小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 > 優秀教案 >

九年級數學拓展教案

時間: 新華 優秀教案

九年級數學拓展教案篇1

一、素質教育目標

(一)知識教學點

使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.

(二)能力訓練點

逐步培養學生會觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點

引導學生探索、發現,以培養學生獨立思考、勇于創新的精神和良好的學習習慣.

二、教學重點、難點

1.重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.

2.難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論.

三、教學步驟

(一)明確目標

1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?

2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?

3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?

4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?

前兩個問題學生很容易回答.這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識.但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用.同時使學生對本章所要學習的內容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來.

通過四個例子引出課題.

(二)整體感知

1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.

學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.

2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發現,不論三角形大小如何,所求的比值是固定的.大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?

這樣做,在培養學生動手能力的同時,也使學生對本節課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知.

(三)重點、難點的學習與目標完成過程

1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學生這時的思維很活躍.對于這個問題,部分學生可能能解決它.因此教師此時應讓學生展開討論,獨立完成.

2.學生經過研究,也許能解決這個問題.若不能解決,教師可適當引導:

若一組直角三角形有一個銳角相等,可以把其

頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.

通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養學生能力,進行了德育滲透.

而前面導課中動手實驗的設計,實際上為突破難點而設計.這一設計同時起到培養學生思維能力的作用.

練習題為 作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來.

(四)總結與擴展

1.引導學生作知識總結:本節課在復習勾股定理及含30°角直角三角形的性質基礎上,通過動手實驗、證明,我們發現,只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.

教師可適當補充:本節課經過同學們自己動手實驗,大膽猜測和積極思考,我們發現了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發揚這種創新精神,變被動學知識為主動發現問題,培養自己的創新意識.

2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發現,銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下.通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發了學生的興趣.

四、布置作業

本節課內容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念.

九年級數學拓展教案篇2

一、素質教育目標

(一)知識教學點

使學生會根據一個銳角的正弦值和余弦值,查出這個銳角的大小.(二)能力訓練點

逐步培養學生觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點

培養學生良好的學習習慣.

二、教學重點、難點和疑點

1.重點:由銳角的正弦值或余弦值,查出這個銳角的大小.

2.難點:由銳角的正弦值或余弦值,查出這個銳角的大小.

3.疑點:由于余弦是減函數,查表時“值增角減,值減角增”學生常常出錯.

三、教學步驟

(一)明確目標

1.銳角的正弦值與余弦值隨角度變化的規律是什么?

這一規律也是本課查表的依據,因此課前還得引導學生回憶.

答:當角度在0°~90°間變化時,正弦值隨著角度的增大(或減小)而增大(或減小);當角度在0°~90°間變化時,余弦值隨角度的增大(或減小)而減小(或增大).

2.若cos21°30′=0.9304,且表中同一行的修正值是則cos21°31′=______,

cos21°28′=______.

3.不查表,比較大?。?/p>

(1)sin20°______sin20°15′;

(2)cos51°______cos50°10′;

(3)sin21°______cos68°.

學生在回答2題時極易出錯,教師一定要引導學生敘述思考過程,然后得出答案.

3題的設計主要是考察學生對函數值隨角度的變化規律的理解,同時培養學生估算.

(二)整體感知

已知一個銳角,我們可用“正弦和余弦表”查出這個角的正弦值或余弦值.反過來,已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個角的大小.因為學生有查“平方表”、“立方表”等經驗,對這一點必深信無疑.而且通過逆向思維,可能很快會掌握已知函數值求角的方法.

(三)重點、難點的學習與目標完成過程.

例8已知sinA=0.2974,求銳角A.

學生通過上節課已知銳角查其正弦值和余弦值的經驗,完全能獨立查得銳角A,但教師應請同學講解查的過程:從正弦表中找出0.2974,由這個數所在行向左查得17°,由同一數所在列向上查得18′,即0.2974=sin17°18′,以培養學生語言表達能力.

解:查表得sin17°18′=0.2974,所以

銳角A=17°18′.

例9已知cosA=0.7857,求銳角A.

分析:學生在表中找不到0.7857,這時部分學生可能束手無策,但有上節課查表的經驗,少數思維較活躍的學生可能會想出辦法.這時教師讓學生討論,在探討中尋求辦法.這對解決本題會有好處,使學生印象更深,理解更透徹.

若條件許可,應在討論后請一名學生講解查表過程:在余弦表中查不到0.7857.但能找到同它最接近的數0.7859,由這個數所在行向右查得38°,由同一個數向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,這說明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002對應的角度是1′,所以∠A=38°12′+1′=38°13′.

解:查表得cos38°12′=0.7859,所以:

0.7859=cos38°12′.

值減0.0002角度增1′

0.7857=cos38°13′,

即銳角A=38°13′.

例10已知cosB=0.4511,求銳角B.

例10與例9相比較,只是出現余差(本例中的0.0002)與修正值不一致.教師只要講清如何使用修正值(用最接近的值),以使誤差最小即可,其余部分學生在例9的基礎上,可以獨立完成.

解:0.4509=cos63°12′

值增0.0003角度減1′

0.4512=cos63°11′

∴銳角B=63°11′

為了對例題加以鞏固,教師在此應設計練習題,教材P.15中2、3.

2.已知下列正弦值或余弦值,求銳角A或B:

(1)sinA=0.7083,sinB=0.9371,

sinA=0.3526,sinB=0.5688;

(2)cosA=0.8290,cosB=0.7611,

cosA=0.2996,cosB=0.9931.

此題是配合例題而設置的,要求學生能快速準確得到答案.

(1)45°6′,69°34′,20°39′,34°40′;

(2)34°0′,40°26′,72°34′,6°44′.

3.查表求sin57°與cos33°,所得的值有什么關系?

此題是讓學生通過查表進一步印證關系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).

(四)、總結、擴展

本節課我們重點學習了已知一個銳角的正弦值或余弦值,可用“正弦和余弦表”查出這個銳角的大小,這也是本課難點,同學們要會依據正弦值和余弦值隨角度變化規律(角度變化范圍0°~90°)查“正弦和余弦表”.

四、布置作業

教材復習題十四A組3、4,要求學生只查正、余弦。

五、板書設計

九年級數學拓展教案篇3

了解中心對稱圖形的概念及中心對稱圖形的對稱中心的概念,掌握這兩個概念的應用.

復習兩個圖形關于中心對稱的有關概念,利用這個所學知識探索一個圖形是中心對稱圖形的有關概念及其他的運用.

重點

中心對稱圖形的有關概念及其它們的運用.

難點

區別關于中心對稱的兩個圖形和中心對稱圖形.

一、復習引入

1.(老師口問)口答:關于中心對稱的兩個圖形具有什么性質?

(老師口述):關于中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分.

關于中心對稱的兩個圖形是全等圖形.

2.(學生活動)作圖題.

(1)作出線段AO關于O點的對稱圖形,如圖所示.

(2)作出三角形AOB關于O點的對稱圖形,如圖所示.

延長AO使OC=AO,延長BO使OD=BO,連接CD,則△COD即為所求,如圖所示.

二、探索新知

從另一個角度看,上面的(1)題就是將線段AB繞它的中點旋轉180°,因為OA=OB,所以,就是線段AB繞它的中點旋轉180°后與它本身重合.

上面的(2)題,連接AD,BC,則剛才的關于中心O對稱的兩個圖形就成了平行四邊形,如圖所示.

∵AO=OC,BO=OD,∠AOB=∠COD

∴△AOB≌△COD

∴AB=CD

也就是,ABCD繞它的兩條對角線交點O旋轉180°后與它本身重合.

因此,像這樣,把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心.

(學生活動)例1從剛才講的線段、平行四邊形都是中心對稱圖形外,每一位同學舉出三個圖形,它們也是中心對稱圖形.

老師點評:老師邊提問學生邊解答的特點.

(學生活動)例2請說出中心對稱圖形具有什么特點?

老師點評:中心對稱圖形具有勻稱美觀、平穩的特點.

例3求證:如圖,任何具有對稱中心的四邊形是平行四邊形.

分析:中心對稱圖形的對稱中心是對應點連線的交點,也是對應點間的線段中點,因此,直接可得到對角線互相平分.

證明:如圖,O是四邊形ABCD的對稱中心,根據中心對稱性質,線段AC,BD點O,且AO=CO,BO=DO,即四邊形ABCD的對角線互相平分,因此,四邊形ABCD是平行四邊形.

三、課堂小結(學生歸納,老師點評)

本節課應掌握:

1.中心對稱圖形的有關概念;

2.應用中心對稱圖形解決有關問題.

四、作業布置

教材第70頁習題8,9,10.

九年級數學拓展教案篇4

一、學情分析

通過對上期末檢測分析,發現本班學生存在很嚴重的兩極分化。一方面是平時成績比較突出的學生基本上掌握了學習的數學的方法和技巧,對學習數學興趣濃厚。另一方面是相當部分學生因為各種原因,數學已經落后很遠,基本喪失了學習數學的興趣。從上個學期期末測試就可以看出來,優秀率達到了15%,但及格率下降到45%,特別是不及格的學生中,大部分學生的成績在50分(總分為120分)以下。

二、指導思想

以《初中數學新課程標準》為準繩,繼續深入開展新課程教學改革。以提高學生中考成績為出發點,注重培養學生的基礎知識和基本技能,提高學生解題答題的能力。同時通過本學期的課堂教學,完成九年級上冊數學教學任務。并根據實際情況,適當完成九年級下冊新授教學內容。

三、教學目標

知識技能目標:掌握二次根式的概念、性質及計算;會解一元二次方程;理解旋轉的基本性質;掌握圓及與圓有關的概念、性質;理解概率在生活中的應用。過程方法目標:培養學生的觀察、探究、推理、歸納的能力,發展學生合情推理能力、邏輯推理能力和推理認證表達能力,提高知識綜合應用能力。態度情感目標:進一步感受數學與日常生活密不可分的聯系,同時對學生進行辯證唯物主義世界觀教育。

四、教材分析

第二十一章二次根式:本章主要內容是二次根式的概念、性質、化簡和有關的計算。本章重點是理解二次根式的性質,及二次根式的化簡和計算。本章的難點是正確理解二次根式的性質和運算法則。

第二十二章一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并運用一元二次方程解決實際問題。本章重點是解一元二次方程的思路及具體方法。本章的難點是解一元二次方程。

第二十三章旋轉:本章主要是探索和理解旋轉的性質,能夠按要求作出簡單平面圖形旋轉后的圖形。本章的重點是中心對稱的概念、性質與作圖。本章的難點是辨認中心對稱圖形,按要求作出簡單平面圖形旋轉后的圖形。

第二十四章圓:理解圓及有關概念,掌握弧、弦、圓心角的關系,探索點與圓、直線與圓、圓與圓之間的位置關系,探索圓周角與圓心角的關系,直徑所對圓周角的特點,切線與過切點的半徑之間的關系,正多邊形與圓的關系……。本章內容知識點多,而且都比較復雜,是整個初中幾何中最難的一個教學內容。

第二十五章概率初步:理解概率的意義及其在生活中的廣泛應用。本章的重點是理解概率的意義和應用,掌握概率的計算方法。本章的難點是會用列舉法求隨機事件的概率。

五、教學措施

1、精心備課,設置好每個教學情境,激發學生學習興趣和欲望。深入淺出,幫助學生理解各個知識點,突出重點,講透難點。

2、加強對學生課后的輔導,尤其是中等生和后進生的基礎知識的輔導,提高他們的解題作答能力和正確率。

3、精心組織單元測試,認真分析試卷中暴露出來的問題,并對其中大多數學生存在的問題集中進行分析與講解,力求透徹。對于少部分學生存在的問題進行小組輔導,突破難點。

4、做好學生的思想教育工作,促進學生學習的積極性,從而提高學生的學習成績。

九年級數學拓展教案篇5

一、教學思想:

以黨和國家的教育教學方針為指導,按照九年義務教育數學課程標準來實施,使每個學生都能夠在數學學習過程中獲得最適合自己的發展。目的是讓學生掌握基礎知識與基本技能,培養學生的邏輯思維能力、運算能力、空間觀念和解決簡單實際問題的能力;提高學習數學的興趣,培養學生良好的學習習慣,實事求是的態度,頑強的學習毅力;培養學生的數學創新意識、良好個性品質以及初步的唯物主義觀。

二、學生基本情況分析:

全班共有學生32人,其中男生12人,女生20人,男女比例失衡。由于新接手教學,對全班具體情況不甚了解,總體來看,本班成績還算可以,能立于年級上游水平(上期末第三)。但在學生所學知識的掌握程度上,已經出現嚴重的兩極分化,對優生來說,能夠透徹理解知識,知識間的內在聯系也較為清楚,對后進生來說,就連簡單的基礎知識都不能有效的掌握,成績較差。整體上學生仍然缺乏推理的思考方法,在寫法上均存在著一定的困難,對幾何有畏難情緒,相關知識學得不很透徹。在學習態度上,絕大部分學生上課能全神貫注,積極的投入到學習中去,少數幾個學生上課不是很專心,而且過于自負,自我感覺良好,目空一切,學習習慣有待改善。陶行知說:教育就是培養習慣,這是本期教學中重點予以關注的。

三、本學期的教學內容

九年級上冊:

第一章:一元二次方程;第2章:命題與證明;第3章:圖形的相似;第4章:銳角三角形函數;第5章:概率的計算

九年級下冊:

第一章:反比例函數;第二章:二次函數;第三章:圓;第四章:統計估計。

四、教學目標:

1、了解一元二次方程、一元二次方程的解的概念;理解配方法,會用因式分解法、直接開平方法、配方法和公式法解簡單的數字系數的一元二次方程;會建立一元二次方程的模型解決簡單的實際問題,并會根據實際意義檢驗求的解是否合理;理解解一元二次方程的基本思想是:降低次數,轉化為兩個一元一次方程。

2、了解定義、命題、公理和定理的含義,會區分命題的條件與結論;理解證明的必要性,掌握用綜合法證題的格式,并使學生體會到證明的過程步步有理有據;

3、了解線段的比、成比例線段,掌握比例的基本性質,并能熟練地進行比例的變形,通過生活中的實例了解黃金分割;理解相似形的概念,熟練掌握相似三角形的判定與性質,掌握相似多邊形的性質;了解圖形的位似,能夠利用位似變換將一個圖形放大或縮小;能利用圖形相似一些實際問題。

4、理解銳角的正統、余弦及正切的定義,會運用銳角三角函數、勾股定理及直角三角形中兩銳角互余的關系解直角三角形;能運用解直角三角形的知識,解決簡單的實際問題。

5、理解概率的意義,會用頻率估計概率,會計算簡單事件的概率,能運用概率的概念,解決一些簡單的實際問題。

6、理解反比函數的意義,能根據已知條件確定反比例函數表達式;能畫出反比例函數的圖象,根據圖象和解析表達式探索并理解其性質;能用反比例函數解決某些實際問題。

7、體會并理解二次函數的意義,掌握二次函數的圖象和性質;會利用二次函數解決簡單的實際問題。

8、理解圓及及其有關概念,掌握圓的基本性質;探索并掌握點與圓、直線與圓以及圓與圓的位置關系,并能利用這些關系解決實際問題;會計算弧長及扇形的面積,會計算圓錐的側面積和全面積;掌握平行投影與中心投影的有關理念,熟悉基本幾何體的三視圖。

9、學會收集、整理、描述和分析數據;會用樣本的平均數、方差來估計總體的平均數和方差;能借用工具處理較為復雜的統計數據,掌握基本的統計學知識。

10、全面培養、提高學生的數學思維能力、分析問題的能力、推理論證的能力、解決問題的能力;掌握并能應用重要的數學基本思想和方法。

九年級數學拓展教案篇6

經歷圓的概念的形成過程,理解圓、弧、弦等與圓有關的概念,了解等圓、等弧的概念.

重點

經歷形成圓的概念的過程,理解圓及其有關概念.

難點

理解圓的概念的形成過程和圓的集合性定義.

活動1 創設情境,引出課題

1.多媒體展示生活中常見的給我們以圓的形象的物體.

2.提出問題:我們看到的物體給我們什么樣的形象?

活動2 動手操作,形成概念

在沒有圓規的情況下,讓學生用鉛筆和細線畫一個圓.

教師巡視,展示學生的作品,提出問題:我們畫的圓的位置和大小一樣嗎?畫的圓的位置和大小分別由什么決定?

教師強調指出:位置由固定的一個端點決定,大小由固定端點到鉛筆尖的細線的長度決定.

1.從以上圓的形成過程,總結概念:在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點所形成的圖形叫做圓.固定的端點O叫做圓心,線段OA叫做半徑.以點O為圓心的圓,記作“⊙O”,讀作“圓O”.

2.小組討論下面的兩個問題:

問題1:圓上各點到定點(圓心O)的距離有什么規律?

問題2:到定點的距離等于定長的點又有什么特點?

3.小組代表發言,教師點評總結,形成新概念.

(1)圓上各點到定點(圓心O)的距離都等于定長(半徑r);

(2)到定點的距離等于定長的點都在同一個圓上.

因此,我們可以得到圓的新概念:圓心為O,半徑為r的圓可以看成是所有到定點O的距離等于定長r的點的集合.(一個圖形看成是滿足條件的點的集合,必須符合兩點:在圖形上的每個點,都滿足這個條件;滿足這個條件的每個點,都在這個圖形上.)

活動3 學以致用,鞏固概念

1.教材第81頁 練習第1題.

2.教材第80頁 例1.

多媒體展示例1,引導學生分析要證明四個點在同一圓上,實際是要證明到定點的距離等于定長,即四個點到O的距離相等.

活動4 自學教材,辨析概念

1.自學教材第80頁例1后面的內容,判斷下列問題正確與否:

(1)直徑是弦,弦是直徑;半圓是弧,弧是半圓.

(2)圓上任意兩點間的線段叫做弧.

(3)在同圓中,半徑相等,直徑是半徑的2倍.

(4)長度相等的兩條弧是等弧.(教師強調:長度相等的弧不一定是等弧,等弧必須是在同圓或等圓中的弧.)

(5)大于半圓的弧是劣弧,小于半圓的弧是優弧.

2.指出圖中所有的弦和弧.

活動5 達標檢測,反饋新知

教材第81頁 練習第2,3題.

活動6 課堂小結,作業布置

課堂小結

1.圓、弦、弧、等圓、等弧的概念.要特別注意“直徑和弦”“弧和半圓”以及“同圓、等圓”這些概念的區別和聯系.等圓和等弧的概念是建立在“能夠完全重合”這一前提條件下的,它將作為今后判斷兩圓或兩弧相等的依據.

2.證明幾點在同一圓上的方法.

3.集合思想.

作業布置

1.以定點O為圓心,作半徑等于2厘米的圓.

2.如圖,在Rt△ABC和Rt△ABD中,∠C=90°,∠D=90°,點O是AB的中點.

求證:A,B,C,D四個點在以點O為圓心的同一圓上.

答案:1.略;2.證明OA=OB=OC=OD即可.

57269 主站蜘蛛池模板: 热回收盐水机组-反应釜冷水机组-高低温冷水机组-北京蓝海神骏科技有限公司 | 诺冠气动元件,诺冠电磁阀,海隆防爆阀,norgren气缸-山东锦隆自动化科技有限公司 | BAUER减速机|ROSSI-MERSEN熔断器-APTECH调压阀-上海爱泽工业设备有限公司 | 餐饮小吃技术培训-火锅串串香培训「何小胖培训」_成都点石成金[官网] | 电表箱-浙江迈峰电力设备有限公司-电表箱专业制造商 | 细胞染色-流式双标-试剂盒免费代做-上海研谨生物科技有限公司 | 转向助力泵/水泵/发电机皮带轮生产厂家-锦州华一精工有限公司 | 德州网站制作 - 网站建设设计 - seo排名优化 -「两山建站」 | 标准光源箱|对色灯箱|色差仪|光泽度仪|涂层测厚仪_HRC大品牌生产厂家 | 福建自考_福建自学考试网| 安徽净化工程设计_无尘净化车间工程_合肥净化实验室_安徽创世环境科技有限公司 | 冰晶石|碱性嫩黄闪蒸干燥机-有机垃圾烘干设备-草酸钙盘式干燥机-常州市宝康干燥 | 机械立体车库租赁_立体停车设备出租_智能停车场厂家_春华起重 | 工业用品一站式采购平台|南创工品汇-官网|广州南创 | 抓斗式清污机|螺杆式|卷扬式启闭机|底轴驱动钢坝|污水处理闸门-方源水利机械 | 太原装修公司_山西整装家装设计_太原室内装潢软装_肖邦家居 | 企业彩铃制作_移动、联通、电信集团彩铃上传开通_彩铃定制_商务彩铃管理平台-集团彩铃网 | 武汉刮刮奖_刮刮卡印刷厂_为企业提供门票印刷_武汉合格证印刷_现金劵代金券印刷制作 - 武汉泽雅印刷有限公司 | 加中寰球移民官网-美国移民公司,移民机构,移民中介,移民咨询,投资移民 | led太阳能路灯厂家价格_风光互补庭院灯_农村市政工程路灯-中山华可路灯品牌 | 专业生物有机肥造粒机,粉状有机肥生产线,槽式翻堆机厂家-郑州华之强重工科技有限公司 | 冷水机,风冷冷水机,水冷冷水机,螺杆冷水机专业制造商-上海祝松机械有限公司 | 早报网| 临沂招聘网_人才市场_招聘信息_求职招聘找工作请认准【马头商标】 | 济南ISO9000认证咨询代理公司,ISO9001认证,CMA实验室认证,ISO/TS16949认证,服务体系认证,资产管理体系认证,SC食品生产许可证- 济南创远企业管理咨询有限公司 郑州电线电缆厂家-防火|低压|低烟无卤电缆-河南明星电缆 | 定量包装机,颗粒定量包装机,粉剂定量包装机,背封颗粒包装机,定量灌装机-上海铸衡电子科技有限公司 | 二维运动混料机,加热型混料机,干粉混料机-南京腾阳干燥设备厂 | 解放卡车|出口|济南重汽|报价大全|山东三维商贸有限公司 | 二次元影像仪|二次元测量仪|拉力机|全自动影像测量仪厂家_苏州牧象仪器 | 湖南长沙商标注册专利申请,长沙公司注册代理记账首选美创! | 辐射色度计-字符亮度测试-反射式膜厚仪-苏州瑞格谱光电科技有限公司 | 一氧化氮泄露报警器,二甲苯浓度超标报警器-郑州汇瑞埔电子技术有限公司 | 磨煤机配件-高铬辊套-高铬衬板-立磨辊套-盐山县宏润电力设备有限公司 | 成都办公室装修-办公室设计-写字楼装修设计-厂房装修-四川和信建筑装饰工程有限公司 | 天坛家具官网 | 焊接烟尘净化器__焊烟除尘设备_打磨工作台_喷漆废气治理设备 -催化燃烧设备 _天津路博蓝天环保科技有限公司 | 防爆大气采样器-防爆粉尘采样器-金属粉尘及其化合物采样器-首页|盐城银河科技有限公司 | 不锈钢电动球阀_气动高压闸阀_旋塞疏水调节阀_全立阀门-来自温州工业阀门巨头企业 | 汽液过滤网厂家_安平县银锐丝网有限公司 | 镀锌角钢_槽钢_扁钢_圆钢_方矩管厂家_镀锌花纹板-海邦钢铁(天津)有限公司 | 昆山新莱洁净应用材料股份有限公司-卫生级蝶阀,无菌取样阀,不锈钢隔膜阀,换向阀,离心泵 |