七年級數學教案反思
七年級數學教案反思篇1
一、學習與導學目標:
知識與技能:會求出一個數的絕對值,能利用數軸及絕對值的知識,比較兩個有理數的大小;
過程與方法:經歷絕對值概念的形成,初步體會數形結合的思想方法,豐富解決問題的策略;
情感態度:通過創設情境,初步感悟學習絕對值的必要性,促進責任心的形成。
二、學程與導程活動:
A、創設情境(幻燈片或掛圖)
1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區別,可規定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。
再如測量誤差問題、排球重量誰更接近標準問題……
2、在討論數軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。
B、學習概念:
1、我們把在數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。
如在數軸上表示數-6的點和表示數6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數的兩個數的絕對值相同)
2、嘗試回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;
(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;
(3)︱0︱= 。(幻燈片)
思考:你能從中發現什么規律?引導學生得出:(幻燈片)
性質:一個正數的絕對值是它本身;
一個負數的絕對值是它的相反數;
零的絕對值是零。
如果用字母a表示有理數,上述性質可表述為:
當a是正數時,︱a︱=a;
當a是負數時,︱a︱=-a;
當a=0時,︱a︱=0。
解答課本P19/7及P15練習,由P19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數軸,引出問題:
在引入負數以后,如何比較兩個數的大小,尤其是兩個負數的大小?
3、讓我們仍然回到實際中去看看有怎樣的啟發,引導閱讀P16(幻燈片)。
顯然,結合問題的實際意義不難得到:-4<-3<-2<-1<0<1<2……。
因此,在數軸上你有何發現?生討論后發現:從左往右表示的數越來越大。
再找幾個量試試是否如此?這些數的絕對值的大小如何?(可利用P19/6,8為素材)
通過以上探究活動得到:正數大于0,0大于負數,正數大于負數;
兩個負數,絕對值大的反而小。
4、師生活動比較下列各對數的大小:P17例,P18練習。
5、師生小結歸納(幻燈片)
三、筆記與板書提綱:
1、 幻燈片
2、 師生板演練習P15/1
四、練習與拓展選題:
P19/4,5,9,10
七年級數學教案反思篇2
一:教材分析
1、教材的內容:本節課是人教版七年級下冊第五章第一節的第一課時
2、教材的地位和作用:平面內兩條直線的位置關系是“空間與圖形”所要研究的基本問題,這些內容學生在前兩個學段已經有所接觸,本章在學生已有知識和經驗的基礎上,繼續研究平面內兩條直線的位置關系,首先研究相交的兩條直線,這是后面學習垂直相交的必要基礎也為后面學面直角坐標系奠定基石,因此本節課具有承前啟后的重要作用
3、教學的重點、難點:
重點:鄰補角、對頂角的概念,對頂角的性質和應用。
難點:理解對頂角性質的探索
(確定重難點的依據:本節的學習目的是研究兩條相交直線產生的四個角的關系,因此將鄰補角、對頂角的概念、性質以及應用作為本節的重點。同學們剛剛開始接觸幾何,對推理說理不習慣也不熟悉,所以將理解對頂角相等的性質作為難點。)
4、教學目標:
A:知識與技能目標
(1).理解對頂角和鄰補角的概念,能在圖形中辨認.
(2).掌握對頂角相等的性質和它的推證過程
(3).會用對頂角的性質進行有關的簡單推理和計算.
B:過程與方法目標
(1).通過觀察、操作、探究、猜想、思考、交流、歸納、推理等培養學生的推理能力和有條理的表達能力,培養操作能力、動手能力。
(2).體會具體到抽象再到具體的思想方法.
C:情感、態度與價值目標
(1).感受圖形中和諧美、對稱美.
(2).感受合作交流帶來的成功感,樹立自信心.
(3).感受數學應用的廣泛性,使學生更加熱愛數學
二、學情分析:
在此之前,學生已經學習了圖形的初步認識、對相交線和平行線有了直觀的感性認識,且對互補和互余有了清楚的了解,在此基礎上來學習鄰補角和對頂角,符合學生的認知規律,讓學生對新知識的應用充滿好奇與期待.
三、教法和學法:
教法:
葉圣陶先生倡導:解放學生的手,解放學生的腦,解放學生的時間.根據這一思想及我校初一學生活潑好動的特點,我采取啟發式教學、探究式教學及多媒體輔助教學相結合的方法.
學法:以學生分組實踐、自主探究、合作交流為主要形式的探究式學習方法.
四、教學過程:
1課前準備:課件,剪刀,紙片,相交線模型
2教學過程:設置以下六個環節
環節一:情景屋(創設情景,激發學習動機)
請學生欣賞觀察圖片,圖片中有大橋上的鋼梁和鋼索,窗戶的窗格都給我們以相交線平行線的形象,讓學生感受到相交線平行線在我們生活中有著廣泛的應用,由此產生研究它們了解它們的興趣和欲望,適時的給出本章課題:相交線和平行線
環節二:問題苑(合作交流,解釋發現)
通過一些問題的設置,激發學生探究的欲望,具體操作:
(1):動手嘗試:剪紙片,感知剪刀所形成的角在剪紙過程中的變化
(2):給出問題,由剪刀這個實物抽象出幾何模型——兩條直線相交。
(讓學生充分的感知到數學來源于生活,符合初中學生的認識規律和興趣愛好)
(3):分析研究此模型:
設置以下一系列問題:A、兩直線相交構成的4個角兩兩相配共能組成幾對?(6對)
B、對各對角進行分析,首先從位置上去分析————結論:可把這六對角分成兩大類,一類為哪些角?——特點?——它們有一條公共邊,它們的另一邊互為反向延長線——引出概念——鄰補角。
另一類是哪些角?———特點?——它們的兩邊互為反向延長線——引出概念——對頂角
C、再從大小上進行分析——量一量——結論:鄰補角互補、對頂角相等。
D、你能闡述它們互補和相等的理由嗎?
(一堂好課,是由一系列的真問題組成的,本環節在老師的引導下,由學生自由的發揮,通過觀察分析,交流討論一步一步的解決本節課的重點和難點,學生通過自己探索獲得的知識才是自己的知識,讓學生在此過程中學會學習,達到教是為了不教的目的)
環節三:快樂房(大膽創設,感悟變換)
(設置見投影,讓學生判斷形成的兩個角是否為鄰補角,這一變換讓學生充滿興趣,此時一定讓學生用鄰補角的特點去檢驗,達到知識的正向遷移,并理解鄰補角和補角的關系)
環節四:實例庫(拓展應用,升華提高)
例子1:是一組不同形式的角,判斷是否為對頂角,此題的目的是鞏固對頂角的概念,培養學生的識圖能力
例子2:例子2是用對頂角和鄰補角的性質進行簡單的計算,在這里設置了一組變式題,而且變式題目不是教師直接給出,而是啟發學生自己編,讓學生過了一把編導的癮,學生一定非常的開心,這樣可以活躍課堂氣氛,提高學生的思維能力
(一方面鞏固了對頂角的性質;另一方面說明幾何里的計算題,需要用到圖形的幾何性質,因此,要有根有據地計算.例題放手讓學生自己解決,比教師單純地講解效果會更好.盡管學生書寫格式不如課本上的規范,但通過集體講評糾正后,學生印象會更深刻).
最后安排一個腦筋急轉彎:見投影
(讓學生始終對課堂充滿熱情,通過此練習,體會到數學來自于生活又用于生活,提高學習數學的興趣和熱情)
環節五:點金帚(學后反思感悟收獲)
通過本堂課的探究
我經歷了......
我體會到......
我感受到......
(學生暢所欲言,在“以生為本”的民主氛圍中培養學生歸納、概括能力和語言表達能力;同時引導學生反思探究過程,幫助學生肯定自我,欣賞他人,同時把本節課的內容形成知識體系.)
角的名稱
特征
性質
相同點
不同點
對頂角
①兩條直線相交而成的角
②有一個公共頂點
③沒有公共邊
對頂角相等
都是兩直線相交而成的角,都有一個公共頂點,它們都是成對出現。
對頂角沒有公共邊而鄰補角有一條公共邊;兩條直線相交時,一個角的對頂角有一個,而一個角的鄰補角有兩個
鄰補角
①兩條直線相交面成的角
②有一個公共頂點
③有一條公共邊
鄰補角互補
環節六:沉思閣(課后延伸張揚個性)
此為課后作業:
(適當增加利用對頂角相等解決一些說理的題目,既讓學生感受到對頂角相等這個性質在解題中的獨特魅力,又為后續學習打下良好的基礎.)
五、教學設計說明:
設計理念:面向全體學生,實現:
——人人學有價值的數學
——人人都能獲得必需的數學
——不同的人在數學上得到不同的發展
過程設計:學生親身經歷從現實生活的圖形中提出數學問題,并抽象其蘊涵的數學本質(相交直線),最后回歸生活去運用所學知識的全過程。
設計目的:讓學生帶著興趣、帶著問題走進課堂,帶著新的問題、帶著高漲的熱情離開課堂,進行不斷的探究。
七年級數學教案反思篇3
【教學目標】
知識與技能
了解并掌握數據收集的基本方法。
過程與方法
在調查的過程中,要有認真的態度,積極參與。
情感、態度與價值觀
體會統計調查在解決實際問題中的作用,逐步養成用數據說話的良好習慣。
【教學重難點】
重點:掌握統計調查的基本方法。
難點:能根據實際情況合理地選擇調查方法。
【教學過程】
一、講授新課
像前面提到的收集數據的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。
調查、試驗如采用普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查(samplingsurvey),即從被考察的全體對象中抽出一部分對象進行考察的調查方式。
在一個統計問題中,我們把所要考察對象的全體叫做總體(population),其中的每一個考察對象叫做個體(individual),從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數目叫做樣本容量(samplesize)。
例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣(simplerandomsampling)。
師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。
學生小組合作、討論,學生代表展示結果。
教師指導、評論。
師:除了問卷調查外,我們還有哪些方法收集到數據呢?
學生小組討論、交流,學生代表回答。
師:收集數據的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統計的數據,你認為選擇何種方法去收集比較合適?
(1)你班中的同學是如何安排周末時間的?
(2)我國瀕臨滅絕的植物數量;
(3)某種玉米種子的發芽率;
(4)學校門口十字路口每天7:00~7:10時的車流量。
學生討論,并舉手回答。
師:采用何種方法一定要結合實際問題來定。在解決問題(1)的過程中,不但要同學們動手調查,并且對全班所有學生都要調查,像這樣對全體對象進行的調查叫做全面調查(普查)。同學們還知道哪些數據的收集需要全面調查嗎?
學生討論,并回答。
生:如人口普查、本班同學的出生年月、某班學生50米跑成績等。
師:很好!下列問題也適合采用普查方式來收集數據嗎?
(1)了解某批次炮彈的殺傷半徑;
(2)某一天全國牛肉的平均價格;
(3)一批罐頭產品的質量檢查;
(4)對某條河的河水的污染情況的調查。
學生討論、分析,并舉手回答。
師:普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受到客觀條件(如人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。
二、例題講解
【例】(1)電視臺準備在某市調查一電視節目的收視率,需要對所有看電視的人進行全面調查嗎?對一所中學學生的調查結果能否作為該節目的收視率?
(2)對本年級同學是否喜歡某電視節目調查的結果,能代表學校全體同學的意見嗎?如果不適用,應如何改進調查方法?
解:(1)電視臺不可能對每個看電視的人進行全面調查。對這?所中學學生的調查結果不能作為該節目的收視率,因為調查對象只有中學生,缺乏代表性;
(2)對本年級同學是否喜歡某電視節目的調查結果不能代表
《6。2普查與抽樣調查》課時練習
2。下列事件中最適合使用普查方式收集數據的是()
A。為制作校服,了解某班同學的身高情況
B。了解全市初三學生的視力情況
C。了解一種節能燈的使用壽命
D。了解我省農民的年人均收入情況
答案:A
解析:解答:A。人數不多,適合使用普查方式,所以A正確;
B。人數較多,結果的實際意義不大,因而不適用普查方式,所以B錯誤;
C。是具有破壞性的調查,因而不適用普查方式,所以C錯誤;
D。人數較多,結果的實際意義不大,因而不適用普查方式,所以D錯誤。
故選:A。
分析:由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似。此題考查了抽樣調查和全面調查,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大時,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查選用普查。
《6。2普查與抽樣調查》基礎鞏固
1、(知識點1)要調查某校九年級550名學生周日的睡眠時間,下列調查對象選取最合適的是()
A、選取該校一個班級的學生
B、選取該校50名男生
C、選取該校50名女生
D、隨機選取該校50名九年級學生
2、(題型二)下列調查適合用抽樣調查的是()
A、了解義烏電視臺“同年哥講新聞”欄目的收視率
B、了解禽流感H7N9確診病人同機乘客的健康狀況
C、了解某班每個學生家庭電腦的數量
D、“神七”載人飛船發射前對重要零部件的檢查
3、(題型三)為了了解某市八年級男生的身高,有關部門準備對200名八年級男生的身高做調查,以下調查方案中比較合理的是()
A、查閱外地200名八年級男生的身高統計資料
B、測量該市一所中學200名八年級男生的身高
C、測量該市兩所農村中學各100名八年級男生的身高
D、在該市市區任選兩所中學,農村任選兩所中學,每所中學用抽簽的方法分別選出50名八年級男生,然后測量他們的身高
七年級數學教案反思篇4
【知識與技能】理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數的平方根,并能用根號加以表示,能用科學計算器求平方根及其近似值。
【過程與方法】通過練習,進一步熟悉開平方的運算過程,能熟練的進行開平方的運算過程。
【情感、態度與價值觀】體會平方與開平方這一對互逆運算的辯證關系,感受平方根在現實世界中的客觀存在,增強數學知識的應用意識。
【教學重點】理解開平方與平方是一對互逆的運算,會用平方根的概念求某些數的平方根,并能用根號加以表示。
【教學難點】能熟練的進行開平方運算,并熟悉各種不同形式的開平方運算,為后續學習打下基礎。
【教具準備】小黑板科學計算器
【教學過程】
一、復習導入
1、小剛家廚房的面積為10平方米的正方形,它的邊長是多少米?邊長的近似值是多少?(用四舍五入的方法取到小數點后面第二位)(,)
2、用計算器分別求,得近似值。(用四舍五入的方法取到小數點后面第三位)
3、0.36的平方根是()
4、(-5)2的算術平方根是()
二、練習內容
(一)填空
1、若=1.732,那么=()2、(-)2=()
3、=()4、若_=6,則=()
5、若=0,則_=()6、當_()時,有意義。
(二)選擇
1、下列各數中沒有平方根的是A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.A.B.C.D.的值是()
A.B.C.D.;2、4_2-49=0;3、(25/81)_2=1;
4、求8+(-1/6)2的算術平方根;
5、求b2-2b+1的算術平方根;(b<1)
6、
7、;(用四舍五入方法取到小數點后面第三位)
8、肖明家裝修用了大小相同的正方形瓷磚共66塊,鋪成了10.56平方米的房間,肖明想知道每塊瓷磚的規格,請你幫助算一算。
三、小結與鞏固
七年級數學教案反思篇5
一、知識導航
1、主要概念:變量是 ;自變量是 ;因變量是 。
2、變量之間關系的三種表示方法: 。
其特點是:列表:對于表中自變量的每一個值,可以不通過計算,直接把 的值找到,查詢方便;但是欠 ,不能反映變化的全貌,不易看出變量間的對應規律。
關系式:簡明扼要、規范準確;但有些變量之間的關系很難或不能用關系式表示。圖像:形象直觀。可以形象地反映出事物變化的過程、變化的趨勢和某些特征;但圖像是近似的、局部的,由圖像確定因變量的值欠準確。
3、主要數學思想方法:類比和比較的方法(舉例說明);數形結合和數學建模思想(舉例說明)。
二、學習導航
1、有關概念應用
例1下列各題中,那些量在發生變化?其中自變量和因變量各是什么?
① 用總長為60的籬笆圍成一邊長為L(m),面積為S(m2)的矩形場地;
②正方形邊長是3,若邊長增加x,則面積增加為y.
2、利用表格尋找變化規律
例2 研究表明,固定鉀肥和磷肥的施用量,土豆的產量與氮肥的施用量有如下關系:
施肥量
(千克/公頃) 0 34 67 101 135 202 259 336 404 471
土豆產量
(噸/公頃) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75
上表中反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?根據表格中的數據,你認為氮肥的使用量是多少時比較適宜?
變式(湖南)一輛小汽車在高速公路上從靜止到起動10秒后的速度經測量如下表:
時間/秒 0 1 2 3 4 5 6 7 8 9 10
速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9
①上表反映了哪兩個變量之間的關系?哪個是因變量?
②如果用t表示時間,v表示速度,那么隨著t的變化,v的變化趨勢是什么?
③當t每增加1秒時,v的變化情況相同嗎?在哪1秒中,v的增加?
④若高速公路上小汽車行駛的速度的上限為120千米/時,試估計大約還需要幾秒小汽車速度就將達到這個上限?
3、用關系式表示兩變量的關系
例3.、①設一長方體盒子高為10,底面積為正方形,求這個長方形的體積v與底面邊長a的關系。②設地面氣溫是20℃,如果每升高1km,氣溫下降6℃,求氣溫與t高度h的關系。
變式(江西)如圖,一個矩形推拉窗,窗高1.5米,則活動窗扇的通風面積A(平方米)與拉開長度b(米)的關系式是:
4、用圖像表示兩變量的關系
例4、(桂林)今年,在我國內地發生了“非典型肺炎”疫情,在黨和政府的正確領導下,目前疫情已得到有效控制.下圖是今年5月1日至5月14日的內地新增確診病例數據走勢圖(數據來源:衛生部每日疫情通報).從圖中,可知道:
(1)5月6日新增確診病例人數為 人;
(2)在5月9日至5月11日三天中,共新增確診病例人數為 人;
(3)從圖上可看出,5月上半月新增確診病例總體呈 趨勢.
例5、(陜西) 星期天晚飯后,小紅從家里出去散步,下圖描述了她散步過程中離家的距離s(米)與散步所用時間t(分)之間的函數關系.依據圖象,下面描述符合小紅散步情景的是( ).
A.從家出發,到了一個公共閱報欄,看了一會兒報,就回家了
B.從家出發,到了一個公共閱報欄,看了一會兒報后,繼續向前走了一段,然后回家了
C.從家出發,一直散步(沒有停留),然后回家了
D.從家出發,散了一會兒步,就找同學去了,18分鐘后才開始返變式 (成都)右圖表示甲騎電動自行車和乙駕駛汽車沿相同路線行駛45千米,由A地到B地時,行駛的路程y(千米)與經過的時間x(小時)之間的關系.請根據這個行駛過程中的圖象填空:汽車出發 小時與電動自行車相遇;電動自行車的速度為 千米/時;汽車的速度為 千米/時;汽車比電動自行車早 小時到達B地.
三、一試身手
1、(貴陽)小明根據鄰居家的故事寫了一首小詩:“兒子學成今日返,老父早早到車站,兒子到后細端詳,父子高興把家還.”如果用縱軸y表示父親與兒子行進中離家的距離,用橫軸 表示父親離家的時間,那么下面的圖象與上述詩的含義大致吻合的是( )
2、在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)
之間的關系如圖所示.
請根據圖象所提供的信息解答下列問題:
(1)甲、乙兩根蠟燭燃燒前的高度分別是______,
從點燃到燃盡所用的時間分別是_______;
(2)燃燒多長時間時,甲、乙兩根蠟燭的高度相等(不考慮都燃盡時的情況)?在什么時間段內,甲蠟燭比乙蠟燭高?在什么時間段內,甲蠟燭比乙蠟燭低?
3、(2006宿遷課改)小明從家騎車上學,先上坡到達A地后再下坡到達學校,所用的時間與路程如圖所示.如果返回時,上、下坡速度仍然保持不變,那么他從學校回到家需要的時間是( )
A.8.6分鐘 B.9分鐘
C.12分鐘 D.16分鐘
4、某機動車出發前油箱內有油42l,行駛若干小時后,途中在加油站加油若干升.油箱中余油量Q(L)與行駛時間t(L)之間的關系如圖8 所示.
回答問題:(1)機動車行駛幾小時后加油?
(2)中途中加油_________L;
(3)已知加油站距目的地還有 ,車速為 ,
若要達到目的地,油箱中的油是否夠用?并說明原因.
5、在一次實驗中,小明把一根彈簧的上端固定.在其下端懸掛物體,下面是測得的彈簧的長度y與所掛物體質量x的一組對應值.
所掛質量
0 1 2 3 4 5
彈簧長度
18 20 22 24 26 28
(1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?
(2)當所掛物體重量為 時,彈簧多長?不掛重物時呢?
(3)若所掛重物為 時(在允許范圍內),你能說出此時的彈簧長度嗎?
6、小明在暑期社會實距活動中,以每千克0.8元的價格從批發市場購進若干千克瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數之間的關系如圖9所示.請你根據圖象提供的信息完成以下問題:
(1)求降價前銷售金額y(元)與售出西瓜 (千克)之間的關系式;
(2)小明從批發市場共購進多少千克西瓜?
(3)小明這次賣瓜賺子多少錢?
7、如圖中的折線ABC是甲地向乙地打長途電話所需要付的電話費y(元)與通話時間t(分鐘)之間的關系的圖象.
(1)通話1分鐘,要付電話費多少元?通話5分鐘要付多少電話費?
(2)通話多少分鐘內,所支付的電話費不變?
(3)如果通話3分鐘以上,電話費y(元)與時間t(分鐘)的關系式是 ,那么通話4分鐘的電話費是多少元?
8、如圖是某水庫的蓄水量v(萬米3)與干旱持續時間t(天)之間的關系圖,回答下列問題:
(1)該水庫原蓄水量為多少萬米3?持干旱持續時間10天后,水庫蓄水量為多少萬米3?
(2)若水庫的蓄水量小于400萬米3時,將發生嚴重干旱警報,請問:持續干旱多少天后,將發生嚴重干旱警報?
(3)按此規律,持續干旱多少天時,水庫將干涸?
9、(成都市)某移動通信公司開設了兩種通信業務,“全球通”:使用時首先繳50元月租費,然后每通話1分鐘,自付話費0.4元;“動感地帶”:不繳月租費,每通話1分鐘,付話費0.6元(本題的通話均指市內通話),若一個月通話x分鐘,兩種方式的費用分別為 元和 元.
(1)寫出 、 與x之間的關系式;
(2)一個月內通話多少分鐘,兩種移動通訊費用相同?
(3)某人估計一個月內通話300分鐘,應選擇哪種移動通信合算些?
七年級數學教案反思篇6
一.教學目標
(1) 使學生進一步理解并掌握判定兩條直線平行的方法;
(2) 了解邏輯推理過程.
二.教學重點與難點
重點:判定兩條直線平行方法的應用;
難點:邏輯推理過程.
三.教學過程
復習提問:
1.判定兩條直線平行的方法有哪些?
2.如圖(1)
(1) 如果∠1=∠4,根據_________________,可得AB∥CD;
(2) 如果∠1=∠2,根據_________________,可得AB∥CD;
(3) 如果∠1+∠3=1800,根據______________,可得AB∥CD .
3.如圖(2)
(1) 如果∠1=∠D,那么______∥________;
(2) 如果∠1=∠B,那么______∥________;
(3) 如果∠A+∠B=1800,那么______∥________;
(4) 如果∠A+∠D=1800,那么______∥________;
新課:
例1 在同一平面內,如果兩條直線都垂直于同一條直線,那么這兩條直線平行嗎?為什么?
分析:垂直總與直角聯系在一起,我們學過哪些判斷兩條直線平行的方法?
答:這兩條直線平行.
如圖所示
理由如下: ∵b⊥a,c⊥a
∴∠1=∠2=900(垂直定義)
∴b∥c(同位角相等,兩直線平行)
思考:
這是小明同學自己制作的英語抄寫紙的一部分,其中的橫格線互相平行嗎?你有多少種判別方法?
例2 如圖所示,∠1=∠2,∠BAC=200,∠ACF=800.
(1) 求∠2的度數;
(2) FC與AD平行嗎?為什么?
鞏固練習
1. 教科書19頁練習
2. 如圖所示,如果∠1=470,∠2=1330,∠D=470,那么BC與DE平行嗎?AB與CD平行嗎?
3. 如圖所示,已知∠D=∠A,∠B=∠FCB,試問ED與CF平行嗎?
4. 如圖,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出圖中互相平行的直線.
作業:教科書19頁習題5.2第7、8題
七年級數學教案反思篇7
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的喜悅,保持學好數學的信心。
教學重點:掌握有理數的兩種分類方法
教學難點:給定的數字將被填入它所屬的集合中
教學方法:問題導向法
學習方法:自主探究法
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
1.有以下數字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33
(1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
(2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
附:自學提綱:
1.___________、____、_______統稱為整數,
2._______和_________統稱為分數
3.__________統稱為有理數,
4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數:、分數:;正整數:、負整數:、正分數:、負分數:.
三、展示歸納
1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
1.整數可分為:_____、______和_______,分數可分為:_______和_________.有理數按符號不同可分為正有理數,_______和________.
2.判斷下列說法是否正確,并說明理由。
(1)有理數包括有整數和分數.
(2)0.3不是有理數.
(3)0不是有理數.
(4)一個有理數不是正數就是負數.
(5)一個有理數不是整數就是分數
3.所有的正整數組成正整數集合,所有負整數組成負整數集合,依次類推有正數集合、負數集合、整數集合、分數集合等,把下面的有理數填入它屬于的集合中(大括號內,將各數用逗號分開):
楊桂花:1.2.1有理數教學設計
正數集合:{…}負數集合:{…}
正整數集合:{…}負分數集合:{…}
4.下列說法正確的是()
A.0是最小的正整數
B.0是最小的有理數
C.0既不是整數也不是分數
D.0既不是正數也不是負數
5、下列說法正確的有()
(1)整數就是正整數和負整數(2)零是整數,但不是自然數(3)分數包括正分數和負分數(4)正數和負數統稱為有理數(5)一個有理數,它不是整數就是分數
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
七年級數學教案反思篇8
教學目的
1.理解用一元一次方程解工程問題的本質規律;通過對“工程問題”的分析進一步培養學生用代數方法解決實際問題的能力。
2.理解和掌握基本的數學知識、技能、數學思想方法,獲得廣泛的數學活動經驗,提高解決問題的能力。
重點、難點
重點:工程中的工作量、工作的效率和工作時間的關系。
難點:把全部工作量看作“1”。
教學過程
一、復習提問
1.一件工作,如果甲單獨做2小時完成,那么甲獨做I小時完成全
部工作量的多少?
2.一件工作,如果甲單獨做。小時完成,那么甲獨做1小時,完成
全部工作量的多少?
3.工作量、工作效率、工作時間之間有怎樣的關系?
二、新授
閱讀教科書第18頁中的問題6。
分析:1.這是一個關于工程問題的實際問題,在這個問題中,已經知道了什么? 已知:制作一塊廣告牌,師傅單獨完成需4天,徒弟單獨做要6天。
2.怎樣用列方程解決這個問題?本題中的等量關系是什么?
[等量關系是:師傅做的工作量+徒弟做的工作量=1)
[先要求出師傅與徒弟各完成的工作量是多少?]
兩人的工效已知,因此要先求他們各自所做的天數,因此,設師傅做了x天,則徒弟做(x+1)天,根據等量關系列方程。 解方程得 x=2
師傅完成的工作量為= ,徒弟完成的工作量為=
所以他們兩人完成的工作量相同,因此每人各得225元。
三、鞏固練習
一件工作,甲獨做需30小時完成,由甲、乙合做需24小時完成,現
由甲獨做10小時;
請你提出問題,并加以解答。
例如 (1)剩下的乙獨做要幾小時完成?
(2)剩下的由甲、乙合作,還需多少小時完成?
(3)乙又獨做5小時,然后甲、乙合做,還需多少小時完成?
四、小結
1.本節課主要分析了工作問題中工作量、工作效率和工作時間之
間的關系,即 工作量=工作效率×工作時間
工作效率= 工作時間=
2.解題時要全面審題,尋找全部工作,單獨完成工作量和合作完成工作量的一個等量關系列方程。
五、作業
教科書習題6.3.3第1、2題。