
教學過程:
1、閱讀習題13.3的第四題
學生閱讀后,老師可以提問學生,分別回答:
下圖是北京春季某一天的
2、提出看圖說圖的重要性
隨著計算機的普及,很多軟件都可以做到輸入解析式后,立刻顯示出函數圖象來,這樣看圖、識圖就變得相當重要了.從上題就可以看出,圖形的表示更直觀,一目了然.也便于分析結論.數學不僅有數的一面,也有“形”的一面.美國數學家M克萊茵曾指出:“只要代數同幾何分道揚鑣,它們的進展就緩慢,它們的應用就狹窄.但是當這兩門科學結合成伴侶時,它們就相互吸取新鮮的活力,從那以后,就以快速的步伐走向完善.”數學具有廣泛的應用性,其它學科和日常生活都可以找到應用數學解決問題的例子.
3、為學生提供相對豐富的素材,體會以圖識性.
例1、如圖所示,A、B兩條曲線表示A、B兩種物質在不同溫度時的相應溶解度,現有未飽和的A、B溶液各一杯,它們的溫度都是 .如果不準增加A、B兩種溶質,請你想一想,用什么辦法能分別把它們變成飽和溶液?
(讀題后,可組織學生分組討論.若學生還沒有學習相應的化學知識,老師可以解釋一下.一般學生都能理解.關鍵是學生都從圖中看出了什么.既有定量的分析,又能得出定性的規律).
從A、B的溶解度曲線分析,隨著溫度升高,A物質的溶解度增大很快,而物質B的溶解度變化不大,針對這兩種不同的特征,可以采用不同的方法.
如對未飽和的A溶液,可以采用降低溫度的使它飽和因為根據A物質的曲線,可以看出,降低溫度,物質A的溶解度會迅速減小.
而對B物質來講,它的溶解度受溫度的影響變化不大,要把不飽和溶液變為飽和,就需要用減少溶劑的辦法.把溶液加熱,使溶劑蒸發掉一些.溶劑逐漸減少到一定程度,不飽和的溶液就會變成飽和的了.
例2、 如圖,是各月氣溫的分配圖
能從圖中找出氣溫最低的月份,氣溫的月份.
并判斷出該地所處的氣溫帶.
分析:氣溫在7月,最低在2月.氣溫曲線的
下限也在 以上,即 ~ 之間,因此可判斷出
該地位于亞熱帶.
(從數字的變化中,找出事物發展的規律.數學為其它科學所用,數學能力也包括科學的收集信息,整理信息,分析信息的能力.本課例也在試圖探索出一條數學與其它學科綜合的課例,讓學生切實地體會出畫圖象的好處,體會到數學的用處.數學收集的是數量,但我們可以憑借這些數量,發現它們背后的科學規律.
例3、沒有創新就沒有發展.因此現代社會要求人必須具有創造性的思維.你想過有關創造性的問題嗎?人的創造性思維發展是否隨著年齡的增大而呈直線上升趨勢?男女之間有區別嗎?你可以談一談你的想法.
參考資料:思維的流暢性,是指在限定時間內產生觀念數量的多少.在短時間內產生的觀念多,思維流暢性大;反之,思維缺乏流暢性.以研究智力結構和創造性思維而聞名的美國心理學家吉爾福特把思維流暢性分為四種形式:①用詞的流暢性,一定時間內能產生含有規定的字母或字母組合的詞匯量的多少;②聯想的流暢性,在限定的時間內能夠從一個指定的詞當中產生同意詞(或反義詞)數量的多少;③表達的流暢性,按照句子結構要求能夠排列詞匯量的數量的多少;④觀念的流暢性,能夠在限定的時間內產生滿足一定要求的觀念的多少,也就是提出解決問題的答案的多少.
以上的參考資料教師可視學生的情形靈活處理,可以作為預習作業提前下發,也可以在上課時,由老師進行通俗的解釋.
右圖是以美國心理學家對小學一年級學生至成年人進行大規模有組織的的創造性思維測驗后,根據其中的流暢性分數繪制的曲線圖.
(1)從圖中可以看出,創造性思維的發展不是直線的,而是成犬齒形曲線
(2)男女生曲線基本相似,波峰與波谷基本出現在同一點上.
(3)小學一至三年級呈直線上升狀態;小學四年級下跌;小學年級又回復上升;小學六年級至初中一年級第二次下降;以后直至成人基本保持上升趨勢.
(注)雖然圖中曲線只是兒童期創造性思維的流暢性曲線,但心理學家認為,它也從一定程度上說明了兒童期創造力發展的一般進度.
4、小結:從上面的例題可以看出,數學正突破傳統的應用范圍向幾乎所有的人類知識領域滲透,并越來越直接地為人類物質生產與日常生活做出貢獻.因此現代數學的特點之一是它廣泛的應用性.數學的學習需要我們有搜集信息分析整理信息的能力.通過觀察、歸納、總結出規律,并能應用規律解決問題.
5、作業:從其它學科或現實生活中找出曲線圖,加以分析,提出你自己的想法.
九年級數學教案合集篇15
直接開平方法
理解一元二次方程“降次”——轉化的數學思想,并能應用它解決一些具體問題.
提出問題,列出缺一次項的一元二次方程ax2+c=0,根據平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.
重點
運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉化的數學思想.
難點
通過根據平方根的意義解形如x2=n的方程,將知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程.
一、復習引入
學生活動:請同學們完成下列各題.
問題1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根據完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?
二、探索新知
上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
(學生分組討論)
老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接開平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的兩根x1=-3+2,x2=-3-2
解:略.
例2 市政府計劃2年內將人均住房面積由現在的10 m2提高到14.4 m2,求每年人均住房面積增長率.
分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2
解:設每年人均住房面積增長率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.
所以,每年人均住房面積增長率應為20%.
(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?
共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.
三、鞏固練習
教材第6頁 練習.
四、課堂小結
本節課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p<0則方程無解.
五、作業布置
九年級數學教案合集篇16
教材分析:
一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。
學情分析:
1.學生已學習用求根公式法解一元二次方程。
2.本課的教學對象是九年級學生,學生對事物的認識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現代化的教學模式和傳統的教學模式相結合的基礎上掌握一元二次方程根與系數的關系。
教學目標:
1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。
2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數學活動過程,發展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養學生的創新意識和創新精神。
3、情感目標:通過情境教學過程,激發學生的求知欲望,培養學生積極學習數學的態度。體驗數學活動中充滿著探索與創造,體驗數學活動中的成功感,建立自信心。
教學重難點:
1、重點:一元二次方程根與系數的關系。
2、難點:讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
板書設計:
一元二次方程根與系數的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=,x1x2=。
問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎?①二次項系數a是否為零,決定著方程是否為二次方程;②當a≠0時,b=0,a、c異號,方程兩根互為相反數;③當a≠0時,△=b-4ac可判定根的情況;④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。
學生學習活動評價設計:
本節課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。
教學反思:
1.一元二次方程根與系數的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數之間的關系,是我們今后繼續研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。
2.以一元二次方程根與系數的關系的探索與推導,向學生展示認識事物的一般規律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力。
3.一元二次方程的根與系數的關系,在中考中多以填空,選擇,解答題的形式出現,考查的頻率較高,也常與幾何、二次函數等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。
4.使學生體會解題方法的多樣性,開闊解題思路,優化解題方法,增強擇優能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數學活動經驗,教師應注意引導。
九年級數學教案合集篇17
一、指導思想:
初三數學是以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施的,其目的是教書育人,使每個學生都能夠在此數學學習過程中獲得最適合自己的發展。通過初三數學的教學,提供參加生產和進一步學習所必需的數學基礎知識與基本技能,進一步培養學生的運算能力、思維能力和空間想象能力,能夠運用所學知識解決簡單的實際問題,培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。
二、教學內容:
本學期所教初三數學包括第一章證明(二),第二章一元二次方程,第三章證明(三),第四章視圖與投影,第五章反比例函數,第六章頻率與概率。其中證明(二),證明(三),視圖與投影,這三章是與幾何圖形有關的。一元二次方程,反比例函數這兩章是與數及數的運用有關的。頻率與概率則是與統計有關。
四、教學目的:
在新課方面通過講授《證明(二)》和《證明(三)》的有關知識,使學生經歷探索、猜測、證明的過程,進一步發展學生的推理論證能力,并能運用這些知識進行論證、計算、和簡單的作圖。進一步掌握綜合法的證明方法,能證明與三角形、平行四邊形、等腰梯形、矩形、菱形、以及正方形等有關的性質定理及判定定理,并能夠證明其他相關的結論。在《視圖與投影》這一章通過具體活動,積累數學活動經驗,進一步增強學生的動手能力發展學生的空間思維。在《頻率與概率》這一章》讓學生理解頻率與概率的關頻率與概率系進一步體會概率是描述隨機現象的數學模型。
在《一元二次方程》和《反比例函數》這兩章,讓學生了解一元二次方程的各種解法,并能運用一元二次方程和函數解決一些數學問題逐步提高觀察和歸納分析能力,體驗數學結合的數學方法。同時學會對知識的歸納、整理、和運用。從而培養學生的思維能力和應變能力。
五、教學重點、難點
本冊教材包括幾幾何何部分《證明(二)》,《證明(三)》,《視圖與投影》。代婁部分《一元二次方程》,《反比例函數》。以及與統計有關的《頻率與概率》。《證明(二)》,《證明(三)》的重點是1、要求學生掌握證明的基本要求和方法,學會推理論證;2、探索證明的思路和方法,提倡證明的多樣性。難點是1、引導學生探索、猜測、證明,體會證明的必要性;2、在教學中滲透如歸納、類比、轉化等數學思想。《視圖與投影》和重點是通過學習和實踐活動判斷簡單物體的三種視圖,并能根據三種圖形描述基本幾何體或實物原型,實現簡單物體與其視圖之間的相互轉化。難點是理解平行投影與中心投影,明確視點、視線和盲區的內容。《一元二次方程》,《反比例函數》的重點是1、掌握一元二次方程的多種解法;2、會畫出反比例函數的圖像,并能根據圖像和解析式探索和理解反比例函數的性質。難占是1、會運用方程和函數建立數學模型,鼓勵學生進行探索和交流,倡導解決問題策略的多樣化。《頻率與概率》的重點是通過實驗活動,理解事件發生的頻率與概率之間的關系,體會概率是描述隨機現象的的數學模型,體會頻率的穩定性。難點是注重素材的真實性、科學性、以及來源渠道的多樣性,理解試驗頻率穩定于理論概率,必須借助于大量重復試驗,從而提示概率與統計之間的內存聯系。
六、教學措施:
針對上述情況,我計劃在即將開始的學年教學工作中采取以下幾點措施:
1、新課開始前,用一個周左右的時間簡要復習上學期的所有內容,特別是幾何部分。
2、教學過程中盡量采取多鼓勵、多引導、少批評的教育方法。
3、教學速度以適應大多數學生為主,盡量兼顧后進生,注重整體推進。
4、新課教學中涉及到舊知識時,對其作相應的復習回顧。
5、復習階段多讓學生動腦、動手,通過各種習題、綜合試題和模擬試題的訓練,使學生逐步熟悉各知識點,并能熟練運用。
九年級數學教案合集篇18
配方法
教學內容
運用直接開平方法,即根據平方根的意義把一個一元二次方程“降次”,轉化為兩個一元一次方程.
教學目標
理解一元二次方程“降次”──轉化的數學思想,并能應用它解決一些具體問題.
提出問題,列出缺一次項的一元二次方程ax2+c=0,根據平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.
重難點關鍵
1.重點:運用開平方法解形如(x+m)2=n(n≥0)的方程;領會降次──轉化的數學思想.
2.難點與關鍵:通過根據平方根的意義解形如x2=n,知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程.
教學過程
一、復習引入
學生活動:請同學們完成下列各題
問題1.填空
(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+____)2.
問題1:根據完全平方公式可得:(1)16 4;(2)4 2;(3)()2 .
問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程于一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?
二、探索新知
上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?
(學生分組討論)
老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的兩根為t1=1,t2=--2
例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1
分析:很清楚,x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.
解:(2)由已知,得:(x+3)2=2
直接開平方,得:x+3=±
即x+3=,x+3=-
所以,方程的兩根x1=-3+,x2=-3-
例2.市政府計劃2年內將人均住房面積由現在的10m2提高到14.4m,求每年人均住房面積增長率.
分析:設每年人均住房面積增長率為x.一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2
解:設每年人均住房面積增長率為x,
則:10(1+x)2=14.4
(1+x)2=1.44
直接開平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的兩根是x1=0.2=20%,x2=-2.2
因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.
所以,每年人均住房面積增長率應為20%.
(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?
共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.
三、鞏固練習
教材 練習.
四、應用拓展
例3.某公司一月份營業額為1萬元,第一季度總營業額為3.31萬元,求該公司二、三月份營業額平均增長率是多少?
分析:設該公司二、三月份營業額平均增長率為x,那么二月份的營業額就應該是(1+x),三月份的營業額是在二月份的基礎上再增長的,應是(1+x)2.
解:設該公司二、三月份營業額平均增長率為x.
那么1+(1+x)+(1+x)2=3.31
把(1+x)當成一個數,配方得:
(1+x+)2=2.56,即(x+)2=2.56
x+=±1.6,即x+=1.6,x+=-1.6
方程的根為x1=10%,x2=-3.1
因為增長率為正數,
所以該公司二、三月份營業額平均增長率為10%.
五、歸納小結
本節課應掌握: 由應用直接開平方法解形如x2=p(p≥0),那么x=±轉化為應用直接開平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,達到降次轉化之目的.若p<0則方程無解
六、布置作業
1.教材 復習鞏固1、2.