高三數學教案
高三數學教案篇1
一次函數的的教案
一、教學目標
1、理解一次函數和正比例函數的概念,以及它們之間的關系。
2、能根據所給條件寫出簡單的一次函數表達式。
二、能力目標
1、經歷一般規律的探索過程、發展學生的抽象思維能力。
2、通過由已知信息寫一次函數表達式的過程,發展學生的數學應用能力。
三、情感目標 1、通過函數與變量之間的關系的聯系,一次函數與一次方程的聯系,發展學生的數學思維。
2、經歷利用一次函數解決實際問題的過程,發展學生的數學應用能力。
四、教學重難點 1、一次函數、正比例函數的概念及關系。 2、會根據已知信息寫出一次函數的表達式。
五、教學過程
1、新課導入 有關函數問題在我們日常生活中隨處可見,如彈簧秤有自然長度,在彈性限度內,隨著所掛物體的重量的'增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,請看: 某彈簧的自然長度為 3厘米,在彈性限度內,所掛物體的質量x每增加 1千克、彈簧長度y增加 0.5厘米。
(1)計算所掛物體的質量分別為 1千克、 2千克、 3千克、 4千克、 5千克時彈簧的長度,
(2)你能寫出x與y之間的關系式嗎?
分析:當不掛物體時,彈簧長度為 3厘米,當掛 1千克物體時,增加 0.5厘米,總長度為 3.5厘米,當增加 1千克物體,即所掛物體為 2千克時,彈簧又增加 0.5厘米,總共增加 1厘米,由此可見,所掛物體每增加 1千克,彈簧就伸長 0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。
2、做一做 某輛汽車油箱中原有汽油 100升,汽車每行駛 50千克耗油 9升。你能寫出x與y之間的關系嗎?(y=1000.18x或y=100 x) 接著看下面這些函數,你能說出這些函數有什么共同的特點嗎?上面的幾個函數關系式,都是左邊是因變量,右邊是含自變量的代數式,并且自變量和因變量的指數都是一次。
3、一次函數,正比例函數的概念 若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數k≠0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。
4、例題講解 例1:下列函數中,y是x的一次函數的是( ) ①y=x6;②y= ;③y= ;④y=7x A、①②③ B、①③④ C、①②③④ D、②③④ 分析:這道題考查的是一次函數的概念,特別要強調一次函數自變量與因變量的指數都是1,因而②不是一次函數,答案為B
高三數學教案篇2
我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
地位和作用
本章學習是在學生完成函數的第一階段學習(初中)的基礎上,進行第二階段的函數學習。而對數函數作為這一階段的.重要的基本初等函數之一,它是在學生已經學習了指數函數及對數的內容,這為過渡到本節的學習起著鋪墊作用。“對數函數”這節教材,是在沒有學習反函數的基礎上研究的指數函數和對數函數的自變量和因變量之間的關系。同時對數函數作為常用數學模型在解決社會生活中的實例有著廣泛的應用,本節課的學習為學生進一步學習,參加生產和實際生活提供必要的基礎知識。
二、目標分析
(一)、教學目標
根據《對數函數》在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下的教學目標:
1、知識與技能
(1)、進一步體會函數是描述變量之間的依賴關系的重要數學模型;
(2)、理解對數函數的概念、掌握對數函數的圖像和性質;
(3)、由實際問題出發,培養學生探索知識和抽象概括知識等方面的能力。
2、過程與方法
引導學生觀察,探尋變量和變量的對應關系,通過歸納、抽象、概括,自主建構對數函數的概念;體驗結合舊知識探索新知識,研究新問題的快樂。
3、情感態度與價值觀
通過對對數函數函數圖像和性質的探究過程,培養學生發現問題,探索問題,不斷超越的創新品質。在民主、和諧的教學氣氛中,促進師生的情感交流。
(二)教學重點、難點及關鍵
1、重點:對數函數的概念、圖像和性質;在教學中只有突出這個重點,才能使教材脈絡分明,才能有利于學生聯系舊知識,學習新知識。
2、難點:底數a對對數函數的圖像和性質的影響。
[關鍵]對數函數與指數函數的類比教學。
由指數函數的圖像過渡到對數函數的圖像,通過類比分析達到深刻地了解對數函數的圖像及其性質是掌握重點和突破難點的關鍵,在教學中一定要使學生的思考緊緊圍繞圖像,數形結合,加強直觀教學,使學生能形成以圖像為根本,以性質為主體的知識網絡,同時在立體的講解中,重視加強題組的設計和變形,使教學真正體現出由淺入深,由易到難,由具體到抽象的特點,從而突破重點、突破難點。
三、教法、學法分析
(一)、教法
教學過程是教師和學生共同參與的過程,啟發學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發學生的學習興趣,我采用如下的教學方法:
1、啟發引導學生思考、分析、實驗、探索、歸納;
2、采用“從特殊到一般”、“從具體到抽象”的方法;
3、體現“對比聯系”、“數形結合”及“分類討論”的思想方法;
4、投影儀演示法。
在整個過程中,應以學生看,學生想,學生議,學生練為主體,教師在學生仔細觀察、類比、想象的基礎上通過問題串的形式加以引導點撥,與指數函數性質對照,歸納,整理,只有這樣,才能喚起學生對原有知識的回憶,自覺地找到新舊知識的聯系,使新學知識更牢固,理解更深刻。
(二)、學法
教給學生方法比教給學生知識更重要,本節課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
1、對照比較學習法:學習對數函數,處處與指數函數相對照;
2、探究式學習法:學生通過分析、探索,得出對數函數的定義;
3、自主性學習法:通過實驗畫出函數圖像、觀察圖像自得其性質;
4、反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
高三數學教案篇3
教學目標:
1、知識與技能:
1)了解導數概念的實際背景;
2)理解導數的概念、掌握簡單函數導數符號表示和基本導數求解方法;
3)理解導數的幾何意義;
4)能進行簡單的導數四則運算。
2、過程與方法:
先理解導數概念背景,培養觀察問題的能力;再掌握定義和幾何意義,培養轉化問題的能力;最后求切線方程及運算,培養解決問題的能力。
3、情態及價值觀;
讓學生感受數學與生活之間的聯系,體會數學的美,激發學生學習興趣與主動性。
教學重點:
1、導數的求解方法和過程;
2、導數公式及運算法則的熟練運用。
教學難點:
1、導數概念及其幾何意義的理解;
2、數形結合思想的靈活運用。
教學課型:復習課(高三一輪)
教學課時:約1課時
高三數學教案篇4
教學目標
進一步熟悉正、余弦定理內容,能熟練運用余弦定理、正弦定理解答有關問題,如判斷三角形的形狀,證明三角形中的三角恒等式.
教學重難點
教學重點:熟練運用定理.
教學難點:應用正、余弦定理進行邊角關系的相互轉化.
教學過程
一、復習準備:
1.寫出正弦定理、余弦定理及推論等公式.
2.討論各公式所求解的三角形類型.
二、講授新課:
1.教學三角形的解的討論:
①出示例1:在△ABC中,已知下列條件,解三角形.
分兩組練習→討論:解的個數情況為何會發生變化?
②用如下圖示分析解的情況.(A為銳角時)
練習:在△ABC中,已知下列條件,判斷三角形的解的情況.
2.教學正弦定理與余弦定理的活用:
①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.
分析:已知條件可以如何轉化?→引入參數k,設三邊后利用余弦定理求角.
②出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.
分析:由三角形的什么知識可以判別?→求角余弦,由符號進行判斷
③出示例4:已知△ABC中,試判斷△ABC的形狀.
分析:如何將邊角關系中的邊化為角?→再思考:又如何將角化為邊?
3.小結:三角形解的情況的討論;判斷三角形類型;邊角關系如何互化.
高三數學教案篇5
教學目標
(1)掌握向量的有關概念:向量及其表示法、向量的模、向量的相等、零向量;
(2)理解并掌握復數集、復平面內的點的集合、復平面內以原點為起點的向量集合之間的一一對應關系;
(3)掌握復數的模的定義及其幾何意義;
(4)通過學習,培養學生的數形結合的數學思想;
(5)通過本節內容的學習,培養學生的觀察能力、分析能力,幫助學生逐步形成科學的思維習慣和方法
教學建議
一、知識結構
本節內容首先從物理中所遇到的一些矢量出發引出向量的概念,介紹了向量及其表示法、向量的模、向量的相等、零向量的概念,接著介紹了復數集與復平面內以原點為起點的向量集合之間的一一對應關系,指出了復數的模的定義及其計算公式
二、重點、難點分析
本節的重點是復數與復平面的向量的一一對應關系的理解;難點是復數模的概念復數可以用向量表示,二者的對應關系為什么只能說復數集與以原點為起點的向量的集合一一對應關系,而不能說與復平面內的向量一一對應,對這一點的理解要加以重視在復數向量的表示中,從復數集與復平面內的點以及以原點為起點的向量之間的一一對應關系是本節教學的難點復數模的概念是一個難點,首先要理解復數的絕對值與實數絕對值定義的一致性質,其次要理解它的幾何意義是表示向量的長度,也就是復平面上的點到原點的距離
三、教學建議
1在學習新課之前一定要復習舊知識,包括實數的絕對值及幾何意義,復數的有關概念、現行高中物理課本中的有關矢量知識等,特別是對于基礎較差的學生,這一環節不可忽視
2理解并掌握復數集、復平面內的點集、復平面內以原點為起點的向量集合三者之間的關系
如圖所示,建立復平面以后,復數 與復平面內的點形成—一對應關系,而點又與復平面的向量構成—一對應關系因此,復數集與復平面的以為起點,以為終點的向量集 形成—一對應關系因此,我們常把復數說成點Z或說成向量點、向量是復數的另外兩種表示形式,它們都是復數的幾何表示
相等的向量對應的是同一個復數,復平面內與向量 相等的向量有無窮多個,所以復數集不能與復平面上所有的向量相成—一對應關系復數集只能與復平面上以原點為起點的向量集合構成—一對應關系
2
這種對應關系的建立,為我們用解析幾何方法解決復數問題,或用復數方法解決幾何問題創造了條件
3向量的模,又叫向量的絕對值,也就是其有向線段的長度它的計算公式是 ,當實部為零時,根據上面復數的模的公式與以前關于實數絕對值及算術平方根的規定一致這些內容必須使學生在理解的基礎上牢固地掌握
4講解教材第182頁上例2的第(1)小題建議在講解教材第182頁上例2的第(1)小題時如果結合提問 的圖形,可以幫助學生正確理解教材中的“圓”是指曲線而不是指圓面(曲線所包圍的平面部分)對于倒2的第(2)小題的圖形,畫圖時周界(兩個同心圓)都應畫成虛線
高三數學教案篇6
高三數學二輪專題復習教案——數列
一、本章知識結構:
二、重點知識回顧
1.數列的概念及表示方法
(1)定義:按照一定順序排列著的一列數.
(2)表示方法:列表法、解析法(通項公式法和遞推公式法)、圖象法.
(3)分類:按項數有限還是無限分為有窮數列和無窮數列;按項與項之間的大小關系可分為單調數列、擺動數列和常數列.
(4)與的關系:.
2.等差數列和等比數列的比較
(1)定義:從第2項起每一項與它前一項的差等于同一常數的數列叫等差數列;從第2項起每一項與它前一項的比等于同一常數(不為0)的數列叫做等比數列.
(2)遞推公式:.
(3)通項公式:.
(4)性質等差數列的主要性質:①單調性:時為遞增數列,時為遞減數列,時為常數列.②若,則.特別地,當時,有.③.④成等差數列.等比數列的主要性質:①單調性:當或時,為遞增數列;當,或時,為遞減數列;當時,為擺動數列;當時,為常數列.②若,則.特別地,若,則.③.④,…,當時為等比數列;當時,若為偶數,不是等比數列.若為奇數,是公比為的等比數列.
三、考點剖析考點一:等差、等比數列的概念與性質
例1.(2008深圳模擬)已知數列(1)求數列的通項公式;(2)求數列解:(1)當;、當,、(2)令當;當綜上,點評:本題考查了數列的前n項與數列的通項公式之間的關系,特別要注意n=1時情況,在解題時經常會忘記。第二問要分情況討論,體現了分類討論的數學思想.
例2、(2008廣東雙合中學)已知等差數列的前n項和為,且,.數列是等比數列,(其中).(I)求數列和的通項公式;(II)記.解:(I)公差為d,則.設等比數列的公比為,.(II)作差:.點評:本題考查了等差數列與等比數列的基本知識,第二問,求前n項和的解法,要抓住它的結特征,一個等差數列與一個等比數列之積,乘以2后變成另外的一個式子,體現了數學的轉化思想。考點二:求數列的通項與求和
例3.(2008江蘇)將全體正整數排成一個三角形數陣:按照以上排列的規律,第行()從左向右的第3個數為解:前n-1行共有正整數1+2+…+(n-1)個,即個,因此第n行第3個數是全體正整數中第+3個,即為.點評:本小題考查歸納推理和等差數列求和公式,難點在于求出數列的通項,解決此題需要一定的觀察能力和邏輯推理能力。
例4.(2008深圳模擬)圖(1)、(2)、(3)、(4)分別包含1個、5個、13個、25個第二十九屆北京奧運會吉祥物“福娃迎迎”,按同樣的方式構造圖形,設第個圖形包含個“福娃迎迎”,則;____解:第1個圖個數:1第2個圖個數:1+3+1第3個圖個數:1+3+5+3+1第4個圖個數:1+3+5+7+5+3+1第5個圖個數:1+3+5+7+9+7+5+3+1=,所以,f(5)=41f(2)-f(1)=4,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=16點評:由特殊到一般,考查邏輯歸納能力,分析問題和解決問題的能力,本題的第二問是一個遞推關系式,有時候求數列的通項公式,可以轉化遞推公式來求解,體現了轉化與化歸的數學思想。
考點三:數列與不等式的聯系例5.(2009屆高三湖南益陽)已知等比數列的首項為,公比滿足。又已知,,成等差數列。(1)求數列的通項(2)令,求證:對于任意,都有(1)解:∵∴∴∵∴∴(2)證明:∵,∴點評:把復雜的問題轉化成清晰的問題是數學中的重要思想,本題中的第(2)問,采用裂項相消法法,求出數列之和,由n的范圍證出不等式。
例6、(2008遼寧理)在數列,中,a1=2,b1=4,且成等差數列,成等比數列()(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜測,的通項公式,并證明你的結論;(Ⅱ)證明:.解:(Ⅰ)由條件得由此可得.猜測.用數學歸納法證明:①當n=1時,由上可得結論成立.②假設當n=k時,結論成立,即,那么當n=k+1時,.所以當n=k+1時,結論也成立.由①②,可知對一切正整數都成立.(Ⅱ).n≥2時,由(Ⅰ)知.故綜上,原不等式成立.點評:本小題主要考查等差數列,等比數列,數學歸納法,不等式等基礎知識,考查綜合運用數學知識進行歸納、總結、推理、論證等能力.
例7.(2008安徽理)設數列滿足為實數(Ⅰ)證明:對任意成立的充分必要條件是;(Ⅱ)設,證明:;(Ⅲ)設,證明:解:(1)必要性:,又,即充分性:設,對用數學歸納法證明當時,.假設則,且,由數學歸納法知對所有成立(2)設,當時,,結論成立當時,,由(1)知,所以且(3)設,當時,,結論成立當時,由(2)知點評:本題是數列、充要條件、數學歸納法的知識交匯題,屬于難題,復習時應引起注意,加強訓練。考點四:數列與函數、概率等的聯系
例題8..(2008福建理)已知函數.(Ⅰ)設{an}是正數組成的數列,前n項和為Sn,其中a1=3.若點(n∈N-)在函數y=f′(x)的圖象上,求證:點(n,Sn)也在y=f′(x)的圖象上;(Ⅱ)求函數f(x)在區間(a-1,a)內的極值.(Ⅰ)證明:因為所以′(x)=x2+2x,由點在函數y=f′(x)的圖象上,又所以所以,又因為′(n)=n2+2n,所以,故點也在函數y=f′(x)的圖象上.(Ⅱ)解:,由得.當x變化時,、的變化情況如下表:x(-∞,-2)-2(-2,0)0(0,+∞)f′(x)+0-0+f(x)↗極大值↘極小值↗注意到,從而①當,此時無極小值;②當的極小值為,此時無極大值;③當既無極大值又無極小值.點評:本小題主要考查函數極值、等差數列等基本知識,考查分類與整合、轉化與化歸等數學思想方法,考查分析問題和解決問題的能力.
例9、(2007江西理)將一骰子連續拋擲三次,它落地時向上的點數依次成等差數列的概率為()A.B.C.D.解:一骰子連續拋擲三次得到的數列共有個,其中為等差數列有三類:(1)公差為0的有6個;(2)公差為1或-1的有8個;(3)公差為2或-2的有4個,共有18個,成等差數列的概率為,選B點評:本題是以數列和概率的背景出現,題型新穎而別開生面,有采取分類討論,分類時要做到不遺漏,不重復。
考點五:數列與程序框圖的聯系例10、(2009廣州天河區模擬)根據如圖所示的程序框圖,將輸出的x、y值依次分別記為;(Ⅰ)求數列的通項公式;(Ⅱ)寫出y1,y2,y3,y4,由此猜想出數列{yn};的一個通項公式yn,并證明你的結論;(Ⅲ)求.解:(Ⅰ)由框圖,知數列∴(Ⅱ)y1=2,y2=8,y3=26,y4=80.由此,猜想證明:由框圖,知數列{yn}中,yn+1=3yn+2∴∴∴數列{yn+1}是以3為首項,3為公比的等比數列。∴+1=3·3n-1=3n∴=3n-1()(Ⅲ)zn==1×(3-1)+3×(32-1)+…+(2n-1)(3n-1)=1×3+3×32+…+(2n-1)·3n-[1+3+…+(2n-1)]記Sn=1×3+3×32+…+(2n-1)·3n,①則3Sn=1×32+3×33+…+(2n-1)×3n+1②①-②,得-2Sn=3+2·32+2·33+…+2·3n-(2n-1)·3n+1=2(3+32+…+3n)-3-(2n-1)·3n+1=2×=∴又1+3+…+(2n-1)=n2∴.點評:程序框圖與數列的聯系是新課標背景下的新鮮事物,因為程序框圖中循環,與數列的各項一一對應,所以,這方面的內容是命題的`新方向,應引起重視。
四、方法總結與2009年高考預測
(一)方法總結1.求數列的通項通常有兩種題型:一是根據所給的一列數,通過觀察求通項;一是根據遞推關系式求通項。
2.數列中的不等式問題是高考的難點熱點問題,對不等式的證明有比較法、放縮,放縮通常有化歸等比數列和可裂項的形式。
3.數列是特殊的函數,而函數又是高中數學的一條主線,所以數列這一部分是容易命制多個知識點交融的題,這應是命題的一個方向。
(二)2009年高考預測
1.數列中與的關系一直是高考的熱點,求數列的通項公式是最為常見的題目,要切實注意與的關系.關于遞推公式,在《考試說明》中的考試要求是:“了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項”。但實際上,從近兩年各地高考試題來看,是加大了對“遞推公式”的考查。
2.探索性問題在數列中考查較多,試題沒有給出結論,需要考生猜出或自己找出結論,然后給以證明.探索性問題對分析問題解決問題的能力有較高的要求.
3.等差、等比數列的基本知識必考.這類考題既有選擇題,填空題,又有解答題;有容易題、中等題,也有難題。
4.求和問題也是常見的試題,等差數列、等比數列及可以轉化為等差、等比數列求和問題應掌握,還應該掌握一些特殊數列的求和.
5.將數列應用題轉化為等差、等比數列問題也是高考中的重點和熱點,從本章在高考中所在的分值來看,一年比一年多,而且多注重能力的考查.
6.有關數列與函數、數列與不等式、數列與概率等問題既是考查的重點,也是考查的難點。今后在這方面還會體現的
高三數學教案篇7
一、教學目標
1、知識與技能
(1)理解對數的概念,了解對數與指數的關系;
(2)能夠進行指數式與對數式的互化;
(3)理解對數的性質,掌握以上知識并培養類比、分析、歸納能力;
2、過程與方法
3、情感態度與價值觀
(1)通過本節的學習體驗數學的嚴謹性,培養細心觀察、認真分析嚴謹認真的良好思維習慣和不斷探求新知識的精神;
(2)感知從具體到抽象、從特殊到一般、從感性到理性認知過程;
(3)體驗數學的科學功能、符號功能和工具功能,培養直覺觀察、
探索發現、科學論證的良好的數學思維品質、
二、教學重點、難點
教學重點
(1)對數的&39;定義;
(2)指數式與對數式的互化;
教學難點
(1)對數概念的理解;
(2)對數性質的理解;
三、教學過程:
四、歸納總結:
1、對數的概念
一般地,如果函數ax=n(a0且a≠1)那么數x叫做以a為底n的對數,記作x=logan,其中a叫做對數的底數,n叫做真數。
2、對數與指數的互化
ab=n?logan=b
3、對數的基本性質
負數和零沒有對數;loga1=0;logaa=1對數恒等式:alogan=n;logaa=nn
五、課后作業
課后練習1、2、3、4
高三數學教案篇8
高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節為單位,將那些零碎的、散亂的知識點串聯起來,并將他們系統化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。
一、內容分析說明
1、本小節內容是初中學習的多項式乘法的繼續,它所研究的二項式的乘方的展開式,與數學的其他部分有密切的聯系:
(1)二項展開式與多項式乘法有聯系,本小節復習可對多項式的變形起到復習深化作用。
(2)二項式定理與概率理論中的二項分布有內在聯系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯系,形成知識網絡。
(3)二項式定理是解決某些整除性、近似計算等問題的一種方法。
2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的試題,考察的題型穩定,通常以選擇題或填空題出現,有時也與應用題結合在一起求某些數、式的近似值。
二、學校情況與學生分析
(1)我校是一所鎮普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數學難學。但大部分學生想考大學,主觀上有學好數學的愿望。
(2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續從事某項數學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。
三、教學目標
復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據歷年高考對這部分的考查情況,結合學生的特點,設定如下教學目標:
1、知識目標:
(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個特征熟記它的展開式。
(2)會運用展開式的通項公式求展開式的特定項。
2、能力目標:
(1)教給學生怎樣記憶數學公式,如何提高記憶的持久性和準確性,從而優化記憶品質。記憶力是一般數學能力,是其它能力的基礎。
(2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數學思想方法。
3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數學的部分內容,樹立學好數學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。