七年級數學教案萬能
七年級數學教案萬能篇1
【教學目標】
1.理解有理數加法的實際意義;
2.會作簡單的加法計算;
3.感受到原來用減法算的問題現在也可以用加法算.
【對話探索設計】
〖探索1〗
(1)某倉庫第一天運進300噸化肥,第二天又運進200噸化肥,兩天一共運進多少噸?
(2)某倉庫第一天運進300噸化肥,第二天運出200噸化肥,兩天總的結果一共運進多少噸?
(3)某倉庫第一天運進300噸化肥,第二天又運進-200噸化肥,兩天一共運進多少噸?
(4)把第(3)題的算式列為300+(-200),有道理嗎?
(5)某倉庫第一天運進a噸化肥,第二天又運進b噸化肥,兩天一共運進多少噸?
〖探索2〗
如果物體先向右運動,再向右運動,那么兩次運動后總的結果是什么?
假設原點為運動起點,用下面的數軸檢驗你的答案.
在足球比賽中,通常把進球數記為正數,失球數記為負數,它們的和叫做凈勝球數.若某場比賽紅隊勝黃隊5:2(即紅隊進5個球,失2個球),紅隊凈勝幾個球?
〖小游戲〗
(請一位同學到黑板前)前進5步,又前進-3步,那么兩次運動后總的結果是什么?若是后退-1步,又后退3步呢?
〖練習〗
1.登山隊員第一天向上攀登,第二天又向上攀登(天氣惡劣!),兩天一共向上攀登多少米?
2.第一天營業贏利90元,第二天虧本80元,兩天一共贏利多少元?
〖補充作業〗
1.分別用加法和減法的算式表示下面每小題的結果(能求出得數最好):
(1)溫度由下降;(2)倉庫原有化肥200t,又運進-120t;
(3)標準重量是,超過標準重量;(4)第一天盈利-300元,第二天盈利100元.
2.借助數軸用加法計算:
(1)前進,又前進,那么兩次運動后總的結果是什么?
(2)上午8時的氣溫是,下午5時的氣溫比上午8時下降,下午5時的氣溫是多少?
3.某潛水員先潛入水下,他的位置記為.然后又上升,這時他處在什么位置?
七年級數學教案萬能篇2
一、教學目標
1.理解一個數平方根和算術平方根的意義;
2.理解根號的意義,會用根號表示一個數的平方根和算術平方根;
3.通過本節的訓練,提高學生的邏輯思維能力;
4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統一的辯證關系,激發學生探索數學奧秘的興趣.
二、教學重點和難點
教學重點:平方根和算術平方根的概念及求法.
教學難點:平方根與算術平方根聯系與區別.
三、教學方法
講練結合.
四、教學手段
多媒體
五、教學過程
(一)提問
1.已知一正方形面積為50平方米,那么它的邊長應為多少?
2.已知一個數的平方等于1000,那么這個數是多少?
3.一只容積為0.125立方米的正方體容器,它的棱長應為多少?
這些問題的共同特點是:已知乘方的結果,求底數的值,如何解決這些問題呢?這就是本節內容所要學習的.下面作一個小練習:填空
1.( )2=9; 2.( )2 =0.25;
5.( )2=0.0081.
學生在完成此練習時,最容易出現的錯誤是丟掉負數解,在教學時應注意糾正.
由練習引出平方根的概念.
(二)平方根概念
如果一個數的平方等于a,那么這個數就叫做a的平方根(二次方根).
用數學語言表達即為:若x2=a,則x叫做a的平方根.
由練習知:±3是9的平方根;
±0.5是0.25的平方根;
0的平方根是0;
±0.09是0.0081的平方根.
由此我們看到 3與-3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
( )2=-4
學生思考后,得到結論此題無答案.反問學生為什么?因為正數、0、負數的平方為非負數.由此我們可以得到結論,負數是沒有平方根的.下面總結一下平方根的性質(可由學生總結,教師整理).
(三)平方根性質
1.一個正數有兩個平方根,它們互為相反數.
2.0有一個平方根,它是0本身.
3.負數沒有平方根.
(四)開平方
求一個數a的平方根的運算,叫做開平方的運算.
由練習我們看到 3與-3的平方是9,9的平方根是 3和-3,可見平方運算與開平方運算互為逆運算.根據這種關系,我們可以通過平方運算來求一個數的平方根.與其他運算法則不同之處在于只能對非負數進行運算,而且正數的運算結果是兩個。
(五)平方根的表示方法
一個正數a的正的平方根,用符號“ ”表示,a叫做被開方數,2叫做根指數,正數a的負的平方根用符號“- ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”.根指數為2時,通常將這個2省略不寫,所以正數a的平方根也可記作“ ”讀作“正、負根號a”.
練習:1.用正確的符號表示下列各數的平方根:
①26②247③0.2④3⑤
解:①26 的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤ 的平方根是
七年級數學教案萬能篇3
一、教學內容:
人教版教材五年級上冊第五單元多邊形的面積整理與復習
二、教學目標:
1、使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
2、使學生感受數學方法和思想的重要性及其應用的廣泛性。體會數學的價值,培養對數學學習的熱愛
三、教學重、難點
重點:使學生進一步熟練掌握已學圖形各面積公式,能靈活地應用多種方法解決生活中簡單的有關平面圖形面積的實際問題。
難點:引導學生整理多邊形面積的推導過程,掌握轉化的數學思想方法,建構知識網絡。
四、教學準備
多媒體課件,多邊形紙模
五、教學步驟與過程
(一)導入復習
師:同學們,我們學過哪些平面圖形的面積計算公式?(正方形、長方形、平行四邊形、三角形、梯形)
師:這節課我們就來重點整理和復習有關這些多邊形的面積的知識。
板書課題:多邊形面積計算復習課
(二)回顧整理,建構網絡
1.復習了平行四邊形、三角形、梯形面積公式的推導過程。
⑴請大家回憶一下:平行四邊形、三角形、梯形面積的計算公式是怎樣經過平移、旋轉等方法轉化成我們已經學過的圖形,從而推導出它們的面積計算公式的。
⑵根據學生的回答,出示每個公式的推導過程。
六、課堂練習
學生獨立計算。指名學生板演,集體訂正七、說一說,你學會了什么?從整理圖中能看出各種圖形之間的關系嗎?
七、作業布置
練習十九
七年級數學教案萬能篇4
一.教學目標
(1) 使學生進一步理解并掌握判定兩條直線平行的方法;
(2) 了解邏輯推理過程.
二.教學重點與難點
重點:判定兩條直線平行方法的應用;
難點:邏輯推理過程.
三.教學過程
復習提問:
1.判定兩條直線平行的方法有哪些?
2.如圖(1)
(1) 如果∠1=∠4,根據_________________,可得AB∥CD;
(2) 如果∠1=∠2,根據_________________,可得AB∥CD;
(3) 如果∠1+∠3=1800,根據______________,可得AB∥CD .
3.如圖(2)
(1) 如果∠1=∠D,那么______∥________;
(2) 如果∠1=∠B,那么______∥________;
(3) 如果∠A+∠B=1800,那么______∥________;
(4) 如果∠A+∠D=1800,那么______∥________;
新課:
例1 在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行嗎?為什么?
分析:垂直總與直角聯系在一起,我們學過哪些判斷兩條直線平行的方法?
答:這兩條直線平行.
如圖所示
理由如下: ∵b⊥a,c⊥a
∴∠1=∠2=900(垂直定義)
∴b∥c(同位角相等,兩直線平行)
思考:
這是小明同學自己制作的英語抄寫紙的一部分,其中的橫格線互相平行嗎?你有多少種判別方法?
例2 如圖所示,∠1=∠2,∠BAC=200,∠ACF=800.
(1) 求∠2的度數;
(2) FC與AD平行嗎?為什么?
鞏固練習
1. 教科書19頁練習
2. 如圖所示,如果∠1=470,∠2=1330,∠D=470,那么BC與DE平行嗎?AB與CD平行嗎?
3. 如圖所示,已知∠D=∠A,∠B=∠FCB,試問ED與CF平行嗎?
4. 如圖,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出圖中互相平行的直線.
作業:教科書19頁習題5.2第7、8題
七年級數學教案萬能篇5
一.創設情境激發好奇觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發生了什么變化?剪刀張開的口又怎么變化?
教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二.認識鄰補角和對頂角,探索對頂角性質
1.學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用
幾何語言準確表達
;
有公共的頂點O,而且的兩邊分別是兩邊的反向延長線
2.學生用量角器分別量一量各角的度數,發現各類角的度數有什么關系?
(學生得出結論:相鄰關系的兩個角互補,對頂的兩個角相等)
3學生根據觀察和度量完成下表:
兩條直線相交所形成的角分類位置關系數量關系
教師提問:如果改變的大小,會改變它與其它角的位置關系和數量關系嗎?
4.概括形成鄰補角、對頂角概念和對頂角的性質
三.初步應用
練習:
下列說法對不對
(1)鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2)鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3)對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象
四.鞏固運用例題:如圖,直線a,b相交,,求的度數。
[鞏固練習](教科書5頁練習)已知,如圖,,求:的度數
[小結]
鄰補角、對頂角.
[作業]課本P9-1,2P10-7,8
[備選題]
一判斷題:
如果兩個角有公共頂點和一條公共過,而且這兩個角互為補角,那么它們互為鄰補角()
兩條直線相交,如果它們所成的鄰補角相等,那么一對對頂角就互補()
二填空題
1如圖,直線AB、CD、EF相交于點O,的對頂角是,的鄰補角是
若:=2:3,,則=
2如圖,直線AB、CD相交于點O
則
5.1.2垂線
[教學目標]
1.理解垂線、垂線段的概念,會用三角尺或量角器過一點畫已知直線的垂線。
2.掌握點到直線的距離的概念,并會度量點到直線的距離。
3.掌握垂線的性質,并會利用所學知識進行簡單的推理。
[教學重點與難點]
1.教學重點:垂線的定義及性質。
2.教學難點:垂線的畫法。
[教學過程設計]
一.復習提問:
1、敘述鄰補角及對頂角的定義。
2、對頂角有怎樣的性質。
二.新課:
引言:
前面我們復習了兩條相交直線所成的角,如果兩條直線相交成特殊角直角時,這兩條直線有怎樣特殊的位置關系呢?日常生活中有沒有這方面的實例呢?下面我們就來研究這個問題。
(一)垂線的定義
當兩條直線相交的四個角中,有一個角是直角時,就說這兩條直線是互相垂直的,其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
如圖,直線AB、CD互相垂直,記作,垂足為O。
請同學舉出日常生活中,兩條直線互相垂直的實例。
注意:
1、如遇到線段與線段、線段與射線、射線與射線、線段或射線與直線垂直,特指它們所在的直線互相垂直。
2、掌握如下的推理過程:(如上圖)
反之,
(二)垂線的畫法
探究:
1、用三角尺或量角器畫已知直線l的垂線,這樣的垂線能畫出幾條?
2、經過直線l上一點A畫l的垂線,這樣的垂線能畫出幾條?
3、經過直線l外一點B畫l的垂線,這樣的垂線能畫出幾條?
畫法:
讓三角板的一條直角邊與已知直線重合,沿直線左右移動三角板,使其另一條直角邊經過已知點,沿此直角邊畫直線,則這條直線就是已知直線的垂線。
注意:如過一點畫射線或線段的垂線,是指畫它們所在直線的垂線,垂足有時在延長線上。
(三)垂線的性質
經過一點(已知直線上或直線外),能畫出已知直線的一條垂線,并且只能畫出一條垂線,即:
性質1過一點有且只有一條直線與已知直線垂直。
練習:教材第7頁
探究:
如圖,連接直線l外一點P與直線l上各點O,
A,B,C,……,其中(我們稱PO為點P到直線
l的垂線段)。比較線段PO、PA、PB、PC……的長短,這些線段中,哪一條最短?
性質2連接直線外一點與直線上各點的所有線段中,垂線段最短。
簡單說成:垂線段最短。
(四)點到直線的距離
直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
如上圖,PO的長度叫做點P到直線l的距離。
例1
(1)AB與AC互相垂直;
(2)AD與AC互相垂直;
(3)點C到AB的垂線段是線段AB;
(4)點A到BC的距離是線段AD;
(5)線段AB的長度是點B到AC的距離;
(6)線段AB是點B到AC的距離。
其中正確的有()
A.1個B.2個
C.3個D.4個
解:A
例2如圖,直線AB,CD相交于點O,
解:略
例3如圖,一輛汽車在直線形公路AB上由A
向B行駛,M,N分別是位于公路兩側的村莊,
設汽車行駛到點P位置時,距離村莊M最近,
行駛到點Q位置時,距離村莊N最近,請在圖中公路AB上分別畫出P,Q兩點位置。
練習:
1.
2.教材第9頁3、4
教材第10頁9、10、11、12
小結:
1.要掌握好垂線、垂線段、點到直線的距離這幾個概念;
2.要清楚垂線是相交線的特殊情況,與上節知識聯系好,并能正確利用工具畫出標準圖形;
3.垂線的性質為今后知識的學習奠定了基礎,應該熟練掌握。
作業:教材第9頁5、6.
5.2.1平行線
[教學目標]
1.理解平行線的意義,了解同一平面內兩條直線的位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
4.了解“三線八角”并能在具體圖形中找出同位角、內錯角與同旁內角;
4.了解平行線在實際生活中的應用,能舉例加以說明.
[教學重點與難點]
1.教學重點:平行線的概念與平行公理;
2.教學難點:對平行公理的理解.
[教學過程]
一、復習提問
相交線是如何定義的?
二、新課引入
平面內兩條直線的位置關系除平行外,還有哪些呢?
制作教具,通過演示,得出平面內兩條直線的位置關系及平行線的概念.
三、同一平面內兩條直線的位置關系
1.平行線概念:在同一平面內,不相交的兩條直線叫做平行線.直線a與b平行,記作a∥b.
(畫出圖形)
2.同一平面內兩條直線的位置關系有兩種:(1)相交;(2)平行.
3.對平行線概念的理解:
兩個關鍵:一是“在同一個平面內”(舉例說明);二是“不相交”.
一個前提:對兩條直線而言.
4.平行線的畫法
平行線的畫法是幾何畫圖的基本技能之一,在以后的學習中,會經常遇到畫平行線的問題.方法為:一“落”(三角板的一邊落在已知直線上),二“靠”(用直尺緊靠三角板的另一邊),三“移”(沿直尺移動三角板,直至落在已知直線上的三角板的一邊經過已知點),四“畫”(沿三角板過已知點的邊畫直線).
四、平行公理
1.利用前面的教具,說明“過直線外一點有且只有一條直線與已知直線平行”.
2.平行公理:經過直線外一點,有且只有一條直線與這條直線平行.
提問垂線的性質,并進行比較.
3.平行公理推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行.即:如果b∥a,c∥a,那么b∥c.
五、三線八角
由前面的教具演示引出.
如圖,直線a,b被直線c所截,形成的8個角中,其中同位角有4對,內錯角有2對,同旁內角有2對.
六、課堂練習
1.在同一平面內,兩條直線可能的位置關系是.
2.在同一平面內,三條直線的交點個數可能是.
3.下列說法正確的是()
A.經過一點有且只有一條直線與已知直線平行
B.經過一點有無數條直線與已知直線平行
C.經過一點有一條直線與已知直線平行
D.經過直線外一點有且只有一條直線與已知直線平行
4.若∠與∠是同旁內角,且∠=50°,則∠的度數是()
A.50°B.130°C.50°或130°D.不能確定
5.下列命題:(1)長方形的對邊所在的直線平行;(2)經過一點可作一條直線與已知直線平行;(3)在同一平面內,如果兩條直線不平行,那么這兩條直線相交;(4)經過一點可作一條直線與已知直線垂直.其中正確的個數是()
A.1B.2C.3D.4
6.如圖,直線AB,CD被DE所截,則∠1和是同位角,∠1和是內錯角,∠1和是同旁內角.如果∠5=∠1,那么∠1∠3.
七、小結
讓學生獨立總結本節內容,敘述本節的概念和結論.
八、課后作業
1.教材P19第7題;
2.畫圖說明在同一平面內三條直線的位置關系及交點情況.
[補充內容]
1.試說明,如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行.
2.在同一平面內,兩條直線的位置關系僅有兩種:相交或平行.但現實空間是立體的,
試想一想在空間中,兩條直線會有哪些位置關系呢?(用長方體來說明)
七年級數學教案萬能篇6
教學目標:
1.讓學生在交流中經歷比較100以內兩個數大小的多種方法。
2.歸納并掌握比較100以內兩個數大小的一般方法。
3.能正確運用“>”“<”“=”比較兩個數的大小。
教學重難點:
重點:掌握比較100以內兩個數大小的一般方法,能正確應用“>”“<”“=”。
難點:理解并掌握比較100以內兩個數大小的一般方法。
教法與學法:引導與探究法。
教學準備:課件,計數器。
教學過程:
一.復習舊知,導入新課。
5○720○1215○15(學生思考,交流)
再大一些的數,會比較大小嗎?這節課老師與大家一起學習100以內兩個數的大小比較。(板書課題)
二.新知探究。
1.出示情景問題,比較十位數字不同的兩位數。
(1)大家當裁判:誰贏了?
小紅和小明跳跳繩,小紅跳了42下,小明跳了37下。誰跳得多?用什么符號連接?
(學生獨立思考)
(2)交流比較的方法。
預設:
①根據數的順序來比較。42在37的后面,所以42>37。
②42根小棒比37根小棒多,所以42>37
③根據數的組成來比較。42由4個十和2個一組成,37由3個十和7個一組成。4個十比3個十多,所以42>37。
出示小棒圖,一對一對應擺放,發現42夠4個十,37夠3個十,第4個十就不夠了,4個十比3個十多,所以42>37。
小結:十位數字大的這個數就大,誰的十多誰就大。
④42夠減37,所以42>37.
42>37,換個說法什么?(37<42).
2.比較十位相同,個位不同的兩位數。
如果老師把42改成32,32和37哪個數大?
學生獨立思考,全班交流。
預設:
(1)32<37,因為2小,7大。所以32<37。
為什么直接比較個位數字?
(十位數字相同)
小結:十位數上的數相同,就比較個位上的數,個位上的數大的,這個數就大,個位上的數小的,這個數就小。
(2)按順序,37排在32大后面,所以32<37。
(3)用計數器,十位上珠子一樣多,個位上珠子多的數就大。
用計數器,怎樣比較42和37?
數學上規定:滿十進一,42十位上有4顆珠子,37十位上只有3顆珠子,所以32<37。
3.歸納比較的一般方法。
同學們,剛才大家比較數位上的數是比較大小常用的方法。齊聲朗讀。
比較數的大小,一般先比較十位上的數,十位數字大的這個數就大;如果十位數字的數相同,就比較個位上的數,個位數字大的,這個數就大,個位數字小的,這個數就小。
七年級數學教案萬能篇7
正數和負數的應用
教學目標:
1.通過對“零”的意義的探討,進一步理解正數和負數的概念,能利用正負數正確表示具有相反意義的量(規定了向指定方向變化的量);
2.進一步體驗正負數在生產生活中的廣泛應用,提高解決實際問題的能力.
教學重點:深化對正負數概念的理解.
教學難點:正確理解和表示向指定方向變化的量.
教與學互動設計:
(一)知識回顧和理解
通過對上節課的學習,我們知道在實際生產和生活中存在著具有兩種不同意義的量,為了區分它們,我們用正數和負數來分別表示它們.
[問題1]:“零”為什么既不是正數也不是負數呢?
學生思考討論,借助舉例說明.
參考例子:用正數、負數和零表示零上溫度、零下溫度和零度.
思考“0”在實際問題中有什么意義?
歸納“0”在實際問題中不僅表示“沒有”的意思,它還具有一定的實際意義.
如:水位不升不降時的水位變化,記作:0m.
[問題2]:引入負數后,數按照“具有兩種相反意義的量”來分,可以分成幾類?分別是什么?
(二)深化理解,解決問題
[問題3]:(課本P3例題)
【例1】(1)一個月內,小明體重增加2kg,小華體重減少1kg,小強體重無變化,寫出他們這個月的體重增長值;
【例2】(2)某年,下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,
法國減少2.4%,英國減少3.5%,
意大利增長0.2%,中國增長7.5%.
寫出這些國家這一年商品進出口總額的增長率.
解后語:在同一個問題中,分別用正數和負數表示的量具有相反的意義.寫出體重的增長值和進出口的增長率就暗示著用正數來表示增長的量.類似的還有水位上升、收入上漲等等.我們要在解決問題時注意體會這些指明方向的量,正確地用正負數表示它們.
鞏固練習
1.通過例題(2)提醒學生審題時要注意要求,題中求的是增長率,不是增長值.
2.讓學生再舉出一些常見的具有相反意義的量.
3.1990~1995年下列國家年平均森林面積(單位:千米2)的變化情況是:
中國減少866,印度增長72,
韓國減少130,新西蘭增長434,
泰國減少3247,孟加拉減少88.
(1)用正數和負數表示這六國1990~1995年平均森林面積的增長量;
(2)如何表示森林面積減少量,所得結果與增長量有什么關系?
(3)哪個國家森林面積減少最多?
(4)通過對這些數據的分析,你想到了什么?
閱讀與思考
(課本P6)用正數和負數表示加工允許誤差.
問題:1.直徑為30.032mm和直徑為29.97mm的零件是否合格?
2.你知道還有哪些事件可以用正負數表示允許誤差嗎?請舉例.
(三)應用遷移,鞏固提高
1.甲冷庫的溫度是-12℃,乙冷庫的溫度比甲冷庫低5℃,則乙冷庫的溫度是.
2.一種零件的內徑尺寸在圖紙上是9±0.05(單位:mm),表示這種零件的標準尺寸是9mm,加工要求不超過標準尺寸多少?最小不小于標準尺寸多少?
3.摩托車廠本周計劃每天生產250輛摩托車,由于工人實行輪休,每天上班的人數不一定相等,實際每天生產量(與計劃量相比)的增減值如下表:
星期一二三四
增減-5+7-3+4
根據上面的記錄,問:哪幾天生產的摩托車比計劃量多?星期幾生產的摩托車最多,是多少輛?星期幾生產的摩托車最少,是多少輛?
類比例題,要求學生注意書寫格式,體會正負數的應用.