七年級數學教案設計萬能
七年級數學教案設計萬能篇1
絕對值
教學目標
1,掌握絕對值的概念,有理數大小比較法則.
2,學會絕對值的計算,會比較兩個或多個有理數的大小.
3.體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想.
教學難點 兩個負數大小的比較
知識重點 絕對值的概念
教學過程(師生活動) 設計理念
設置情境
引入課題 星期天黃老師從學校出發,開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規定向東為正,①用有理數表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;
觀察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.
學生回答后,教師說明如下:
數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0 這個例子中,第一問是相反意義的量,用正負數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體驗數學知識與生活實際的聯系.
因為絕對值概念的幾何意義是數形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備.
合作交流
探究規律 例1求下列各數的絕對值,并歸納求有理數a的絕對有什么規律?
-3,5,0,+58,0.6
要求小組討論,合作學習.
教師引導學生利用絕對值的意義先求出答案,然后觀察原數與它的絕對值這兩個數據的特征,并結合相反數的意義,最后總結得出求絕對值法則(見教科書第15頁).
鞏固練習:教科書第15頁練習.
其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區別. 求一個數的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例.
學生能做的盡量讓學生完成,教師在教學過程中只是組織者.本著這個理念,設計這個討論.
結合實際發現新知 引導學生看教科書第16頁的圖,并回答相關問題:
把14個氣溫從低到高排列;
把這14個數用數軸上的點表示出來;
觀察并思考:觀察這些點在數軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數可以比較大小嗎?
應怎樣比較兩個數的大小呢?
學生交流后,教師總結:
14個數從左到右的順序就是溫度從低到高的順序:
在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數.
在上面14個數中,選兩個數比較,再選兩個數試試,通過比較,歸納得出有理數大小比較法則
想象練習:想象頭腦中有一條數軸,其上有兩個點,分別表示數一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數的大小之間的關系.
要求學生在頭腦中有清晰的圖形. 讓學生體會到數學的規定都來源于生活,每一種規定都有它的合理性
數在大小比較法則第2點學生較難掌握,要從絕對值的意義和數軸上的數左小右大這方面結合起來來了解,所以配置想象練習 ,加強數與形的想象。
課堂練習 例2,比較下列各數的大小(教科書第17頁例)
比較大小的過程要緊扣法則進行,注意書寫格式
練習:第18頁練習
小結與作業
課堂小結 怎樣求一個數的絕對值,怎樣比較有理數的大小?
本課作業 1, 必做題:教產書第19頁習題1,2,第4,5,6,10
2, 選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,情景的創設出于如下考慮:①體現數學知識與生活實際的緊密聯系,讓學生在這些熟悉的日常生活情境中獲得數學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發學習的興趣.②教材中數的絕對值概念是根據幾何意義來定義的(其本質是將數轉化為形來解釋,是難點),然后通過練習歸納出求有理數的絕對值的規律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受.
2, 一個數絕對值的法則,實際上是絕對值概念的直接應用,也體現著分類的數學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發展和學生的能力培養角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。
3, 有理數大小的比較法則是大小規定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規定:“在數軸上表示有理數,它們從左到右的順序就是從小到大的順序”,幫助學生建立“數軸上越左邊的點到原點的距離越大,所以表示的數越小”這個數形結合的模型.為此設置了想象練習.
4,本節課的內容包括絕對值的概念和數的絕對值的求法、有理數大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數的大小比較移到下節課教學。
七年級數學教案設計萬能篇2
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
七年級數學教案設計萬能篇3
教學目標:
1.讓學生在交流中經歷比較100以內兩個數大小的多種方法。
2.歸納并掌握比較100以內兩個數大小的一般方法。
3.能正確運用“>”“<”“=”比較兩個數的大小。
教學重難點:
重點:掌握比較100以內兩個數大小的一般方法,能正確應用“>”“<”“=”。
難點:理解并掌握比較100以內兩個數大小的一般方法。
教法與學法:引導與探究法。
教學準備:課件,計數器。
教學過程:
一.復習舊知,導入新課。
5○720○1215○15(學生思考,交流)
再大一些的數,會比較大小嗎?這節課老師與大家一起學習100以內兩個數的大小比較。(板書課題)
二.新知探究。
1.出示情景問題,比較十位數字不同的兩位數。
(1)大家當裁判:誰贏了?
小紅和小明跳跳繩,小紅跳了42下,小明跳了37下。誰跳得多?用什么符號連接?
(學生獨立思考)
(2)交流比較的方法。
預設:
①根據數的順序來比較。42在37的后面,所以42>37。
②42根小棒比37根小棒多,所以42>37
③根據數的組成來比較。42由4個十和2個一組成,37由3個十和7個一組成。4個十比3個十多,所以42>37。
出示小棒圖,一對一對應擺放,發現42夠4個十,37夠3個十,第4個十就不夠了,4個十比3個十多,所以42>37。
小結:十位數字大的這個數就大,誰的十多誰就大。
④42夠減37,所以42>37.
42>37,換個說法什么?(37<42).
2.比較十位相同,個位不同的兩位數。
如果老師把42改成32,32和37哪個數大?
學生獨立思考,全班交流。
預設:
(1)32<37,因為2小,7大。所以32<37。
為什么直接比較個位數字?
(十位數字相同)
小結:十位數上的數相同,就比較個位上的數,個位上的數大的,這個數就大,個位上的數小的,這個數就小。
(2)按順序,37排在32大后面,所以32<37。
(3)用計數器,十位上珠子一樣多,個位上珠子多的數就大。
用計數器,怎樣比較42和37?
數學上規定:滿十進一,42十位上有4顆珠子,37十位上只有3顆珠子,所以32<37。
3.歸納比較的一般方法。
同學們,剛才大家比較數位上的數是比較大小常用的方法。齊聲朗讀。
比較數的大小,一般先比較十位上的數,十位數字大的這個數就大;如果十位數字的數相同,就比較個位上的數,個位數字大的,這個數就大,個位數字小的,這個數就小。
七年級數學教案設計萬能篇4
一:教材分析:
1:教材所處的地位和作用:
本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節的重點和難點,同時也是本章節的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數,幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養他們對數學的興趣
以及對他們進行思想教育方面有獨特的意義,同時,對后續教學內容起到奠基作用。
2:教育教學目標:
(1)知識目標:
(A)通過教學使學生了解應用題的一個重要步驟是根據題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。
(B)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數,其余字母表示已知數的情況下,列出一元一次方程解簡單的應用題。
(2)能力目標:通過教學初步培養學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯系實際的能力。
(3)思想目標:
通過對一元一次方程應用題的教學,讓學生初步認識體會到代數方法的優越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數學家對一元一次方程的研究成果,激發學生熱愛中國共產黨,熱愛社會主義,決心為實現社會主義四個現代化而學好數學的思想;同時,通過理論聯系實際的方式,通過知識的應用,培養學生唯物主義的思想觀點。
3:重點,難點以及確定的依據:
根據題意尋找和;差;倍;分問題的相等關系是本課的重點,根據題意列出一元一次方程是本課的難點,其理論依據是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯系實際的問題的理解難度大。
二:學情分析:(說學法)
1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數就直接進行列方程或在設未知數時,有單位卻忘記寫單位等。
2:學生在列方程解應用題時,可能存在三個方面的困難:
(1)抓不準相等關系;
(2)找出相等關系后不會列方程;
(3)習慣于用小學算術解法,得用代數方法分析應用題不適應,不知道要抓怎樣的相等關系。
3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。
4:學生在學習中可能習慣于用算術方法分析已知數與未知數,未知數與已知數之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。
5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。
三:教學策略:(說教法)
如何突出重點,突破難點,從而實現教學目標。我在教學過程中擬計劃進行如下操作:
1:“讀(看)——議——講”結合法
2:圖表分析法
3:教學過程中堅持啟發式教學的原則
教學的理論依據是:
1:必須先明確根據應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。
2:在教學過程中要求學生仔細審題,認真閱讀例題的內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數,再根據相等關系列出需要的代數式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有_千克面粉”寫成“設原來有_”。另外,在列方程中,各代數式的單位應該是相同的,如例1中,代數式“_字串7”“—15%_”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數設為未知數,其余的數用已知數或含有已知數與未知數的代數式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。
3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。
4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。
5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區別或最佳列法,以開闊學生的思路。
四:教學程序:
(一):課堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業五個部分。
(二):教學簡要過程:
1:復習提問:
(1):什么叫做等式?
(2):等式與方程之間有哪些關系?
(3):求_的15%的代數式。
(4):敘述代數式與方程的區別。
(理由是:通過復習加深學生對等式,方程,代數式之間關系的理解,有利于學生熟練正確根據題意列出一元一次方程,從而有利降低本節的難度。)
2:導入講授新課:
(1):教具:
一塊小黑板,抄212例1題目及相對應的空表格。
左邊右邊
(2):新課引述:
(3):講述課文212例1:
(目的是:要求學生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據題目關系,切勿盲目性)通過理解啟發學生尋找出以下關系:原來重量—運出重量=剩余重量(A)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養學生這種發散思維能力。)
指導學生設原來重量為_千克。這里分析等式左邊:原來重量為_千克,運出重量為15%_千克,把以上填入表格左邊。字串7分析等式右邊:剩余重量為42500千克,填入表格右邊。
(目的是:通過分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數和列代數式,有利于降低列方程解應用題的難度)
把以上左邊和右邊的代數式分別代入(A)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。
同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。
結合解題過程向學生介紹一元一次應用題解法的一般步驟:
課本215黑體字
3:課堂練習:
課文216練習1,2題
(目的是:讓學生通過適當的模仿例題的解題思想方法從而加深對本課的內容的理解掌握。)
4:新課鞏固:
學生對本節內容進行要小結:
列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。
(目的:讓學生加深對應用題的解法的認識和該注意事項的重視。)
5:作業布置:
課文221習題4-4(1)A組1,2,3題
(目的:在于檢驗學生對本節內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。)
五:板書設計:
4_4一元一次方程的應用:
例題:小黑板出示例1題目解:設原來有_千克面粉,那么運
相等關系:原來重量—運出重量=剩余重量出了15%_千克,依題意,得
等式左邊:等式右邊:_—15%_=42500
原來重量為_千克,剩余重量為42500千克。解這個方程:
運出重量為15%_千克。85/100__=42500
解一元一次方程的一般步驟:_=50000(千克)
小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。
七年級數學教案設計萬能篇5
一、素質教育目標
(一)知識教學點
1.掌握的三要素,能正確畫出.
2.能將已知數在上表示出來,能說出上已知點所表示的數.
(二)能力訓練點
1.使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識.
2.對學生滲透數形結合的思想方法.
(三)德育滲透點
使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.
(四)美育滲透點
通過畫,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受.
二、學法引導
1.教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法.
2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.
三、重點、難點、疑點及解決辦法
1.重點:正確掌握畫法和用上的點表示有理數.
2.難點:有理數和上的點的對應關系。
四、課時安排
1課時
五、教具學具準備
電腦、投影儀、自制膠片.
六、師生互動活動設計
師生同步畫,學生概括三要素,師出示投影,生動手動腦練習
七、教學步驟
(一)創設情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數呢?
這種表示數的圖形就是今天我們要學的內容—(板書課題).
【教法說明】從溫度計用標有讀數的刻度來表示溫度的高低這個事實出發,引出本節課所要學的內容—.再從溫度計這個實物形象抽象出來研究.既激發了學生的學習興趣,又使學生受到把實際問題抽象成數學問題的訓練,培養了用數學的意識.
(二)探索新知,講授新課
1.的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:
第一步:畫直線定原點 原點表示0(相當于溫度計上的0℃).
第二步:規定從原點向右的為正方向 那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).
第三步:選擇適當的長度為單位長度 (相當于溫度計上每1℃占1小格的長度).
【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.
讓學生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點表示什么數?
(2)原點右方表示什么數?原點左方表示什么數?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數?原點向左 個單位長度的B點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義.
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充.
【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力.
教師根據學生回答給予肯定或否定,糾正后板書.
2.的定義:規定了原點、正方向和單位長度的直線叫做.
向學生提出問題:上為什么要規定原點、正方向和單位長度呢?它們各起什么作用?引導學生結合溫度訂正確回答這個問題,從而知道三要素的重要性,了解三者缺一不可,認識和掌握判斷一條直線是不是的依據.
學生活動:同桌之間、前后桌之間討論.使學生從直觀認識上升到理性認識.
3.嘗試反饋,鞏固練習
請大家回答下列問題:
(出示投影2)
(1)有人說一條直線是一條,對不對?為什么?
(2)下列所畫對不對?如果不對,指出錯在哪里?
學生活動:學生思考,不準討論,想好后舉手回答.
讓其他學生對其回答進行評判,對確有疑問的題目,教師給予講解.
【教法說明】此組練習的目的是鞏固的概念.
答案:(2)①缺原點,②缺正方向,③不是射線而是直線,④缺單位長度,⑥提醒學生注意在同一數輪上必須用同一單位長度進行度量.⑤⑦是,同時⑦為學面直角坐標系打基礎.
4.有理數與上點的關系
通過剛才的學習我們知道所有的有理數都可以用上的點來表示.
例1 畫一條,并畫出表示下列各數的點:
1,5,0,-2.5, .
學生練習:同學們在練習本上畫一條,然后在上標出各點,一名學生板演.教師巡回指導,發現問題及時糾正.
【教法說明】讓學生動手自己畫,有助于培養學生實際操作能力.例1是把給定的有理數用上的點來表示,完成由“數”到“形”的思維過程,有助于學生加深對概念的理解.
(出示投影4)
例2 指出上 A、B、C、D、E各點分別表示什么數?
先讓學生思考一會,然后學生舉手回答
解:A表示-3;B表示 ; C表示3;D表示 ;E表 .
【教法說明】例2是讓學生說出上的點表示的有理數,完成了由“形”到“數”的思維過程.例1、例2從各自不同的兩個側面,體現出數形結合,滲透了數形之間相互轉化的數學思想.
5.嘗試反饋,鞏固練習
(出示投影5)
①說出下面上A、B、C、D、O、M各點表示什么數?
②將-3, ,1.5,-6, ,2.25,,-5,1
各數用上的點表示出來.
【教法說明】①題由點讀數練習,②題由數找點練習,進一步鞏固加深本節所學的內容.
(三)歸納小結
師:①是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示數與形之間的內在聯系,是幫助學生理解數學、學習數學的重要思想方法.本章有理數的有關性質和運算都是結合進行的.
②掌握三要素,正確地畫出,提醒同學們,所有的有理數都可用上的各點來表示,但是反過來不成立,即上的各點,并不是都表示有理數.以后再研究.
八、隨堂練習
1.判斷題
(1)直線就是( )
(2)是直線( )
(3)任何一個有理數都可以用上的點來表示()
(4)上到原點距離等于3的點所表示的數是+3( )
(5)上原點左邊表示的數是負數,右邊表示的數是正數,原點表示的數是0.( )
2.畫一條數輪,并畫出表示下列各數的點
,-5,0,+3.2,-1.4
九、布置作業
(-)必做題:課本第56頁1、2.
(二)選做題:課本第56頁及第57頁B組l.
(三)思考題:
①在數輪上距原點3個單位長度的點表示的數是_____________
②在數輪上表示-6的點在原點的___________側,距離原點___________個單位長度,表示+6的點在原點的__________側,距離原點____________個單位長度.
【教法說明】由于學生在知識、技能、能力方面發展不盡相同,所以分層次地布置作業 ,兼顧學習有困難和學有余力的學生,使他們都能達到大綱中規定的基本要求,并使部分學生能發展他們的數學才能.
十、板書設計
七年級數學教案設計萬能篇6
教學目標 1,掌握絕對值的概念,有理數大小比較法則.
2,學會絕對值的計算,會比較兩個或多個有理數的大小.
3.體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想.
教學難點 兩個負數大小的比較
知識重點 絕對值的概念
教學過程(師生活動) 設計理念
設置情境
引入課題 星期天黃老師從學校出發,開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規定向東為正,①用有理數表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?
學生思考后,教師作如下說明:
實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;
觀察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.
學生回答后,教師說明如下:
數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|
例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0 這個例子中,第一問是相反意義的量,用正負數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體驗數學知識與生活實際的聯系.
因為絕對值概念的幾何意義是數形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備.
合作交流
探究規律 例1求下列各數的絕對值,并歸納求有理數a的絕對有什么規律?
-3,5,0,+58,0.6
要求小組討論,合作學習.
教師引導學生利用絕對值的意義先求出答案,然后觀察原數與它的絕對值這兩個數據的特征,并結合相反數的意義,最后總結得出求絕對值法則(見教科書第15頁).
鞏固練習:教科書第15頁練習.
其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區別. 求一個數的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例.
學生能做的盡量讓學生完成,教師在教學過程中只是組織者.本著這個理念,設計這個討論.
結合實際發現新知 引導學生看教科書第16頁的圖,并回答相關問題:
把14個氣溫從低到高排列;
把這14個數用數軸上的點表示出來;
觀察并思考:觀察這些點在數軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數可以比較大小嗎?
應怎樣比較兩個數的大小呢?
學生交流后,教師總結:
14個數從左到右的順序就是溫度從低到高的順序:
在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數.
在上面14個數中,選兩個數比較,再選兩個數試試,通過比較,歸納得出有理數大小比較法則。
想象練習:想象頭腦中有一條數軸,其上有兩個點,分別表示數一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數的大小之間的關系.
要求學生在頭腦中有清晰的圖形. 讓學生體會到數學的規定都來源于生活,每一種規定都有它的合理性。
數在大小比較法則第2點學生較難掌握,要從絕對值的意義和數軸上的數左小右大這方面結合起來來了解,所以配置想象練習 ,加強數與形的想象。
課堂練習 例2,比較下列各數的大小(教科書第17頁例)
比較大小的過程要緊扣法則進行,注意書寫格式
練習:第18頁練習
小結與作業
課堂小結 怎樣求一個數的絕對值,怎樣比較有理數的大小?
本課作業 1, 必做題:教產書第19頁習題1,2,第4,5,6,10
2, 選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,情景的創設出于如下考慮:①體現數學知識與生活實際的緊密聯系,讓學生在這些熟悉的日常生活情境中獲得數學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發學習的興趣.②教材中數的絕對值概念是根據幾何意義來定義的(其本質是將數轉化為形來解釋,是難點),然后通過練習歸納出求有理數的絕對值的規律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受.
2, 一個數絕對值的法則,實際上是絕對值概念的直接應用,也體現著分類的數學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發展和學生的能力培養角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。
3, 有理數大小的比較法則是大小規定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規定:“在數軸上表示有理數,它們從左到右的順序就是從小到大的順序”,幫助學生建立“數軸上越左邊的點到原點的距離越大,所以表示的數越小”這個數形結合的模型.為此設置了想象練習.
4,本節課的內容包括絕對值的概念和數的絕對值的求法、有理數大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數的大小比較移到下節課教學。 教學目的: 1、使學生對數學產生一定的興趣,獲得學好數學的自信心; 2、使學生學會與他人合作,養成獨立思考與合作交流的習慣; 3、使學生在數學活動中獲得對數學良好的感性認識,初步體驗到什么是“做數學”。 教學分析: 重點:如何培養學生對數學的興趣; 難點:學生對數學的感性認識。 教學過程: 一、讓我們來做數學: 1、跟我學 要正確地解數學題,需要掌握數學題的方法。 例:如圖所示的的方格圖案中多少個正方形? 2、試試看 例:在如圖中,填入1、2、3、4、5、6、7、8、9這9個數,使每行、每列及對角線上各數的和都為15。 例:在上圖中,已經填入了1至16這16個數中的一些數,請將剩下的數填入空格中,使每行、每列及對角線上各數的和都為34。 例:紅旗小學學生張勇和他的爸爸、媽媽準備在國慶節外出旅游。春光旅行社的收費標準為:大人全價,小孩半價;而華夏旅行社不管大人小孩,一律八折。這兩家旅行社的基本價都一樣(每人100元),你認為應該去哪家旅行社較為合算? 二、激發訓練 三、知識小結: 通過以上兩節的學習,我們要一定喜歡上它,并希望它天天陪伴你。在以后的學習中,我們將在小學的基礎上學到更多新的知識。 四、作業鞏固 教學目標 1.使學生在了解代數式概念的基礎上,能把簡單的與數量有關的詞語用代數式表示出來; 2.初步培養學生觀察、分析和抽象思維的能力。 教學重點和難點 重點:列代數式。 難點:弄清楚語句中各數量的意義及相互關系。 課堂教學過程設計 一、從學生原有的認知結構提出問題 1?用代數式表示乙數:(投影) (1)乙數比x大5;(x+5) (2)乙數比x的2倍小3;(2x-3) (3)乙數比x的倒數小7;(-7) (4)乙數比x大16%?((1+16%)x) (應用引導的方法啟發學生解答本題) 2?在代數里,我們經常需要把用數字或字母敘述的一句話或一些計算關系式,列成代數式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數式?本節課我們就來一起學習這個問題? 二、講授新課 例1用代數式表示乙數: (1)乙數比甲數大5;(2)乙數比甲數的2倍小3; (3)乙數比甲數的倒數小7;(4)乙數比甲數大16%? 分析:要確定的乙數,既然要與甲數做比較,那么就只有明確甲數是什么之后,才能確定乙數,因此寫代數式以前需要把甲數具體設出來,才能解決欲求的乙數? 解:設甲數為x,則乙數的代數式為 (1)x+5(2)2x-3;(3)-7;(4)(1+16%)x? (本題應由學生口答,教師板書完成) 最后,教師需指出:第4小題的答案也可寫成x+16%x? 例2用代數式表示: (1)甲乙兩數和的2倍; (2)甲數的與乙數的的差; (3)甲乙兩數的平方和; (4)甲乙兩數的和與甲乙兩數的差的積; (5)乙甲兩數之和與乙甲兩數的差的積? 分析:本題應首先把甲乙兩數具體設出來,然后依條件寫出代數式? 解:設甲數為a,乙數為b,則 (1)2(a+b);(2)a-b;(3)a2+b2; (4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)? (本題應由學生口答,教師板書完成) 此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序? 例3用代數式表示: (1)被3整除得n的數; (2)被5除商m余2的數? 分析本題時,可提出以下問題: (1)被3整除得2的數是幾?被3整除得3的數是幾?被3整除得n的.數如何表示? (2)被5除商1余2的數是幾?如何表示這個數?商2余2的數呢?商m余2的數呢? 解:(1)3n;(2)5m+2? (這個例子直接為以后讓學生用代數式表示任意一個偶數或奇數做準備)? 例4設字母a表示一個數,用代數式表示: (1)這個數與5的和的3倍;(2)這個數與1的差的; (3)這個數的5倍與7的和的一半;(4)這個數的平方與這個數的的和? 分析:啟發學生,做分析練習?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數式“a+5”再將“和的3倍”列成代數式“3(a+5)”? 解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a? (通過本例的講解,應使學生逐步掌握把較復雜的數量關系分解為幾個基本的數量關系,培養學生分析問題和解決問題的能力?) 例5設教室里座位的行數是m,用代數式表示: (1)教室里每行的座位數比座位的行數多6,教室里總共有多少個座位? (2)教室里座位的行數是每行座位數的,教室里總共有多少個座位? 分析本題時,可提出如下問題: (1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢? (2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢? (3)通過上述問題的解答結果,你能找出其中的規律嗎?(總座位數=每行的座位數×行數) 解:(1)m(m+6)個;(2)(m)m個? 三、課堂練習 1?設甲數為x,乙數為y,用代數式表示:(投影) (1)甲數的2倍,與乙數的的和;(2)甲數的與乙數的3倍的差; (3)甲乙兩數之積與甲乙兩數之和的差;(4)甲乙的差除以甲乙兩數的積的商? 2?用代數式表示: (1)比a與b的和小3的數;(2)比a與b的差的一半大1的數; (3)比a除以b的商的3倍大8的數;(4)比a除b的商的3倍大8的數? 3?用代數式表示: (1)與a-1的和是25的數;(2)與2b+1的積是9的數; (3)與2x2的差是x的數;(4)除以(y+3)的商是y的數? 〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕 四、師生共同小結 首先,請學生回答: 1?怎樣列代數式?2?列代數式的關鍵是什么? 其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數量關系,應按下述規律列代數式: (1)列代數式,要以不改變原題敘述的數量關系為準(代數式的形式不唯一); (2)要善于把較復雜的數量關系,分解成幾個基本的數量關系; (3)把用日常生活語言敘述的數量關系,列成代數式,是為今后學習列方程解應用題做準備?要求學生一定要牢固掌握? 五、作業 1?用代數式表示: (1)體校里男生人數占學生總數的60%,女生人數是a,學生總數是多少? (2)體校里男生人數是x,女生人數是y,教練人數與學生人數之比是1∶10,教練人數是多? 2?已知一個長方形的周長是24厘米,一邊是a厘米, 求:(1)這個長方形另一邊的長;(2)這個長方形的面積。 學法探究 已知圓環內直徑為acm,外直徑為bcm,將100個這樣的圓環一個接著一個環套環地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米? 分析:先深入研究一下比較簡單的情形,比如三個圓環接在一起的情形,看有沒有規律。 當圓環為三個的時候,如圖: 此時鏈長為,這個結論可以繼續推廣到四個環、五個環、…直至100個環,答案不難得到: 解: =99a+b(cm)七年級數學教案設計萬能篇7
七年級數學教案設計萬能篇8