小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

九年級數學教案大全

時間: 新華 教學設計

教案可以幫助教師更好地預測和解決問題,以避免課堂上出現不可預料的突發情況。優秀的九年級數學教案大全要怎么寫?下面給大家整理九年級數學教案大全,希望對大家能有幫助。

九年級數學教案大全篇1

九年級數學教案-九年級數學教案設

九年級數學教案設計文橋中學

吳園田課題:太陽光與影子

課型:新授課教學目標

知識目標:

1、

經歷實踐、探索的過程,了解平行投影的含義,能夠確定物體在太陽光下影子。

2、通過觀察、想象,了解不同時刻物體在太陽光下形成的影子的大小和方向是不同的。

3、了解平行投影與物體三種視圖之間的關系。

能力目標:

1、經歷實踐,探索的過程,培養學生的實踐探索能力。

2、通過觀察、想象,了解不同時刻物體在太陽光下形成的影子的大小和方向的不

同,培養學生的觀察能力和想象能力。

情感目標:

1、讓學生體會影子在生活中的大量存在,使學生能積極參與數學學習活動,激發學生學習數學的動機和興趣。

2、讓學生認識數學與人類生活的密切聯系及對人類歷史發展的作用,體驗數學活動充滿著探索與創造。

教學重點平行投影的含義;物體在太陽光下影子的確定;平行投影與物體三種視圖之間的關系。

教學難點讓學生經歷操作與觀察、演示與想象、直觀與推理等過程,自己歸納總結得出有關結論。

教學方法和手段觀察想象法,實踐推理法。

教學設計理念本節的設計遵循學生學習數學的心理規律,強調學生從已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋與應用的過程,進而使學生獲得對數學理解的同時,在思維能力、情感態度與價值觀等多方面得到進步與發展。

本節課向學生提供充分從事數學活動的機會,幫助他們在自主探索和合

作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。

教學組織形式分組探究,集中教授。

教學過程

創設問題情境,引入新課引入:太陽光與影子是我們日常生活中的常見現象,大家在其他課程的學習中已經積累了物體在太陽光下形成的影子的有關知識,本節課我們通過眾多實例進一步討論物體在太陽光下所形成的影子的大小、形狀、方向等。

新課學習

1.投影的定義師:大家肯定見過影子,你能舉出實例嗎?在太陽光下人和樹有影子;在有月亮的晚上,人和樹也有影子;建筑物在太陽和月亮下也有影子.

師:大家對于影子是司空見慣了,那么,有沒有想過影子能給人類帶來什么好處呢?

生:我爺爺在田地里干活時,經常根據他的影子來判斷時間的早晚;我奶奶在家也經常根據太陽照在門口的影子的大小,來判斷是否是晌午了。

師:很好.現在我們確定時間

時,是通過看表來確定的,但在古代并沒有表,勤勞的古代前輩利用智慧制造出了日晷.日晷是我國古代利用日影測定時刻的儀器,它由“晷面”和“晷針”組成,當太陽光照在日晷上時,晷針的影子就會投向晷面,隨著時間的推移,晷針的影子在晷面上慢慢地移動,以此來顯示時刻。

其實不止在太陽光下,只要在光線的照射下,會在地面或墻壁上留下它的影子,這就是投影現象。

像上面提到的晷針的影子,以及窗戶的影子、遮陽傘的影子都是在太陽光下形成的。

2.做一做

取若干長短不等的小棒及三角形、矩形紙片,觀察它們在太陽光下的影子。

改變小棒或紙片的位置和方向,它們的影子發生了什么變化?師:大家先想象一下,長短不等的小棒及三角形、矩形紙片,它們在太陽光下的影子是什么形狀?生:影子的形狀應該不變,只是大小發生變化而已.因此,影子分別是線段、三角形、

矩形。

師:大家的想象是否與現實相符呢?我們一齊來做一個試驗。

生:試驗的結果與想象不一定相符,三角形的紙片在太陽光下的影子有時是三角形,有時是線段;矩形在太陽光下的影子有時是平行四邊形,有時是線段。

師:現在來想象第二個問題。

生:由人的影子在一天中的大小不同,可以判斷小棒或紙片的影子也是大小不同。

師:請大家再進行試驗,互相交換意見后得出結論。

生:當改變小棒或紙片的位置和方向時,它們的影子也相應地發生變化。

師:大家有沒有注意到,剛才在做實驗時有一種特殊情況,當小棒或紙片與投影面平行時,所形成的影子的大小和形狀的特點呢?生:當小棒或紙片與投影面平行時,所形成的影子的大小和形狀與原物體全等。

師:太陽光線可以看成平行光線,像這樣的光線所形成的投影稱為平行投影。

上面討論過的小棒或紙片的影子就是平行投影。

3.議一議

P122圖中的三幅圖是在我國北方某地某天上午不同時刻的同一位置拍攝的。

(1)在三個不同的時刻,同一棵樹的影子長度不同,請將它們按拍攝的先后順序進行排列,并說明你的理由。

(2)在同一時刻,大樹和小樹的影子與它們的高度之間有什么關系?與同伴進行交流。

師:請大家互相討論后發表自己的看法。

生:順序應為(3)(2)(1)。

因為在早晨,太陽位于正東方向,此時樹的影子較長,影子位于樹的正西方向,在上午,隨著太陽位置的變化,樹影的長度逐漸變短,樹影也由正西方向向正北方向移動。

(2)因為大樹的影子較長,小樹的影子較短,因此應該有大樹的高度與其影子的長度之比等于小樹高度與其影長之比。

生:我認為應該是大樹與小樹高度之比等于大樹與小樹影長之比。

4.做一做某校墻邊有甲、乙兩根木桿。

(1)某一時刻甲木桿在陽光下的影子如P124圖所示,你能畫出此時乙木桿的影子嗎?(用線段表

示影子)(2)在上圖中,當乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在你所畫的圖形中有相似三角形嗎?為什么?

師:請大家:互相討論來解答。

九年級數學教案大全篇2

經歷圓的概念的形成過程,理解圓、弧、弦等與圓有關的概念,了解等圓、等弧的概念.

重點

經歷形成圓的概念的過程,理解圓及其有關概念.

難點

理解圓的概念的形成過程和圓的集合性定義.

活動1 創設情境,引出課題

1.多媒體展示生活中常見的給我們以圓的形象的物體.

2.提出問題:我們看到的物體給我們什么樣的形象?

活動2 動手操作,形成概念

在沒有圓規的情況下,讓學生用鉛筆和細線畫一個圓.

教師巡視,展示學生的作品,提出問題:我們畫的圓的位置和大小一樣嗎?畫的圓的位置和大小分別由什么決定?

教師強調指出:位置由固定的一個端點決定,大小由固定端點到鉛筆尖的細線的長度決定.

1.從以上圓的形成過程,總結概念:在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點所形成的圖形叫做圓.固定的端點O叫做圓心,線段OA叫做半徑.以點O為圓心的圓,記作“⊙O”,讀作“圓O”.

2.小組討論下面的兩個問題:

問題1:圓上各點到定點(圓心O)的距離有什么規律?

問題2:到定點的距離等于定長的點又有什么特點?

3.小組代表發言,教師點評總結,形成新概念.

(1)圓上各點到定點(圓心O)的距離都等于定長(半徑r);

(2)到定點的距離等于定長的點都在同一個圓上.

因此,我們可以得到圓的新概念:圓心為O,半徑為r的圓可以看成是所有到定點O的距離等于定長r的點的集合.(一個圖形看成是滿足條件的點的集合,必須符合兩點:在圖形上的每個點,都滿足這個條件;滿足這個條件的每個點,都在這個圖形上.)

活動3 學以致用,鞏固概念

1.教材第81頁 練習第1題.

2.教材第80頁 例1.

多媒體展示例1,引導學生分析要證明四個點在同一圓上,實際是要證明到定點的距離等于定長,即四個點到O的距離相等.

活動4 自學教材,辨析概念

1.自學教材第80頁例1后面的內容,判斷下列問題正確與否:

(1)直徑是弦,弦是直徑;半圓是弧,弧是半圓.

(2)圓上任意兩點間的線段叫做弧.

(3)在同圓中,半徑相等,直徑是半徑的2倍.

(4)長度相等的兩條弧是等弧.(教師強調:長度相等的弧不一定是等弧,等弧必須是在同圓或等圓中的弧.)

(5)大于半圓的弧是劣弧,小于半圓的弧是優弧.

2.指出圖中所有的弦和弧.

活動5 達標檢測,反饋新知

教材第81頁 練習第2,3題.

活動6 課堂小結,作業布置

課堂小結

1.圓、弦、弧、等圓、等弧的概念.要特別注意“直徑和弦”“弧和半圓”以及“同圓、等圓”這些概念的區別和聯系.等圓和等弧的概念是建立在“能夠完全重合”這一前提條件下的,它將作為今后判斷兩圓或兩弧相等的依據.

2.證明幾點在同一圓上的方法.

3.集合思想.

作業布置

1.以定點O為圓心,作半徑等于2厘米的圓.

2.如圖,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,點O是AB的中點.

求證:A,B,C,D四個點在以點O為圓心的同一圓上.

答案:1.略;2.證明OA=OB=OC=OD即可.

九年級數學教案大全篇3

教學目標

知識與技能:

1、知道什么叫做解比例,會根據比例的性質正確地解比例。

2、培養學生認真書寫和計算的習慣。

過程與方法:

經歷解比例的過程,體驗知識之間的內容在聯系和廣泛應用。

情感與價值觀:

感受數學知識的內在聯系,體驗應用知識解決問題的樂趣,培養靈活的思維能力,激發學習數學知識的熱情。

教學重難點

教學重點:

解比例

教學難點:

解比例的方法。

教學工具

ppt課件

教學過程

一、復習準備

1、提問

師:同學們,前面我們學習了比例,

出示:1、什么叫做比例?2、比例的基本性質是什么?

(分別指名學生回答)

2、想一想

出示比例:3:2=():10

師:你能利用比例的知識說一說括號里應填幾?為什么?

生:可以根據比例的意義3:2=1.5,想():10=1.5(15比10等于1.5);還可以根據比例的基本性質,兩個外項的積等于30,想()×2=30(15乘以2等于30)。

師:你能快速地說出這個括號里應填幾嗎?

出示比例:():0.5=8:2

師:仔細觀察這兩個比例,其中幾項是已知的?(三項)另一個項是未知的,我們把它叫做(未知項),一般用x表示。根據什么就可以求出這個未知項?(比例的基本性質)

像這樣,求比例中的未知項,叫做解比例。(課件出示)。

今天這節課我們就來學習解比例。(板書課題,學生齊讀)

二、探索新知

1、出示埃菲爾鐵塔情境圖。

師:解比例在我們生活中的應用是十分廣泛的,同學們,請看:

這是法國巴黎最有名的塔叫埃菲爾鐵塔,高度約320米。我國北京世界公園里有這座塔的一具模型,這具模型有多高呢?到北京公園游玩的游客都想知道.你們能幫幫他們嗎?那我們先來看看這道題。

2、出示例題,教學例2。

指名學生讀題。

師:從這道題中你能得到哪些數學信息?(指名學生回答)

問:1:10是誰與誰的比?你又能寫出怎樣的數量關系式?

學生回答后,課件出示:模型的高度:鐵塔的高度=1:10。

師:在這個關系式中,誰還是已知的?

(埃菲爾鐵塔的高度是320米。)

師:在這個關系式中,我們知道其中的(三項),另一個項不知道,可以設為x,(課件出示)這樣就可以寫出一個比例,誰來說說看?

課件出示:X:320=1:10

師:怎樣解這個比例呢?

引導學生討論后回答:應用比例的基本性質,把比例寫成方程。

師:同學們會解方程嗎?試著把這個方程解出來。

學生投影展示解比例過程,師適時講解強調。

師:我們解答得對不對呢?可以怎樣檢驗呢?引導學生說出可以用比例的意義(把結果代入題目中看看對應的比的比值是否相等.)或用比例的基本性質(看看兩個外項的積和兩個內項的積是否相等來檢驗。

師:解比例在生活中的應用十分廣泛,我們來總結一下解決這類問題的一般步驟:(先根據問題設X——再根據數量關系列出比例式——然后根據比例的基本性質把比例轉化為方程——解方程)最后別忘了檢驗噢!(課件出示)。

師:現在同學們會用解比例的方法來解決問題了嗎?

3、教學例3

師:這個比例你會解嗎?出示例3

師:它與例2有什么不同?(這個比例是分數形式)應該怎樣解呢?同桌先說一說,然后指名學生說一說你是怎樣解這個比例的。(可以根據比例的基本性質---交叉相乘的積相等把比例轉化成方程,然后解方程求出未知數X)

師:想一想括號里應填什么?

師:回顧一下我們是怎樣解比例的?

學生說完課件出示,強調最后別忘了檢驗。

三、鞏固練習

1、課件出示4道解比例,學生獨立完成,投影展示。

2、解決問題:教材“做一做”第2題。(學生分析后指名學生板演,其他練習本上獨立完成,然后集體訂正)

3.你知道嗎?

偵探柯南之神秘腳印

四、布置作業

課下,和小組成員想辦法測量出我們學校旗桿的高度!

五、課堂總結

通過這節課的學習,你有那些新的收獲?

學生暢所欲言。(什么叫解比例?怎樣解比例?)

板書

解比例

求比例中的未知項,叫做解比例。

九年級數學教案大全篇4

21.2.1配方法(3課時)

第1課時直接開平方法

理解一元二次方程“降次”——轉化的數學思想,并能應用它解決一些具體問題.

提出問題,列出缺一次項的一元二次方程ax2+c=0,根據平方根的意義解出這個方程,然后知識遷移到解a(ex+f)2+c=0型的一元二次方程.

重點

運用開平方法解形如(x+m)2=n(n≥0)的方程,領會降次——轉化的數學思想.

難點

通過根據平方根的意義解形如x2=n的方程,將知識遷移到根據平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復習引入

學生活動:請同學們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據完全平方公式可得:(1)164;(2)42;(3)(p2)2p2.

問題2:目前我們都學過哪些方程?二元怎樣轉化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉化成一次?怎樣降次?以前學過哪些降次的方法?

二、探索新知

上面我們已經講了x2=9,根據平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學生分組討論)

老師點評:回答是肯定的,把2t+1變為上面的x,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1解方程:(1)x2+4x+4=1(2)x2+6x+9=2

分析:(1)x2+4x+4是一個完全平方公式,那么原方程就轉化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2市政府計劃2年內將人均住房面積由現在的10m2提高到14.4m2,求每年人均住房面積增長率.

分析:設每年人均住房面積增長率為x,一年后人均住房面積就應該是10+10x=10(1+x);二年后人均住房面積就應該是10(1+x)+10(1+x)x=10(1+x)2

解:設每年人均住房面積增長率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因為每年人均住房面積的增長率應為正的,因此,x2=-2.2應舍去.

所以,每年人均住房面積增長率應為20%.

(學生小結)老師引導提問:解一元二次方程,它們的共同特點是什么?

共同特點:把一個一元二次方程“降次”,轉化為兩個一元一次方程.我們把這種思想稱為“降次轉化思想”.

三、鞏固練習

教材第6頁練習.

四、課堂小結

本節課應掌握:由應用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉化為應用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達到降次轉化之目的.若p<0則方程無解.

五、作業布置

教材第16頁復習鞏固1.第2課時配方法的基本形式

理解間接即通過變形運用開平方法降次解方程,并能熟練應用它解決一些具體問題.

通過復習可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.

重點

講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.

難點

將不可直接降次解方程化為可直接降次解方程的“化為”的轉化方法與技巧.

一、復習引入

(學生活動)請同學們解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?

二、探索新知

列出下面問題的方程并回答:

(1)列出的經化簡為一般形式的方程與剛才解題的方程有什么不同呢?

(2)能否直接用上面前三個方程的解法呢?

問題:要使一塊矩形場地的長比寬多6m,并且面積為16m2,求場地的長和寬各是多少?

(1)列出的經化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我們就應該設法把它轉化為可直接降次解方程的方程,下面,我們就來講如何轉化:

x2+6x-16=0移項→x2+6x=16

兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9

左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負值,所以場地的寬為2m,長為8m.

像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.

可以看出,配方法是為了降次,把一個一元二次方程轉化為兩個一元一次方程來解.

例1用配方法解下列關于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)顯然方程的左邊不是一個完全平方式,因此,要按前面的方法化為完全平方式;(2)同上.

解:略.

三、鞏固練習

教材第9頁練習1,2.(1)(2).

四、課堂小結

本節課應掌握:

左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負數,可以直接降次解方程的方程.

五、作業布置

教材第17頁復習鞏固2,3.(1)(2).第3課時配方法的靈活運用

了解配方法的概念,掌握運用配方法解一元二次方程的步驟.

通過復習上一節課的解題方法,給出配方法的概念,然后運用配方法解決一些具體題目.

重點

講清配方法的解題步驟.

難點

對于用配方法解二次項系數為1的一元二次方程,通常把常數項移到方程右邊后,兩邊加上的常數是一次項系數一半的平方;對于二次項系數不為1的一元二次方程,要先化二次項系數為1,再用配方法求解.

一、復習引入

(學生活動)解下列方程:

(1)x2-4x+7=0(2)2x2-8x+1=0

老師點評:我們上一節課,已經學習了如何解左邊不含有x的完全平方形式的一元二次方程以及不可以直接開方降次解方程的轉化問題,那么這兩道題也可以用上面的方法進行解題.

解:略.(2)與(1)有何關聯?

二、探索新知

討論:配方法解一元二次方程的一般步驟:

(1)先將已知方程化為一般形式;

(2)化二次項系數為1;

(3)常數項移到右邊;

(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

例1解下列方程:

(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0

分析:我們已經介紹了配方法,因此,我們解這些方程就可以用配方法來完成,即配一個含有x的完全平方式.

解:略.

三、鞏固練習

教材第9頁練習2.(3)(4)(5)(6).

四、課堂小結

本節課應掌握:

1.配方法的概念及用配方法解一元二次方程的步驟.

2.配方法是解一元二次方程的通法,它的重要性,不僅僅表現在一元二次方程的解法中,也可通過配方,利用非負數的性質判斷代數式的正負性.在今后學習二次函數,到高中學習二次曲線時,還將經常用到.

五、作業布置

教材第17頁復習鞏固3.(3)(4).

補充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.

(2)求證:無論x,y取任何實數,多項式x2+y2-2x-4y+16的值總是正數.21.2.2公式法

理解一元二次方程求根公式的推導過程,了解公式法的概念,會熟練應用公式法解一元二次方程.

復習具體數字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導,并應用公式法解一元二次方程.

重點

求根公式的推導和公式法的應用.

難點

一元二次方程求根公式的推導.

一、復習引入

1.前面我們學習過解一元二次方程的“直接開平方法”,比如,方程

(1)x2=4(2)(x-2)2=7

提問1這種解法的(理論)依據是什么?

提問2這種解法的局限性是什么?(只對那種“平方式等于非負數”的特殊二次方程有效,不能實施于一般形式的二次方程.)

2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)

(學生活動)用配方法解方程2x2+3=7x

(老師點評)略

總結用配方法解一元二次方程的步驟(學生總結,老師點評).

(1)先將已知方程化為一般形式;

(2)化二次項系數為1;

(3)常數項移到右邊;

(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0(2)ax2+bx+3=0

如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學獨立完成下面這個問題.

問題:已知ax2+bx+c=0(a≠0),試推導它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)

分析:因為前面具體數字已做得很多,我們現在不妨把a,b,c也當成一個具體數字,根據上面的解題步驟就可以一直推下去.

解:移項,得:ax2+bx=-c

二次項系數化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,當b2-4ac≥0時,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a,b,c而定,因此:

(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個實數根.

例1用公式法解下列方程:

(1)2x2-x-1=0(2)x2+1.5=-3x

(3)x2-2x+12=0(4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應把它化為一般形式,然后代入公式即可.

補:(5)(x-2)(3x-5)=0

三、鞏固練習

教材第12頁練習1.(1)(3)(5)或(2)(4)(6).

四、課堂小結

本節課應掌握:

(1)求根公式的概念及其推導過程;

(2)公式法的概念;

(3)應用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數a,b,c,注意各項的系數包括符號;3)計算b2-4ac,若結果為負數,方程無解;4)若結果為非負數,代入求根公式,算出結果.

(4)初步了解一元二次方程根的情況.

五、作業布置

教材第17頁習題4,5.21.2.3因式分解法

掌握用因式分解法解一元二次方程.

通過復習用配方法、公式法解一元二次方程,體會和探尋用更簡單的方法——因式分解法解一元二次方程,并應用因式分解法解決一些具體問題.

重點

用因式分解法解一元二次方程.

難點

讓學生通過比較解一元二次方程的多種方法感悟用因式分解法使解題更簡便.

一、復習引入

(學生活動)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數應為12,12的一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.

二、探索新知

(學生活動)請同學們口答下面各題.

(老師提問)(1)上面兩個方程中有沒有常數項?

(2)等式左邊的各項有沒有共同因式?

(學生先答,老師解答)上面兩個方程中都沒有常數項;左邊都可以因式分解.

因此,上面兩個方程都可以寫成:

(1)x(2x+1)=0(2)3x(x+2)=0

因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現降次的?)

因此,我們可以發現,上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現降次,這種解法叫做因式分解法.

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的條件是什么?

解:略(方程一邊為0,另一邊可分解為兩個一次因式乘積.)

練習:下面一元二次方程解法中,正確的是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,兩邊同除以x,得x=1

三、鞏固練習

教材第14頁練習1,2.

四、課堂小結

本節課要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.

(2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.

五、作業布置

教材第17頁習題6,8,10,11.21.2.4一元二次方程的根與系數的關系

1.掌握一元二次方程的根與系數的關系并會初步應用.

2.培養學生分析、觀察、歸納的能力和推理論證的能力.

3.滲透由特殊到一般,再由一般到特殊的認識事物的規律.

4.培養學生去發現規律的積極性及勇于探索的精神.

重點

根與系數的關系及其推導

難點

正確理解根與系數的關系.一元二次方程根與系數的關系是指一元二次方程兩根的和、兩根的積與系數的關系.

一、復習引入

1.已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值.

2.由上題可知一元二次方程的系數與根有著密切的關系.其實我們已學過的求根公式也反映了根與系數的關系,這種關系比較復雜,是否有更簡潔的關系?

3.由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關系?

二、探索新知

解下列方程,并填寫表格:

方程x1x2x1+x2x1?x2

x2-2x=0

x2+3x-4=0

x2-5x+6=0

觀察上面的表格,你能得到什么結論?

(1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q之間有什么關系?

(2)關于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數a,b,c之間又有何關系呢?你能證明你的猜想嗎?

解下列方程,并填寫表格:

方程x1x2x1+x2x1?x2

2x2-7x-4=0

3x2+2x-5=0

5x2-17x+6=0

小結:根與系數關系:

(1)關于x的方程x2+px+q=0(p,q為常數,p2-4q≥0)的兩根x1,x2與系數p,q的關系是:x1+x2=-p,x1?x2=q(注意:根與系數關系的前提條件是根的判別式必須大于或等于零.)

(2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數化為1,再利用上面的結論.

即:對于方程ax2+bx+c=0(a≠0)

∵a≠0,∴x2+bax+ca=0

∴x1+x2=-ba,x1?x2=ca

(可以利用求根公式給出證明)

例1不解方程,寫出下列方程的兩根和與兩根積:

(1)x2-3x-1=0(2)2x2+3x-5=0

(3)13x2-2x=0(4)2x2+6x=3

(5)x2-1=0(6)x2-2x+1=0

例2不解方程,檢驗下列方程的解是否正確?

(1)x2-22x+1=0(x1=2+1,x2=2-1)

(2)2x2-3x-8=0(x1=7+734,x2=5-734)

例3已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程.(你有幾種方法?)

例4已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值.

變式一:已知方程x2-2kx-9=0的兩根互為相反數,求k;

變式二:已知方程2x2-5x+k=0的兩根互為倒數,求k.

三、課堂小結

1.根與系數的關系.

2.根與系數關系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零.

四、作業布置

1.不解方程,寫出下列方程的兩根和與兩根積.

(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0

(4)3x2+x+1=0

2.已知方程x2-3x+m=0的一個根為1,求另一根及m的值.

3.已知方程x2+bx+6=0的一個根為-2,求另一根及b的值.

九年級數學教案大全篇5

一、素質教育目標

(一)知識教學點

使學生會根據一個銳角的正弦值和余弦值,查出這個銳角的大小.(二)能力訓練點

逐步培養學生觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點

培養學生良好的學習習慣.

二、教學重點、難點和疑點

1.重點:由銳角的正弦值或余弦值,查出這個銳角的大小.

2.難點:由銳角的正弦值或余弦值,查出這個銳角的大小.

3.疑點:由于余弦是減函數,查表時“值增角減,值減角增”學生常常出錯.

三、教學步驟

(一)明確目標

1.銳角的正弦值與余弦值隨角度變化的規律是什么?

這一規律也是本課查表的依據,因此課前還得引導學生回憶.

答:當角度在0°~90°間變化時,正弦值隨著角度的增大(或減小)而增大(或減小);當角度在0°~90°間變化時,余弦值隨角度的增大(或減小)而減小(或增大).

2.若cos21°30′=0.9304,且表中同一行的修正值是則cos21°31′=______,

cos21°28′=______.

3.不查表,比較大小:

(1)sin20°______sin20°15′;

(2)cos51°______cos50°10′;

(3)sin21°______cos68°.

學生在回答2題時極易出錯,教師一定要引導學生敘述思考過程,然后得出答案.

3題的設計主要是考察學生對函數值隨角度的變化規律的理解,同時培養學生估算.

(二)整體感知

已知一個銳角,我們可用“正弦和余弦表”查出這個角的正弦值或余弦值.反過來,已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個角的大小.因為學生有查“平方表”、“立方表”等經驗,對這一點必深信無疑.而且通過逆向思維,可能很快會掌握已知函數值求角的方法.

(三)重點、難點的學習與目標完成過程.

例8已知sinA=0.2974,求銳角A.

學生通過上節課已知銳角查其正弦值和余弦值的經驗,完全能獨立查得銳角A,但教師應請同學講解查的過程:從正弦表中找出0.2974,由這個數所在行向左查得17°,由同一數所在列向上查得18′,即0.2974=sin17°18′,以培養學生語言表達能力.

解:查表得sin17°18′=0.2974,所以

銳角A=17°18′.

例9已知cosA=0.7857,求銳角A.

分析:學生在表中找不到0.7857,這時部分學生可能束手無策,但有上節課查表的經驗,少數思維較活躍的學生可能會想出辦法.這時教師讓學生討論,在探討中尋求辦法.這對解決本題會有好處,使學生印象更深,理解更透徹.

若條件許可,應在討論后請一名學生講解查表過程:在余弦表中查不到0.7857.但能找到同它最接近的數0.7859,由這個數所在行向右查得38°,由同一個數向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,這說明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002對應的角度是1′,所以∠A=38°12′+1′=38°13′.

解:查表得cos38°12′=0.7859,所以:

0.7859=cos38°12′.

值減0.0002角度增1′

0.7857=cos38°13′,

即銳角A=38°13′.

例10已知cosB=0.4511,求銳角B.

例10與例9相比較,只是出現余差(本例中的0.0002)與修正值不一致.教師只要講清如何使用修正值(用最接近的值),以使誤差最小即可,其余部分學生在例9的基礎上,可以獨立完成.

解:0.4509=cos63°12′

值增0.0003角度減1′

0.4512=cos63°11′

∴銳角B=63°11′

為了對例題加以鞏固,教師在此應設計練習題,教材P.15中2、3.

2.已知下列正弦值或余弦值,求銳角A或B:

(1)sinA=0.7083,sinB=0.9371,

sinA=0.3526,sinB=0.5688;

(2)cosA=0.8290,cosB=0.7611,

cosA=0.2996,cosB=0.9931.

此題是配合例題而設置的,要求學生能快速準確得到答案.

(1)45°6′,69°34′,20°39′,34°40′;

(2)34°0′,40°26′,72°34′,6°44′.

3.查表求sin57°與cos33°,所得的值有什么關系?

此題是讓學生通過查表進一步印證關系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).

(四)、總結、擴展

本節課我們重點學習了已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個銳角的大小,這也是本課難點,同學們要會依據正弦值和余弦值隨角度變化規律(角度變化范圍0°~90°)查“正弦和余弦表”.

四、布置作業

教材復習題十四A組3、4,要求學生只查正、余弦。

五、板書設計

九年級數學教案大全篇6

教學目標

(一)教學知識點

1.經歷探索二次函數與一元二次方程的關系的過程,體會方程與函數之間的聯系.

2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系,理解何時方程有兩個不等的實根、兩個相等的實數和沒有實根.

3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.

(二)能力訓練要求

1.經歷探索二次函數與一元二次方程的關系的過程,培養學生的探索能力和創新精神.

2.通過觀察二次函數圖象與x軸的交點個數,討論一元二次方程的根的情況,進一步培養學生的數形結合思想.

3.通過學生共同觀察和討論,培養大家的合作交流意識.

(三)情感與價值觀要求

1.經歷探索二次函數與一元二次方程的關系的過程,體驗數學活動充滿著探索與創造,感受數學的嚴謹性以及數學結論的確定性.

2.具有初步的創新精神和實踐能力.

教學重點

1.體會方程與函數之間的聯系.

2.理解何時方程有兩個不等的實根,兩個相等的實數和沒有實根.

3.理解一元二次方程的根就是二次函數與y=h(h是實數)交點的橫坐標.

教學難點

1.探索方程與函數之間的聯系的過程.

2.理解二次函數與x軸交點的個數與一元二次方程的根的個數之間的關系.

教學方法

討論探索法.

教具準備

投影片二張

第一張:(記作§2.8.1A)

第二張:(記作§2.8.1B)

教學過程

Ⅰ.創設問題情境,引入新課

[師]我們學習了一元一次方程kx+b=0(k≠0)和一次函數y=kx+b(k≠0)后,討論了它們之間的關系.當一次函數中的函數值y=0時,一次函數y=kx+b就轉化成了一元一次方程kx+b=0,且一次函數y=kx+b(k≠0)的圖象與x軸交點的橫坐標即為一元一次方程kx+b=0的解.

現在我們學習了一元二次方程ax2+bx+c=0(a≠0)和二次函數y=ax2+bx+c(a≠0),它們之間是否也存在一定的關系呢?本節課我們將探索有關問題.

九年級數學教案大全篇7

一、說教學內容

(一)、本課時的內容、地位及作用

本課內容是北師大版九年級(上)數學第五章《反比例函數》的第一課時,是繼一次函數學習之后又一類新的函數——反比例函數,它位居初中階段三大函數中的第二,區別于一次函數,但又建立在一次函數之上,而又為以后更高層次函數的學習,函數、方程、不等式間的關系的處理奠定了基礎。函數本身是數學學習中的重要內容,而反比例函數則是基礎函數,因此,本節內容有著舉足輕重的地位。

(二)、本課題的教學目標:

教學目標是教學的出發點和歸宿。因此,我根據新課標的知識、能力和德育目標的要求,以學生的認知點,心理特點和本課的特點來制定教學目標:

1、知識目標

(1)通過對實際問題的探究,理解反比例函數的實際意義。

(2)體會反比例函數的不同表示法。

(3)會判斷反比例函數。

2、能力目標

(1)通過兩個實際問題,培養學生勤于思考和分析歸納能力。

(2)在思考、歸納過程中,發展學生的合情說理能力。

(3)讓學生會求反比例函數關系式。

3、情感目標

(1)通過創設情境讓學生經歷在實際問題中探索數量關系的過程,體驗數學活動與人類的生活的密切聯系,養成用數學思維方式解決實際問題的習慣。

(2)理論聯系實際,讓學生有學有所用的感性認識。

4、本課題的重點、難點和關鍵

重點:反比例函數的概念

難點:求反比例函數的解析式。

關鍵:如何由實際問題轉化為數學模型。

二、說教學方法:

本課將采用探究式教學,讓學生主動去探索,并分層教學將顧及到全體學生,達到優生得到培養,后進生也有所收獲的效果。同時在教學中將理論聯系實際,讓學生用所學的知識去解決身邊的&39;實際問題。

由于學生在前面已學過“變量之間的關系”和“一次函數”的內容,對函數已經有了初步的認識。因此,在教這節課時,要注意和一次函數,尤其是正比例函數一反比例的類比。引導學生從函函數的意義、自變量的取值范圍等方面辨明相應的差別,在學生探索過程中,讓學生體會到在探索的途徑和方法上與一次函數相似。

對于所設置的兩個問題為學生熟悉,盡量貼近學生生活,或者進入學生生活的圈子里,讓學生感受到親切、自然,激發學生的學習興趣,提高學生思考問題的積極主動性和解決問題的能力,從而培養對數學學科的濃厚興趣,使部分學生由不愛學變得愛學。讓學生真正體會到:生活處處皆數學,生活處處有函數。

三、說學法指導:

課堂,只有寶貴的四十分鐘,有相當一部分學生注意力不能集中。針對這種情況,從學生身邊的生活和已有的知識出發創設情境,目的是讓學生感受到生活中處處有數學,激發學生對數學的興趣和愿望,同時也為抽象反比例函數概念做好鋪墊。讓學生自己舉例,討論總結規律,抽象概念,便于學生理解和掌握反比例函數的概念,同時,培養和提高了學生的總結歸納能力和抽象能力。

為了讓學生對反比例函數的意義牢牢掌握和深刻理解,啟發學生回憶正比例函數并與之相類比,從內容到形式,學生自主地體會出反比例函數的真正內涵。

在本課時的師生互動過程中,積極創造條件和機會,關注個體差異,讓學困生發表見解,使他們有成功的學習體驗,激發他們的學習興趣,增強他們的自信心,提高他們學習的主動性。

教師要善于捕捉學生的反饋信息,并能立即反饋給學生,矯正學生的學法和知識錯誤。力求體現以學生為主體,教師為主導的原則,在輕松愉快的氛圍中,順利地“消化”本節課的內容。同時,讓學生體會到“理論來自于實踐,而理論又反過來指導實踐”的哲學思想。從而培養和提高學生分析問題和解決問題的能力。

四、說教學過程:

1、復習引入:

師生共同回憶前一階段所學知識,再次強調函數和重要性,同時啟開新的課題——反比例函數(教師板書)。

(一)創設情景,激發熱情

我經常在思考:長期以來,我們的學生為什么對數學不感興趣,甚至害怕數學,其中的一個重要因素就是數學離學生的生活實際太遠了。事實上,數學學習應該與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發,讓他們在生活中去發現數學、探究數學、認識并掌握數學。

因而用兩個最貼近學生生活實例引出反比例函數的概念;從而讓學生感受數學與生活的緊密聯系。

多媒體課件展示

(問題1)我校車棚工程已經啟動,規劃地基為36平方米的矩形,設連長為X(米),則另一連長Y(米)與X(米)的函數關系式。

讓學生分析變量關系,然后教師總結:依矩形面積可得

XY=36即Y=36/X

(問題2)昨天在放學回家時,小明的車胎爆了。第二天,小明的爸爸騎摩托車送小明來學校。中午放學小明不得不走回家。(小明家距學校2000米)

(1)、在這個故事中,有幾種交通工具?

(2)、兩種交通工具的正常行駛速度一樣嗎?來去的路程一樣嗎?時間呢?

師生共同探究,時間的變化是由速度所引起的,設時間為T,速度為V,則有T=2000/V

(二)觀察歸納——形成概念

由實例XY=36即Y=36/X和T=2000/V兩個式子教師引導學生概括總結出本課新的知識點:

一般地,形如Y=K/X或XY=K(K是常數,K不為0)的函數叫做反比例函數。

在此教師對該函數做些說明。

(三)討論研究——深化概念

學生通過對例1的觀察、討論、交流后更進一步理解和掌握反比例函數的概念

多媒體課件展示、

例1、下列函數關系中,哪些是反比例函數?

(1)、一個矩形面積是20平方厘米,相鄰兩條連長分別為X厘米和Y厘米那么變量Y是變量X的函數嗎?是反比例函數嗎?為什么?

(2)、滑動變阻器兩端的電壓為U,移動滑片時通過變阻器的電流I和電阻R之間的關系;

(3)、某地有耕地346.2公頃,人口數量N逐年發生變化,那么該村人均占有耕地面積M(公頃?(人))是全村人口數N的函數嗎?是反比例函數嗎?為什么?

(4)某鄉糧食總產量M噸,那么該鄉每人平均糧食Y(噸)與該鄉人口數X的函數關系。

學生回答后教師給出正確答案。

四、即時訓練——鞏固新知

為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,把課本的習題熔入即時訓練題中,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知識。

多媒體課件展示

(鞏固練習:)

(口答)下列函數關系中,X均表示自變量,那么哪些是反比例函數?每一個反比例函數的K的值是多少?

Y=5/XY=0.4/XY=X/2XY=2

5)Y=-1/X(給學困生發表見解的機會,激發他們的學習興趣)

學生回答后教師給出正確答案。

五)突出重點,提高能力

為了突出重點,特意把書中的練習題設計為例題的形式,以提高學生的分析問題,解決問題的能力,再給出一道類似的題目以加強鞏固

T=24/V

例3Y是X的反比例函數,下表給出了X與Y的一些值。

X-2-1-1/21/123Y2/3-1

寫出這個反比例函數的表達式;

根據函數表達式完成上表。

(六)總結反思——提高認識

由學生總結本節課所學習的主要內容:

A、反比例函數的意義;

B、反比例函數的判別;

C、反比例函數解析式的求法。

讓學生通過知識性內容的小結,把課堂教學傳授的知識盡快化為學生的素質;通過數學思想方法的小結,使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養學生的良好的個性品質目標。

(七)任務后延——自主探究

學生經過以上五個環節的學習,已經初步掌握了探究數列規律的一般方法,有待進一步提高認知水平,因此我針對學生素質的差異設計了有層次的訓練題,留給學生課后自主探究,這樣即使學生掌握基礎知識,又使學有佘力的學生有所提高,從而達到拔尖和“減負”的目的。

課后思考:

當M為何值時,反比例函數Y=4/X2M-2是反比例函數,并求出其反比例函數解析式。

(板書設計)

九年級數學教案大全篇8

垂直于弦的直徑

理解垂徑定理并靈活運用垂徑定理及圓的概念解決一些實際問題.

通過復合圖形的折疊方法得出猜想垂徑定理,并輔以邏輯證明加予理解.

重點

垂徑定理及其運用.

難點

探索并證明垂徑定理及利用垂徑定理解決一些實際問題.

一、復習引入

①在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點所形成的圖形叫做圓.固定的端點O叫做圓心,線段OA叫做半徑.以點O為圓心的圓,記作“⊙O”,讀作“圓O”.

②連接圓上任意兩點的線段叫做弦,如圖線段AC,AB;

③經過圓心的弦叫做直徑,如圖線段AB;

④圓上任意兩點間的部分叫做圓弧,簡稱弧,以A,C為端點的弧記作“︵AC”,讀作“圓弧AC”或“弧AC”.大于半圓的弧(如圖所示︵ABC)叫做優弧,小于半圓的弧(如圖所示︵AC或︵BC)叫做劣弧.

⑤圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫做半圓.

⑥圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線.

二、探索新知

(學生活動)請同學按要求完成下題:

如圖,AB是⊙O的一條弦,作直徑CD,使CD⊥AB,垂足為M.

(1)如圖是軸對稱圖形嗎?如果是,其對稱軸是什么?

(2)你能發現圖中有哪些等量關系?說一說你理由.

(老師點評)(1)是軸對稱圖形,其對稱軸是CD.

(2)AM=BM,︵AC=︵BC,︵AD=︵BD,即直徑CD平分弦AB,并且平分︵AB及︵ADB.

這樣,我們就得到下面的定理:

垂直于弦的直徑平分弦,并且平分弦所對的兩條弧.

下面我們用邏輯思維給它證明一下:

已知:直徑CD、弦AB,且CD⊥AB垂足為M.

求證:AM=BM,︵AC=︵BC,︵AD=︵BD.

分析:要證AM=BM,只要證AM,BM構成的兩個三角形全等.因此,只要連接OA,OB或AC,BC即可.

證明:如圖,連接OA,OB,則OA=OB,

在Rt△OAM和Rt△OBM中,

∴Rt△OAM≌Rt△OBM,

∴AM=BM,

∴點A和點B關于CD對稱,

∵⊙O關于直徑CD對稱,

∴當圓沿著直線CD對折時,點A與點B重合,︵AC與︵BC重合,︵AD與︵BD重合.

∴︵AC=︵BC,︵AD=︵BD.

進一步,我們還可以得到結論:

平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.

(本題的證明作為課后練習)

例1 有一石拱橋的橋拱是圓弧形,如圖所示,正常水位下水面寬AB=60 m,水面到拱頂距離CD=18 m,當洪水泛濫時,水面寬MN=32 m時是否需要采取緊急措施?請說明理由.

分析:要求當洪水到來時,水面寬MN=32 m是否需要采取緊急措施,只要求出DE的長,因此只要求半徑R,然后運用幾何代數解求R.

解:不需要采取緊急措施,

設OA=R,在Rt△AOC中,AC=30,CD=18,

R2=302+(R-18)2,

R2=900+R2-36R+324,

解得R=34(m),

連接OM,設DE=x,在Rt△MOE中,ME=16,

342=162+(34-x)2,

162+342-68x+x2=342,x2-68x+256=0,

解得x1=4,x2=64(不合題意,舍去),

∴DE=4,

∴不需采取緊急措施.

三、課堂小結(學生歸納,老師點評)

垂徑定理及其推論以及它們的應用.

四、作業布置

1.垂徑定理推論的證明.

2.教材第89,90頁 習題第8,9,10題.

九年級數學教案大全篇9

(一)知識教學點

1.使學生初步了解統計知識是應用廣泛的數學內容.

2.了解平均數的意義,會計算一組數據的平均數.

3.當一組數據的數值較大時,會用簡算公式計算一組數據的平均數.

(二)能力訓練點培養學生的觀察能力、計算能力.

(三)德育滲透點

1.培養學生認真、耐心、細致的學習態度和學習習慣.

2.滲透數學來源于實踐,反地來又作用于實踐的觀點.

(四)美育滲透點通過本課的學習,滲透數學公式的簡單美和結構的嚴謹美,展示了寓深奧于淺顯,寓紛繁于嚴謹的辯證統一的數學美.

重點·難點·疑點及解決辦法

1.教學重點:平均數的概念及其計算.

2.教學難點:平均數的簡化計算.

3.教學疑點:平均數簡化公式的應用,a如何選擇.

4.解決辦法:分清兩個公式,公式②的運用要選擇一個適當的a.

教學步驟

(一)明確目標在日常生活中,我們常與數據打交道,例如,電視臺每天晚上都要預報第二天當地的最低氣溫與氣溫,商店每天都要結算一下當天的營業額,每個班次的飛機都要統計一下乘客的人數等.這些都涉及數據的計算問題.請同學們思考下面問題.(教師出示幻燈片)為了從甲乙兩名學生中選拔一人參加射擊比賽,對他們的射擊水平進行了測驗.兩人在相同條件下各射靶10次,命中的環數如下:甲78686591074乙95787686771.怎樣比較兩個人的成績?2.應選哪一個人參加射擊比賽?教師要引導學生觀察,給學生充分的時間去思考,并可以分成小組討論解決辦法.對于這個問題,部分學生可能感到無從下手,部分學生可能想到去比較兩組數據的平均,讓學生動手具體算一下兩組數據的平均數結果它們相等在學生無法解決此問題的情況下,教師說明,這正是本章要解決的問題之一(寫出課題).這樣做的目的是教師有意創設問題情境、制造懸念,這不僅能激發學生學習的積極性和自覺性,引起學生對所學課程的注意,還能誘發學生探求新知識的濃厚興趣.

(二)整體感知解決類似上述的問題要用到統計學的知識,統計學是一門研究如何收集、整理、分析數據并據之做出推斷的科學,它以概率論為基礎,著重研究如何根據樣本的性質去推測總體的性質.在當今的信息時代,統計學的應用非常廣泛,以至于它已滲透到整個社會生活的各個方面.本章我們將學習統計學的一些初步知識.

(三)教學過程這節課我們首先來學平均數.

1.(出示幻燈片)請同學看下面問題:某班第一小組一次數學測驗的成績如下:869110072938990857595這個小組的平均成績是多少?教師引導學生動筆計算,并找一名學生到黑板板演,講完引例后,引導學生歸納出求平均數方法,這樣做使學生對平均數的計算公式能有深刻的認識.

2.平均數的概念及計算公式一般地,如果有n個數x1、x2、x3、x4…xn,那么x=(x1+x2+x3+x4+…+xn)/n①叫做這n個數的平均數,讀作“x撥”.這是在初中數學課本中第一次出現帶有省略號的用字母表示的n個數相加的一般寫法.學生對此可能會感到比較抽象,不太習慣,要向學生強調,采用這種寫法是簡化表示,是為了使問題的討論具有一般性.教師應通過對公式的剖析,使學生正確理解公式,并掌握公式中各元素的意義.

3.平均數計算公式①的應用例1一個地區某年1月上旬各天的最低氣溫依次是(單位:℃):-6,-5,-7,-6,-4,-5,-7,-8,-7求它們的平均氣溫.讓學生動手計算,以鞏固平均數計算公式(一名學生板演)教師應強調:①解題格式.②在統計學里處理的數據包括負數.③在本章中,如無特殊說明,平均數計算結果保留的位數與原數據相同.例2從一批機器零件毛坯中取出20件,稱得它們的質量如下(單位:千克):210208200205202218206214215207195207218192202216185227187215計算它們的平均質量.(用投影儀打出)引導學生兩人一組完成計算,然后一起對答案.由于數據較大,計算較繁,可能會出現不同的答案.正好為下面提出簡化計算公式作好鋪墊.

教師提出問題:像例2這樣,數據較大,計算較繁,因而容易出錯,有沒有較為簡便的算法呢?引導學生觀察數據有什么特點?都接近于哪一個數?啟發學生討論,尋找簡便算法.學生回答:數據都在200左右波動,可將各數據同時減去200,轉而計算一組數值較小的新數據的平均數,至此讓學生再一次兩人一組用簡便方法計算例2,并與前面計算的結果相比較是否一樣.講完例2后,教師指出幾點:常數a的取法不是惟一的;讀作“x——撇——撥”;;簡化計算的結果與前面毛算的結果相同.通過學生的動手計算,若產生困難或錯誤,教師及時點撥,引導學生尋找解決問題的方法,這不僅可以激發學生學習的興趣,更培養了學生的發散思維能力,同時也使學生對公式②的推導更容易接受.3.推導公式②一般地,當一組數據的各個數值較大時,可將各數據同時減去一個適當的常數a,得到x1▎=x1-a,x2▎=x2-a,x3▎=x3-a,┅xn▎=xn-a,那么x▎=x-a②為了加深學生對公式②的認識,再讓學生指出例2的平均質量各是什么?(學生回答)

課堂練習:教材P148中~P149中1,2,3

(四)總結、擴展

知識小結:1.統計學是一門與數據打交道的學問,應用十分廣泛.本章將要學習的是統計學的初步知識.2.求n個數據的平均數的公式①.3.平均數的簡化計算公式②.這個公式很重要,要學會運用.方法小結:通過本節課我們學到了示一組數據平均數的方法.當數據比較小時,可用公式①直接計算.當數據比較大,而且都在某一個數左右波動時,可選用公式②進行計算.

布置作業教材P153中1、2、3、4.

九年級數學教案大全篇10

-九年級數學《概率》(第1課時)教學設計

教學目標

1、知識與技能目標

了解必然事件、不可能事件、隨機事件的特點。

2、過程與方法目標

經歷體驗、操作、觀察、歸納、總結的過程,發展學生從紛繁復雜的表象中提煉出本質特征并加以抽象概括的能力,并會判斷必然事件、不可能事件、隨機事件。3、情感與態度目標

學生通過親身體驗,親自演示,感受數學就在身邊,促進學生樂于親近數學,喜歡數學;教學重難點

重點:隨機事件的特點。

難點:判斷現實生活中哪些事件是隨機事件。教法、學法和輔助手段

情境引人,游戲探索,游戲體驗,拓展新知。學

參與活動,發現新知;探究合作,體驗新知;搶答活動,鞏固新知;聽故事,拓展新知。教學輔助手段

紅、白球若干,不透明盒子兩個,骰子若干。教學過程:

一、創設情境,導入新課:

師:同學們,你們買過彩票嗎?中過獎嗎?

(學生有的說買過,絕大部分的同學說沒有買過,沒有中過獎)

可編輯

-師:你們想買彩票嗎?想中獎嗎?生:想。

師:我們來模擬買彩票中大獎,請你們在紙上寫出一個你認為幸運的三位數,老師立即開獎。學生寫好后,展示開獎結果。

師:有中獎的嗎?請舉手,我為中獎的同學準備了獎品。(為個別中了獎的同學發獎品,安慰沒有中獎的同學)師:買一注彩票一定能中獎還是可能中獎?生:可能中獎。

師:我們這個游戲中一定要中獎,你能算出至少要買多少注彩票嗎?(少數同學在算,很多同學不知道怎樣算)

師:讓我們一起走進九年級數學(上)《概率初步》的學習,《概率初步》會告訴我們怎樣計算。我們今天就學習第一節《隨機事件》。請打開教材。(多媒體展示課題)二、探索新知

1、(分組活動)問題1:

5名同學參加講演比賽,以抽簽方式決定每個人的出場順序,簽筒中有5根形狀、大小相同的筆簽,上面分別標有出場的序號1、2、3、4、5。小軍首先抽簽,他在看不到筆簽上的數字的情況下從簽筒中隨機(任意)地取一根紙簽,請考慮以下問題:(1)小軍首先抽到的號共有幾種可能?(2)抽到的序號小于6嗎?(3)抽到的序號會是0嗎?(4)抽到的序號會是1嗎?

學生回答書中的問題,并判斷以下三事件是什么事件(師點評):

可編輯

-(1)抽到的序號小于6。(2)抽到的序號是0。(3)抽到的序號是1。2、老師在講臺上演示

問題2擲一個質地均勻的正方體骰子,骰子的六個面上分

別刻有1到6的點數,請考慮以下問題:擲一次骰子,在骰子向上的一面上,(1)可能出現哪些點數?(2)出現的點數大于0嗎?(3)出現的點數會是7嗎?(4)出現的點數會是4嗎?

1、學生猜測以上問題的結果,并判斷以下三事件是什么事件:(師點評)(1)出現的點數大于0。(2)出現的點數是7。(3)出現的點數是4。三、

搶答游戲,應用新知例1、判斷以下事件是什么事件。①

袋中只有5個紅球,能摸到紅球。②

打開電視機,正在播動畫片

袋中有3個紅球,2個白球,能摸到白球。

將一小勺白糖放入

水中,并用筷子不斷攪拌,白糖溶解。⑤

測量某天的最低氣溫,結果為-150℃⑥

早晨的太陽一定從東方升起。

可編輯

-⑦

小紅今年15歲,她一定在念初三。⑧

任意擲一枚硬幣,正面向上。

一個雞蛋在沒有任何防護的情況下,從六層樓的陽臺掉下來,砸在水泥地面上,沒有摔破。

例2、袋子中裝有5個黑球和16個白球,這些球的形狀、大小、質地等完全相同,再看不到球的條件下隨機從袋中摸出一個球。(1)這個球是白球還是黑球?

(2)如果兩種球都有可能被摸出,那么摸出黑球和白球的可能性一樣大嗎?(3)你能摸出紅球嗎?四、拓展新知

思考:小明和小剛在玩擲骰子游戲,二人各執一枚骰子。當兩枚骰子的點數之和為奇數,小剛得1分,否則小明得1分,這個游戲對雙方公平嗎?師引導學生進行分析,共同完成本題。五、反思小結,回味新知1、這節課你學到了什么?

2、你體會到了什么?

3、最讓你難忘的是什么六、布置作業

作業:教科書習題25.1第1題。教學設計說明(一)設計思想:

本課設計旨在遵循從具體到抽象,從感性到理性的漸進認識規律,以學生感興趣的摸球游戲

可編輯

-引如課題,以熟悉的抽簽和擲骰子游戲引導學生分清必然事件,不可能事件,隨機事件,增強了學生的學習興趣。(二)教學設計特點

1.貼近生活,讓學生在體驗中感悟學習.2.創設情境,讓學生在興趣中自主學習.3.開放課堂,讓學生在活動中探索學習

可編輯

九年級數學教案大全篇11

了解中心對稱圖形的概念及中心對稱圖形的對稱中心的概念,掌握這兩個概念的應用.

復習兩個圖形關于中心對稱的有關概念,利用這個所學知識探索一個圖形是中心對稱圖形的有關概念及其他的運用.

重點

中心對稱圖形的有關概念及其它們的運用.

難點

區別關于中心對稱的兩個圖形和中心對稱圖形.

一、復習引入

1.(老師口問)口答:關于中心對稱的兩個圖形具有什么性質?

(老師口述):關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分.

關于中心對稱的兩個圖形是全等圖形.

2.(學生活動)作圖題.

(1)作出線段AO關于O點的對稱圖形,如圖所示.

(2)作出三角形AOB關于O點的對稱圖形,如圖所示.

延長AO使OC=AO,延長BO使OD=BO,連接CD,則△COD即為所求,如圖所示.

二、探索新知

從另一個角度看,上面的(1)題就是將線段AB繞它的中點旋轉180°,因為OA=OB,所以,就是線段AB繞它的中點旋轉180°后與它本身重合.

上面的(2)題,連接AD,BC,則剛才的關于中心O對稱的兩個圖形就成了平行四邊形,如圖所示.

∵AO=OC,BO=OD,∠AOB=∠COD

∴△AOB≌△COD

∴AB=CD

也就是,ABCD繞它的兩條對角線交點O旋轉180°后與它本身重合.

因此,像這樣,把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.

(學生活動)例1從剛才講的線段、平行四邊形都是中心對稱圖形外,每一位同學舉出三個圖形,它們也是中心對稱圖形.

老師點評:老師邊提問學生邊解答的特點.

(學生活動)例2請說出中心對稱圖形具有什么特點?

老師點評:中心對稱圖形具有勻稱美觀、平穩的特點.

例3求證:如圖,任何具有對稱中心的四邊形是平行四邊形.

分析:中心對稱圖形的對稱中心是對應點連線的交點,也是對應點間的線段中點,因此,直接可得到對角線互相平分.

證明:如圖,O是四邊形ABCD的對稱中心,根據中心對稱性質,線段AC,BD點O,且AO=CO,BO=DO,即四邊形ABCD的對角線互相平分,因此,四邊形ABCD是平行四邊形.

三、課堂小結(學生歸納,老師點評)

本節課應掌握:

1.中心對稱圖形的有關概念;

2.應用中心對稱圖形解決有關問題.

四、作業布置

教材第70頁習題8,9,10.

九年級數學教案大全篇12

教學目標

(1)會用公式法解一元二次方程;

(2)經歷求根公式的發現和探究過程,提高學生觀察能力、分析能力以及邏輯思維能力;

(3)滲透化歸思想,領悟配方法,感受數學的內在美。

教學重點

知識層面:公式的推導和用公式法解一元二次方程;

能力層面:以求根公式的發現和探究為載體,滲透化歸的數學思想方法。

教學難點:求根公式的推導。

總體設計思路:

以舊知識為起點,問題為主線,以教師指導下學生自主探究為基本方式,突出數學知識的內在聯系與探究知識的方法,發展學生的理性思維。

教學過程

(一)以舊引新,提出問題

解下列一元二次方程:(學生選兩題做)

(1)_2+4_+2=0;(2)3_2-6_+1=0;

(3)4_2-16_+17=0;(4)3_2+4_+7=0.

然后讓學生仔細觀察四題的解答過程,由此發現有什么相同之處,有什么不同之處?

接著再改變上面每題的其中的一個系數,得到新的四個方程:(學生不做,思考其解題過程)

(1)3_2+4_+2=0;(2)3_2-2_+1=0;

(3)4_2-16_-3=0;(4)3_2+_+7=0.

思考:新的四題與原題的解題過程會發生什么變化?

設計意圖:1.復習鞏固舊知識,為本節課的學習掃除障礙;

2.讓學生充分感受到用配方法解題既存在著共性,也存在著不同的現象,由此激發學生的求知欲望。

3、學生根據自己的情況選兩題,這樣做能保證運算的正確和繼續學習數學的信心。

(二)分析問題,探究本質

由學生的觀察討論得到:用配方法解不同一元二次方程的過程中,相同之處是配方的過程----程序化的操作,不同之處是方程的根的情況及其方程的根。

進而提出下面的問題:

既然過程是相同的,為什么會出現根的不同?方程的根與什么有關?有怎樣的關系?如何進一步探究?

讓學生討論得出:從一元二次方程的一般形式去探究根與系數的關系。

a_2+b_+c=0(a≠0)注:根據學生學習程度的不同,可

a_2+b_=-c以采用學生獨立嘗試配方,合

_2+_=-作嘗試配方或教師引導下進行

_2+_+=-+配方等各種教學形式。

(_+)2=

然后再議開方過程(讓學生結合前面四題方程來加以討論),使學生充分認識到“b2-4ac”的重要性。

當b2-4ac≥0時,

(_+)2=注:這樣變形可以避免對a正、負的討論,

_+=便于學生的理解。

_=-即_=

_1=,_2=

當b2-4ac<0時,

方程無實數根。

設計意圖:讓學生通過經歷知識形成的全過程,從而提高自身的觀察能力、分析問題和解決問題的能力,發展了理性思維。

(三)得出結論,解決問題

由上面的探究過程可知,一元二次方程a_2+b_+c=0(a≠0)的根由方程的系數a,b,c確定。當b2-4ac≥0時,

_=;

當b2-4ac<0時,方程無實數根。

這個式子對解題有什么幫助?通過討論加深對式子的理解,同時讓學生進一步感受到數學的簡潔美、和諧美。

進而闡述這個式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法。

設計意圖:理解是記憶的基礎。只有理解了公式才能爛熟于心,才能在題目中熟練應用,不會因記不清公式造成運算的錯誤。

運用公式法解一元二次方程。(前兩道教師示范,后兩道學生練習)

(1)2_2-_-1=0;(2)4_2-3_+2=0;

(3)_2+15_=-3_;(4)_2-_+=0.

注:(教師在示范時多強調注意點、易錯點,會減少學生做題的錯誤,讓學生在做題中獲得成功感。)

設計意圖:進一步闡述求根公式,歸納總結用公式法解一元二次方程的一般步驟,及時總結簡化運算,節約時間又提高做題的準確性。

用公式法解一元二次方程:(比一比,看誰做得又快又對)

(1)_2+_-6=0;(2)_2-_-=0;

(3)3_2-6_-2=0;(4)4_2-6_=0;

設計意圖:能夠熟練運用公式法解一元二次方程,讓每位學生都有所收獲,通過大量練習,熟悉公式法的步驟,訓練快速準確的計算能力。

(四)拓展運用,升華提高

[想一想]

清清和楚楚剛學了用公式法解一元二次方程,看到一個關于_的一元二次方程_2+(2m-1)_+(m-1)=0,清清說:“此方程有兩個不相等的實數根”,

而楚楚反駁說:“不一定,根的情況跟m的值有關”。那你們認為呢?并說明理由。

設計意圖:基于學生基礎較好,因此對求根公式作進一步深化,并綜合運用了配方法,使不同層次的學生都有不同提高。比較配方法在不同題型中的用法,

避免以后出現運算錯誤。

歸納小結,結合上面想一想,讓學生嘗試對本節課的知識進行梳理,對方法進行提煉,從而使學生的知識和方法更具系統化和網絡化,同時也是情感的升華過程。

(五)布置作業

一必做題

二選做題:P46第12題。

設計意圖:結合學生的實際情況,可以分層布置。適合的練習既鞏固了所學提高了計算的速度又保養了學生學習數學的興趣和信心。

九年級數學教案大全篇13

教學目標

1.使學生學會圓環面積的計算方法,以及圓形與矩形混合圖形的相關計算方法。

2.學會利用已有的知識,運用數學思想方法,推導出圓環面積計算公式,有關于圓形與正方形應用的解答方法。

3.培養學生觀察、分析、推理和概括的能力,發展學生的空間概念。

教學重難點

1教學重點

會利用圓和其他已學的相關知識解決實際問題。

2教學難點

圓與其他圖形計算公式的混合使用。

教學工具

PPT卡片

教學過程

1復習鞏固上節知識,導入新課

2新知探究

2.1圓環面積

一、問題引入

同學們知道光盤可以用來做什么嗎?誰能來描述一下光盤的外觀。

回答(略)。

今天我們就來做一做與光盤相關的數學問題。

二、圓環面積求解

例2.光盤的銀色部分是一個圓環,內圓半徑是50px,外圓半徑是150px。圓環的面積是多少?

步驟:

師:求圓環面積需要先求什么?

生:內圓和外圓的面積

師:同學們可以自己做一做,分組交流一下自己的解法。

師:給出計算過程與結果:

三、知識應用

做一做第2題:

一個圓形環島的直徑是50m,中間是一個直徑為10m的圓形花壇,其他地方是草坪。草坪的占地面積是多少?

師:這是一道典型的圓環面積應用題。通過直徑得到半徑,代入圓環面積公式,很簡單。

2.2圓與正方形

一、問題引入

師:同學們知道蘇州的園林吧。大家有沒有觀察過園林建筑的窗戶?它有很多很漂亮的設計,也有很多很常見的圖形,比如五邊形、六邊形、八邊形等等。其中外圓內方或者外方內圓是一種很常見的設計。

師:不僅是在園林中,事實上在中國的建筑和其他的設計中都經常能見到“外圓內方”和“外方內圓”,比如這座沈陽的方圓大廈、商標等等。下面我們來認識一下這種圓形與正方形結合起來構成的圖形。

二、知識點

例3:圖中的兩個圓半徑是1m,你能求出正方形和圓之間部分的面積嗎?

步驟:

師:題目中都告訴了我們什么?

生:左圖圓的半徑=正方形的邊長的一半=1m;右圖圓的面積=正方形對角線的一半=1m

師:分別要求的是什么?

生:一個求正方形比圓多的面積,一個求圓比正方形多的面積。

師:應該怎么計算呢?

歸納總結

如果兩個圓的半徑都是r,結果又是怎樣的呢?

當r=1時,與前面的結果完全一致。

四、知識應用

70頁做一做:

下圖是一面我國唐代外圓內方的銅鏡。銅鏡的直徑是600px。外面的圓與內部的正方形之間的面積是多少?

師:同學們用我們剛剛學過的知識來解答一下這道題目吧。

解:銅鏡的半徑是300px

5.3隨堂練習

若還有足夠時間,課堂練習練習十五第5/6/7題。

(可以邀請同學板書解題過程)

6小結

1.今天我們共同研究了什么?

今天我們在已知圓和正方形的面積公式的前提下,探索了圓環和“外圓內方”“外方內圓”圖形的面積計算方法。這不是要求同學們記住這些推導出來的公式,而是希望同學們能過明白推導的方法,以后遇到類似的問題可以自己運用學過的知識來解決問題。

2.在日常生活中經常需要去求圓的面積,譬如說:蒙古包做成圓形的是因為可以最大化地利用居住面積,植物根莖的橫截面是圓形的,也是因為可以最大化的吸收水分。我們還可以再舉出其他的一些例子,如裝菜的盤子、車輪為什么要做成圓形的?大家需要多看多想!

7板書

例2解答步驟

九年級數學教案大全篇14

本學期是初中學習的關鍵時期,進入初三,學生成績差距較大。教學任務非常艱巨。因此,要完成教學任務,必須緊扣教學大綱,結合教學內容和學生實際,把握好重點、難點。努力把今學期的任務圓滿完成。本著為了學生的一切為宗旨,把培養高素質人才作為目標,特制定本計劃。

一.完成九年級下冊的內容

1.掌握二次函數的概念,五種基本函數關系式,會建立數學模型來解決實際問題。

2.學會用邏輯推理的思想來證明等腰三角形,平行四邊形,矩形,菱形,正方形等幾何圖形的性質定理。

3.加強學生對數學知識的認識方法,培養他們正確的學習方法。

4.通過關於圖形和證明的教學,進一步培學生的邏輯思維能力.與空間觀念。

二.本學期在提高教學質量上采取的措施。

1.改進教學方法,采用啟發式教學。

2.注意教科書的系統性,使學生牢固掌握舊知識的基礎上,學習新知識,明確新舊知識的聯系。

3.注意發展學生探索知識的能力,提高學生分析問題的能力。

4.開放性問題、探究性問題教學,培養學生創新意識、探究能力。

5.鼓勵合作學習,加強個別輔導,提高差生成績。

三.教學具體安排。

1.第一周.平行四邊形,矩形,菱形,正方形.

2.第二周.等腰梯形,中位線,反證法,以及復習題

3.第三周.數據分析與決策.

4.4周.復習數與式

5.5周.復習方程與不等式

6.6周.復習函數

7.7周.復習圖形的認識

8.8周.復習圖形與變換

9.9周.復習圖形與坐標

10.10周.復習概率與統計

11.11周.復習課題學習

12.12周.模擬考試與講評

13.13周.市檢

14.14周.重要知識點的再梳理

15.15周.一些常見題的訓練

16.16周.做往年的中考題

17.17周.考試方法和考試心理的輔導.

九年級數學教案大全篇15

在整個中學數學知識體系中,二次函數占據極其關鍵且重要的地位,二次函數不僅是中高考數學的重要考點,也是線性數學知識的基礎。那老師應該怎么教呢?今天,小編給大家帶來初三數學二次函數教案教學方法。

一、重視每一堂復習課數學復習課不比新課,講的都是已經學過的東西,我想許多老師都和我有相同的體會,那就是復習課比新課難上。

二、重視每一個學生學生是課堂的主體,離開學生談課堂效率肯定是行不通的。而我校的學生數學基礎大多不太好,上課的積極性普遍不高,對學習的熱情也不是很高,這些都是十分現實的事情,既然現狀無法更改,那么我們只能去適應它,這就對我們老師提出了更高的要求

三、做好課外與學生的溝通,學生對你教學理念認同和教學常規配合與否,功夫往往在課外,只有在課外與學生多進行交流和溝通,和學生建立起比較深厚的師生情誼,那么最頑皮的學生也能在他喜歡的老師的`課堂上聽進一點

四、要多了解學生。你對學生的了解更有助于你的教學,特別是在初三總復習間斷,及時了解每個學生的復習情況有助于你更好的制定復習計劃和備下一堂課,也有利于你更好的改進教學方法。

2二次函數教學方法一

一、立足教材,夯實雙基:進行中考數學復習的時候,要立足于教材,重新梳理教材中的典例和習題,就顯得尤為重要.并且要讓學生在掌握的基礎上,能夠做到知識的延伸和遷移,讓解題方法、技巧在學生遇到相似問題時,能在頭腦中再現

二、立足課堂,提高效率:做到教師入題海,學生出題海.教師應多做題、多研究近幾年的中考試題,并根據本班學生的實際情況,從眾多復習資料中,選擇適合本班學生的最佳練習,也可通過對題目的重組。

三、教師在設計教學目標時,要做到胸中有書,目中有人,讓每一節課都給學生留有時間,讓他們有獨立思考、合作探究交流的過程,最大限度的調動學生的參與度,激發他們的學習興趣,達到最佳的復習效果.

四、激發興趣,提高質量:興趣是學習最好的動力,在上復習課時尤為重要.因此,我們在授課的過程中,在關注知識復習的同時,也要關注學生的學習欲望和學習效果,要讓學生在學習的過程中體驗成功的快感.這樣他們才會更有興趣的學習下去.

3二次函數教學方法二

1.質疑問難是學生自主學習的重要表現,優化課堂結構,激活學生的主體意識,必須鼓勵學生質疑問難。教師要創造和諧融合的課堂氣氛,允許學生隨時“插嘴”、提問、爭辯,甚至提出與教師不同的看法。

2.二次函數是初中階段繼一次函數、反比例函數之后,學生要學習的最后一類重要的代數函數,它也是描述現實世界變量之間關系的重要的數學模型。

3.學生有疑而問、質疑問難,是用心思考、自主學習、主動探究的可貴表現,理應得到老師的熱情鼓勵和贊揚。現在對學生的隨時“插嘴”,提出的各種疑難問題,應抱歡迎、鼓勵的態度給與肯定,并做出正確的解釋。

4.初中階段主要研究二次函數的概念、圖像和性質,用二次函數的觀點審視一元二次方程,用二次函數的相關知識分析和解決簡單的實際問題。

4二次函數教學方法三

1.教學案例、教學設計、教學實錄、教學敘事的區別:教學案例與教案:教案(教學設計)是事先設想的教育教學思路,是對準備實施的教育措施的簡要說明,反映的是教學預期;而教學案例則是對已發生的教育教學過程的描述,反映的是教學結果。

2.教學案例與教學實錄:它們同樣是對教育教學情境的描述,但教學實錄是有聞必錄(事實判斷),而教學案例是根據目的和功能選擇內容,并且必須有作者的反思(價值判斷)。

3.教學案例與敘事研究的聯系與區別:從“情景故事”的意義上講,教育敘事研究報告也是一種“教育案例”,但“教學案例”特指有典型意義的、包含疑難問題的、多角度描述的經過研究并加上作者反思(或自我點評)的教學敘事;

4.教學案例必須從教學任務分析的目標出發,有意識地選擇有關信息,必須事先進行實地作業,因此日常教育敘事日志可以作為寫作教學案例的素材積累。

九年級數學教案大全篇16

1.了解旋轉及其旋轉中心和旋轉角的概念,了解旋轉對應點的概念及其應用它們解決一些實際問題.

2.通過復習軸對稱的有關概念及性質,從生活中的數學開始,經歷觀察,產生概念,應用概念解決一些實際問題.

3.旋轉的基本性質.

重點

旋轉及對應點的有關概念及其應用.

難點

旋轉的基本性質.

一、復習引入

(學生活動)請同學們完成下面各題.

1.將如圖所示的四邊形ABCD平移,使點B的對應點為點D,作出平移后的圖形.

2.如圖,已知△ABC和直線l,請你畫出△ABC關于l的對稱圖形△A′B′C′.

3.圓是軸對稱圖形嗎?等腰三角形呢?你還能指出其它的嗎?

(口述)老師點評并總結:

(1)平移的有關概念及性質.

(2)如何畫一個圖形關于一條直線(對稱軸)的對稱圖形并口述它具有的一些性質.

(3)什么叫軸對稱圖形?

二、探索新知

我們前面已經復習有關內容,生活中是否還有其它運動變化呢?回答是肯定的,下面我們就來研究.

1.請同學們看講臺上的大時鐘,有什么在不停地轉動?旋轉圍繞什么點呢?從現在到下課時針轉了多少度?分針轉了多少度?秒針轉了多少度?

(口答)老師點評:時針、分針、秒針在不停地轉動,它們都繞時鐘的中心.從現在到下課時針轉了________度,分針轉了________度,秒針轉了________度.

2.再看我自制的好像風車風輪的玩具,它可以不停地轉動.如何轉到新的位置?(老師點評略)

3.第1,2兩題有什么共同特點呢?

共同特點是如果我們把時鐘、風車風輪當成一個圖形,那么這些圖形都可以繞著某一固定點轉動一定的角度.

像這樣,把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角.

如果圖形上的點P經過旋轉變為點P′,那么這兩個點叫做這個旋轉的對應點.

下面我們來運用這些概念來解決一些問題.

例1如圖,如果把鐘表的指針看做三角形OAB,它繞O點按順時針方向旋轉得到△OEF,在這個旋轉過程中:

(1)旋轉中心是什么?旋轉角是什么?

(2)經過旋轉,點A,B分別移動到什么位置?

解:(1)旋轉中心是O,∠AOE,∠BOF等都是旋轉角.

(2)經過旋轉,點A和點B分別移動到點E和點F的位置.

自主探究:

請看我手里拿著的硬紙板,我在硬紙板上挖下一個三角形的洞,再挖一個點O作為旋轉中心,把挖好的硬紙板放在黑板上,先在黑板上描出這個挖掉的三角形圖案(△ABC),然后圍繞旋轉中心O轉動硬紙板,在黑板上再描出這個挖掉的三角形(△A′B′C′),移去硬紙板.

(分組討論)根據圖回答下面問題(一組推薦一人上臺說明)

1.線段OA與OA′,OB與OB′,OC與OC′有什么關系?

2.∠AOA′,∠BOB′,∠COC′有什么關系?

3.△ABC與△A′B′C′的形狀和大小有什么關系?

老師點評:1.OA=OA′,OB=OB′,OC=OC′,也就是對應點到旋轉中心的距離相等.

2.∠AOA′=∠BOB′=∠COC′,我們把這三個相等的角,即對應點與旋轉中心所連線段的夾角稱為旋轉角.

3.△ABC和△A′B′C′形狀相同和大小相等,即全等.

綜合以上的實驗操作得出:

(1)對應點到旋轉中心的距離相等;

(2)對應點與旋轉中心所連線段的夾角等于旋轉角;

(3)旋轉前、后的圖形全等.

例2如圖,△ABC繞C點旋轉后,頂點A的對應點為點D,試確定頂點B的對應點的位置,以及旋轉后的三角形.

分析:繞C點旋轉,A點的對應點是D點,那么旋轉角就是∠ACD,根據對應點與旋轉中心所連線段的夾角等于旋轉角,即∠BCB′=∠ACD,又由對應點到旋轉中心的距離相等,即CB=CB′,就可確定B′的位置,如圖所示.

解:(1)連接CD;

(2)以CB為一邊作∠BCE,使得∠BCE=∠ACD;

(3)在射線CE上截取CB′=CB,則B′即為所求的B的對應點;

(4)連接DB′,則△DB′C就是△ABC繞C點旋轉后的圖形.

三、課堂小結

(學生總結,老師點評)

本節課應掌握:

1.對應點到旋轉中心的距離相等;

2.對應點與旋轉中心所連線段的夾角等于旋轉角;

3.旋轉前、后的圖形全等及其它們的應用.

四、作業布置

教材第62~63頁習題4,5,6.

九年級數學教案大全篇17

教學內容

二次根式的概念及其運用

教學目標

理解二次根式的概念,并利用(a≥0)的意義解答具體題目.

提出問題,根據問題給出概念,應用概念解決實際問題.

教學重難點關鍵

1.重點:形如(a≥0)的式子叫做二次根式的概念;

2.難點與關鍵:利用“(a≥0)”解決具體問題.

教學過程

一、復習引入

(學生活動)請同學們獨立完成下列三個問題:

問題1:已知反比例函數y=,那么它的圖象在第一象限橫、縱坐標相等的點的坐標是___________.

問題2:如圖,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB邊的長是__________.

問題3:甲射擊6次,各次擊中的環數如下:8、7、9、9、7、8,那么甲這次射擊的方差是S2,那么S=_________.

老師點評:

問題1:橫、縱坐標相等,即x=y,所以x2=3.因為點在第一象限,所以x=,所以所求點的坐標(,).

問題2:由勾股定理得AB=

問題3:由方差的概念得S=.

二、探索新知

很明顯、、,都是一些正數的算術平方根.像這樣一些正數的算術平方根的式子,我們就把它稱二次根式.因此,一般地,我們把形如(a≥0)的式子叫做二次根式,“”稱為二次根號.

(學生活動)議一議:

1.-1有算術平方根嗎?

2.0的算術平方根是多少?

3.當a<0,有意義嗎?

老師點評:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).

分析:二次根式應滿足兩個條件:第一,有二次根號“”;第二,被開方數是正數或0.

解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.

例2.當x是多少時,在實數范圍內有意義?

分析:由二次根式的定義可知,被開方數一定要大于或等于0,所以3x-1≥0,才能有意義.

解:由3x-1≥0,得:x≥

當x≥時,在實數范圍內有意義.

三、鞏固練習

教材P練習1、2、3.

四、應用拓展

例3.當x是多少時,+在實數范圍內有意義?

分析:要使+在實數范圍內有意義,必須同時滿足中的≥0和中的x+1≠0.

解:依題意,得

由①得:x≥-

由②得:x≠-1

當x≥-且x≠-1時,+在實數范圍內有意義.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a2004+b2004的值.(答案:)

五、歸納小結(學生活動,老師點評)

本節課要掌握:

1.形如(a≥0)的式子叫做二次根式,“”稱為二次根號.

2.要使二次根式在實數范圍內有意義,必須滿足被開方數是非負數.

六、布置作業

1.教材P8復習鞏固1、綜合應用5.

2.選用課時作業設計.

3.課后作業:《同步訓練》

第一課時作業設計

一、選擇題1.下列式子中,是二次根式的是()

A.-B.C.D.x

2.下列式子中,不是二次根式的是()

A.B.C.D.

3.已知一個正方形的面積是5,那么它的邊長是()

A.5B.C.D.以上皆不對

二、填空題

1.形如________的式子叫做二次根式.

2.面積為a的正方形的邊長為________.

3.負數________平方根.

三、綜合提高題

1.某工廠要制作一批體積為1m3的產品包裝盒,其高為0.2m,按設計需要,底面應做成正方形,試問底面邊長應是多少?

2.當x是多少時,+x2在實數范圍內有意義?

3.若+有意義,則=_______.

4.使式子有意義的未知數x有()個.

A.0B.1C.2D.無數

5.已知a、b為實數,且+2=b+4,求a、b的值.

第一課時作業設計答案:

一、1.A2.D3.B

二、1.(a≥0)2.3.沒有

三、1.設底面邊長為x,則0.2x2=1,解答:x=.

2.依題意得:,

∴當x>-且x≠0時,+x2在實數范圍內沒有意義.

3.

4.B

5.a=5,b=-4

21.1二次根式(2)

九年級數學教案大全篇18

【知識與技能】

1.會用描點法畫函數y=ax2(a>0)的圖象,并根據圖象認識、理解和掌握其性質.

2.體會數形結合的轉化,能用y=ax2(a>0)的圖象和性質解決簡單的實際問題.

【過程與方法】

經歷探索二次函數y=ax2(a>0)圖象的作法和性質的過程,獲得利用圖象研究函數的經驗,培養觀察、思考、歸納的良好思維習慣.

【情感態度】

通過動手畫圖,同學之間交流討論,達到對二次函數y=ax2(a>0)圖象和性質的真正理解,從而產生對數學的興趣,調動學生的積極性.

【教學重點】

1.會畫y=ax2(a>0)的圖象.

2.理解,掌握圖象的性質.

【教學難點】

二次函數圖象及性質探究過程和方法的體會教學過程.

一、情境導入,初步認識

問題1 請同學們回憶一下一次函數的圖象、反比例函數的圖象的特征是什么?二次函數圖象是什么形狀呢?

問題2如何用描點法畫一個函數圖象呢?

【教學說明】①略;②列表、描點、連線.

二、思考探究,獲取新知

探究1 畫二次函數y=ax2(a>0)的圖象.

畫二次函數y=ax2的圖象.

【教學說明】①要求同學們人人動手,按“列表、描點、連線”的步驟畫圖y=x2的圖象,同學們畫好后相互交流、展示,表揚畫得比較規范的同學.

②從列表和描點中,體會圖象關于y軸對稱的特征.

③強調畫拋物線的三個誤區.

誤區一:用直線連結,而非光滑的曲線連結,不符合函數的變化規律和發展趨勢.

如圖(1)就是y=x2的圖象的錯誤畫法.

誤區二:并非對稱點,存在漏點現象,導致拋物線變形.

如圖(2)就是漏掉點(0,0)的y=x2的圖象的錯誤畫法.

誤區三:忽視自變量的取值范圍,拋物線要求用平滑曲線連點的同時,還需要向兩旁無限延伸,而并非到某些點停止.

75289 主站蜘蛛池模板: 刚性-柔性防水套管-橡胶伸缩接头-波纹管补偿器-启腾供水材料有限公司 | 成都软件开发_OA|ERP|CRM|管理系统定制开发_成都码邻蜀科技 | 脉冲布袋除尘器_除尘布袋-泊头市净化除尘设备生产厂家 | 北京浩云律师事务所-法律顾问_企业法务_律师顾问_公司顾问 | 旋片真空泵_真空泵_水环真空泵_真空机组-深圳恒才机电设备有限公司 | 复合土工膜厂家|hdpe防渗土工膜|复合防渗土工布|玻璃纤维|双向塑料土工格栅-安徽路建新材料有限公司 | 大功率金属激光焊接机价格_不锈钢汽车配件|光纤自动激光焊接机设备-东莞市正信激光科技有限公司 定制奶茶纸杯_定制豆浆杯_广东纸杯厂_[绿保佳]一家专业生产纸杯碗的厂家 | 招商帮-一站式网络营销服务|搜索营销推广|信息流推广|短视视频营销推广|互联网整合营销|网络推广代运营|招商帮企业招商好帮手 | 蚂蚁分类信息系统 - PHP同城分类信息系统 - MayiCMS | 净化板-洁净板-净化板价格-净化板生产厂家-山东鸿星新材料科技股份有限公司 | 消泡剂-水处理消泡剂-涂料消泡剂-切削液消泡剂价格-东莞德丰消泡剂厂家 | 品牌策划-品牌设计-济南之式传媒广告有限公司官网-提供品牌整合丨影视创意丨公关活动丨数字营销丨自媒体运营丨数字营销 | 液压油缸生产厂家-山东液压站-济南捷兴液压机电设备有限公司 | 山东太阳能路灯厂家-庭院灯生产厂家-济南晟启灯饰有限公司 | 金属清洗剂,防锈油,切削液,磨削液-青岛朗力防锈材料有限公司 | 世界箱包品牌十大排名,女包小众轻奢品牌推荐200元左右,男包十大奢侈品牌排行榜双肩,学生拉杆箱什么品牌好质量好 - Gouwu3.com | 中国品牌排名投票_十大品牌榜单_中国著名品牌【中国品牌榜】 | 安徽净化工程设计_无尘净化车间工程_合肥净化实验室_安徽创世环境科技有限公司 | 通用磨耗试验机-QUV耐候试验机|久宏实业百科 | 仿古瓦,仿古金属瓦,铝瓦,铜瓦,铝合金瓦-西安东申景观艺术工程有限公司 | 代办建筑资质升级-建筑资质延期就找上海国信启航 | 杭州代理记账费用-公司注销需要多久-公司变更监事_杭州福道财务管理咨询有限公司 | 上海噪音治理公司-专业隔音降噪公司-中广通环保 | 吉祥新世纪铝塑板_生产铝塑板厂家_铝塑板生产厂家_临沂市兴达铝塑装饰材料有限公司 | 新材料分散-高速均质搅拌机-超声波分散混合-上海化烁智能设备有限公司 | 刘秘书_你身边专业的工作范文写作小秘书 | 山东活动策划|济南活动公司|济南公关活动策划-济南锐嘉广告有限公司 | 粘度计维修,在线粘度计,二手博勒飞粘度计维修|收购-天津市祥睿科技有限公司 | 披萨石_披萨盘_电器家电隔热绵加工定制_佛山市南海区西樵南方综合保温材料厂 | 液压油缸生产厂家-山东液压站-济南捷兴液压机电设备有限公司 | PCB接线端子_栅板式端子_线路板连接器_端子排生产厂家-置恒电气 喷码机,激光喷码打码机,鸡蛋打码机,手持打码机,自动喷码机,一物一码防伪溯源-恒欣瑞达有限公司 假肢-假肢价格-假肢厂家-河南假肢-郑州市力康假肢矫形器有限公司 | 上海诺狮景观规划设计有限公司 | SDG吸附剂,SDG酸气吸附剂,干式酸性气体吸收剂生产厂家,超过20年生产使用经验。 - 富莱尔环保设备公司(原名天津市武清县环保设备厂) | 电机铸铝配件_汽车压铸铝合金件_发动机压铸件_青岛颖圣赫机械有限公司 | 密度电子天平-内校-外校电子天平-沈阳龙腾电子有限公司 | 美能达分光测色仪_爱色丽分光测色仪-苏州方特电子科技有限公司 | 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 广西资质代办_建筑资质代办_南宁资质代办理_新办、增项、升级-正明集团 | 北京开源多邦科技发展有限公司官网| 智能案卷柜_卷宗柜_钥匙柜_文件流转柜_装备柜_浙江福源智能科技有限公司 | 山东活动策划|济南活动公司|济南公关活动策划-济南锐嘉广告有限公司 |