小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

數學復習教案設計

時間: 新華 教學設計

數學復習教案設計篇1

重點難點教學:

1.正確理解映射的概念;

2.函數相等的兩個條件;

3.求函數的定義域和值域。

一.教學過程:

1.使學生熟練掌握函數的概念和映射的定義;

2.使學生能夠根據已知條件求出函數的定義域和值域;3.使學生掌握函數的三種表示方法。

二.教學內容:1.函數的定義

設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:

(),yfA

其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()}fA?叫值域(range)。顯然,值域是集合B的子集。

注意:

①“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.2.構成函數的三要素定義域、對應關系和值域。3、映射的定義

設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意

一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。

4.區間及寫法:

設a、b是兩個實數,且a

(1)滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];

(2)滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);

5.函數的三種表示方法①解析法②列表法③圖像法

數學復習教案設計篇2

一、教學目標:

1.知識與技能:理解并掌握等比數列的性質并且能夠初步應用。

2.過程與方法:通過觀察、類比、猜測等推理方法,提高我們分析、綜合、抽象、

概括等邏輯思維能力。

3.情感態度價值觀:體會類比在研究新事物中的作用,了解知識間存在的共同規律。

二、重點:等比數列的性質及其應用。

難點:等比數列的性質應用。

三、教學過程。

同學們,我們已經學習了等差數列,又學習了等比數列的基礎知識,今天我們繼續學習等比數列的性質及應用。我給大家發了導學稿,讓大家做了預習,現在找同學對照下面的表格說說等差數列和等比數列的差別。

數列名稱等差數列等比數列

定義一個數列,若從第二項起每一項減去前一項之差都是同一個常數,則這個數列是等差數列。一個數列,若從第二項起每一項與前一項之比都是同一個非零常數,則這個數列是等比數列。

定義表達式an-an-1=d(n≥2)

(q≠0)

通項公式證明過程及方法

an-an-1=d;an-1-an-2=d,

…a2-a1=d

an-an-1+an-1-an-2+…+a2-a1=(n-1)d

an=a1+(n-1)__d

累加法;…….

an=a1qn-1

累乘法

通項公式an=a1+(n-1)__dan=a1qn-1

多媒體投影(總結規律)

數列名稱等差數列等比數列

定義等比數列用“比”代替了等差數列中的“差”

定義

達式an-an-1=d(n≥2)

通項公式證明

迭加法迭乘法

通項公式

加-乘

乘—乘方

通過觀察,同學們發現:

?等差數列中的減法、加法、乘法,

等比數列中升級為除法、乘法、乘方.

四、探究活動。

探究活動1:小組根據導學稿內容研討等比數列的性質,并派學生代表上來講解練習1;等差數列的性質1;猜想等比數列的性質1;性質證明。

練習1在等差數列{an}中,a2=-2,d=2,求a4=_____..(用一個公式計算)解:a4=a2+(n-2)d=-2+(4-2)__2=2

等差數列的性質1:在等差數列{an}中,an=am+(n-m)d.

猜想等比數列的性質1若{an}是公比為q的等比數列,則an=am__qn-m

性質證明右邊=am__qn-m=a1qm-1qn-m=a1qn-1=an=左邊

應用在等比數列{an}中,a2=-2,q=2,求a4=_____.解:a4=a2q4-2=-2__22=-8

探究活動2:小組根據導學稿內容研討等比數列的性質,并派學生代表上來講解練習2;等差數列的性質2;猜想等比數列的性質2;性質證明。

練習2在等差數列{an}中,a3+a4+a5+a6+a7=450,則a2+a8的值為.解:a3+a4+a5+a6+a7=(a3+a7)+(a4+a6)+a5=2a5+2a5+a5=5a5=450a5=90a2+a8=2×90=180

等差數列的性質2:在等差數列{an}中,若m+n=p+q,則am+an=ap+aq特別的,當m=n時,2an=ap+aq

猜想等比數列的性質2在等比數列{an}中,若m+n=s+t則am__an=as__at特別的,當m=n時,an2=ap__aq

性質證明右邊=am__an=a1qm-1a1qn-1=a12qm+n-1=a12qs+t-1=a1qs-1a1qt-1=as__at=左邊證明的方向:一般來說,由繁到簡

應用在等比數列{an}若an>0,a2a4+2a3a5+a4a6=36,則a3+a5=_____.解:a2a4+2a3a5+a4a6=a32+2a3a5+a52=(a3+a5)2=36

由于an>0,a3+a5>0,a3+a5=6

探究活動3:小組根據導學稿內容研討等比數列的性質,并派學生代表上來講解練習3;等差數列的性質3;猜想等比數列的性質3;性質證明。

數學復習教案設計篇3

兩角差的余弦公式

【使用說明】1、復習教材P124-P127頁,40分鐘時間完成預習學案

2、有余力的學生可在完成探究案中的部分內容。

【學習目標】

知識與技能:理解兩角差的余弦公式的推導過程及其結構特征并能靈活運用。

過程與方法:應用已學知識和方法思考問題,分析問題,解決問題的能力。

情感態度價值觀:通過公式推導引導學生發現數學規律,培養學生的創新意識和學習數學的興趣。

.【重點】通過探索得到兩角差的余弦公式以及公式的靈活運用

【難點】兩角差余弦公式的推導過程

預習自學案

一、知識鏈接

1.寫出的三角函數線:

2.向量,的數量積,

①定義:

②坐標運算法則:

3.,,那么是否等于呢?

下面我們就探討兩角差的余弦公式

二、教材導讀

1.、兩角差的余弦公式的推導思路

如圖,建立單位圓O

(1)利用單位圓上的三角函數線

又OM=OB+BM

=OB+CP

=OA_____+AP_____

=

從而得到兩角差的余弦公式:

____________________________________

(2)利用兩點間距離公式

如圖,角的終邊與單位圓交于A()

角的終邊與單位圓交于B()

角的終邊與單位圓交于P()

點T()

AB與PT關系如何?

從而得到兩角差的余弦公式:

____________________________________

(3)利用平面向量的知識

用表示向量,

=(,)=(,)

則.=

設與的夾角為

①當時:

=

從而得出

②當時顯然此時已經不是向量的夾角,在范圍內,是向量夾角的補角.我們設夾角為,則+=

此時=

從而得出

2、兩角差的余弦公式

____________________________

三、預習檢測

1.利用余弦公式計算的值.

2.怎樣求的值

你的疑惑是什么?

________________________________________________________

______________________________________________________

探究案

例1.利用差角余弦公式求的值.

例2.已知,是第三象限角,求的值.

訓練案

一、基礎訓練題

1、

2、

3、

二、綜合題

數學復習教案設計篇4

教學目的:

1掌握平面向量數量積運算規律;

2能利用數量積的5個重要性質及數量積運算規律解決有關問題;

3掌握兩個向量共線、垂直的幾何判斷,會證明兩向量垂直,以及能解決一些簡單問題

教學重點:平面向量數量積及運算規律

教學難點:平面向量數量積的應用

授課類型:新授課

課時安排:1課時

教具:多媒體、實物投影儀

內容分析:

啟發學生在理解數量積的運算特點的基礎上,逐步把握數量積的運算律,引導學生注意數量積性質的相關問題的特點,以熟練地應用數量積的性質

教學過程:

一、復習引入:

1.兩個非零向量夾角的概念

已知非零向量與,作=,=,則∠aob=θ(0≤θ≤π)叫與的夾角

2.平面向量數量積(內積)的定義:已知兩個非零向量與,它們的夾角是θ,則數量cos?叫與的數量積,記作?,即有?=cos?,

(0≤θ≤π)并規定與任何向量的數量積為0

3.“投影”的概念:作圖

定義:cos?叫做向量在方向上的投影

投影也是一個數量,不是向量;當?為銳角時投影為正值;當?為鈍角時投影為負值;當?為直角時投影為0;當?=0?時投影為;當?=180?時投影為?

4.向量的數量積的幾何意義:

數量積?等于的長度與在方向上投影cos?的乘積

5.兩個向量的數量積的性質:

設、為兩個非零向量,是與同向的單位向量

1??=?=cos?;2????=0

3?當與同向時,?=;當與反向時,?=?

特別的?=2或

4?cos?=;5??≤

6.判斷下列各題正確與否:

1?若=,則對任一向量,有?=0(√)

2?若?,則對任一非零向量,有??0(×)

3?若?,?=0,則=(×)

4?若?=0,則、至少有一個為零(×)

5?若?,?=?,則=(×)

6?若?=?,則=當且僅當?時成立(×)

7?對任意向量、、,有(?)???(?)(×)

8?對任意向量,有2=2(√)

數學復習教案設計篇5

一、教學目標:

知識與技能:理解指數函數的概念,掌握指數函數的圖象和性質,培養學生實際應用函數的能力。

過程與方法:通過觀察圖象,分析、歸納、總結、自主建構指數函數的性質。領會數形結合的數學思想方法,培養學生發現、分析、解決問題的能力。

情感態度與價值觀:在指數函數的學習過程中,體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。

二、教學重點、難點:

教學重點:指數函數的概念、圖象和性質。

教學難點:對底數的分類,如何由圖象、解析式歸納指數函數的性質。

三、教學過程:

(一)創設情景

問題1:某種細胞分裂時,由1個分裂成2個,2個分裂成4個,……一個這樣的細胞分裂x次后,得到的細胞分裂的個數y與x之間,構成一個函數關系,能寫出x與y之間的函數關系式嗎?

學生回答:y與x之間的關系式,可以表示為y=2x。

問題2:一種放射性物質不斷衰變為其他物質,每經過一年剩留的質量約是原來的84%。求出這種物質的剩留量隨時間(單位:年)變化的函數關系。設最初的質量為1,時間變量用x表示,剩留量用y表示。

學生回答:y與x之間的關系式,可以表示為y=0.84x。

引導學生觀察,兩個函數中,底數是常數,指數是自變量。

1.指數函數的定義

一般地,函數y?a?a?0且a?1?叫做指數函數,其中x是自變量,函數的定義域是R。x

問題:指數函數定義中,為什么規定“a?0且a?1”如果不這樣規定會出現什么情況?

(1)若a<0會有什么問題?

x1則在實數范圍內相應的函數值不存在)2(2)若a=0會有什么問題?(對于x0,a無意義)

(3)若a=1又會怎么樣?(1x無論x取何值,它總是1,對它沒有研究的必要。)

師:為了避免上述各種情況的發生,所以規定a?0且a?1。

練1:指出下列函數那些是指數函數:

?1?(1)y?4x(2)y?x4(3)y??4x(4)y???4?(5(轉載于:,n的大小:

設計意圖:這是指數函數性質的簡單應用,使學生在解題過程中加深對指數函數的圖像及性質的理解和記憶。

(五)課堂小結

(六)布置作業

數學復習教案設計篇6

教學準備

教學目標

1、數學知識:掌握等比數列的概念,通項公式,及其有關性質;

2、數學能力:通過等差數列和等比數列的類比學習,培養學生類比歸納的能力;

歸納——猜想——證明的數學研究方法;

3、數學思想:培養學生分類討論,函數的數學思想。

教學重難點

重點:等比數列的概念及其通項公式,如何通過類比利用等差數列學習等比數列;

難點:等比數列的性質的探索過程。

教學過程

教學過程:

1、問題引入:

前面我們已經研究了一類特殊的數列——等差數列。

問題1:滿足什么條件的數列是等差數列?如何確定一個等差數列?

(學生口述,并投影):如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。

要想確定一個等差數列,只要知道它的首項a1和公差d。

已知等差數列的首項a1和d,那么等差數列的通項公式為:(板書)an=a1+(n-1)d。

師:事實上,等差數列的關鍵是一個“差”字,即如果一個數列,從第2項起,每一項與它前一項的差等于同一個常數,那么這個數列就叫做等差數列。

(第一次類比)類似的,我們提出這樣一個問題。

問題2:如果一個數列,從第2項起,每一項與它的前一項的……等于同一個常數,那么這個數列叫做……數列。

(這里以填空的形式引導學生發揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數的話,這個數列是一個各項重復出現的“周期數列”,而與等差數列最相似的是“比”為同一個常數的情況。而這個數列就是我們今天要研究的等比數列了。)

2、新課:

1)等比數列的定義:如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,那么這個數列就叫做等比數列。這個常數叫做公比。

師:這就牽涉到等比數列的通項公式問題,回憶一下等差數列的通項公式是怎樣得到的?類似于等差數列,要想確定一個等比數列的通項公式,要知道什么?

師生共同簡要回顧等差數列的通項公式推導的方法:累加法和迭代法。

公式的推導:(師生共同完成)

若設等比數列的公比為q和首項為a1,則有:

方法一:(累乘法)

3)等比數列的性質:

下面我們一起來研究一下等比數列的性質

通過上面的研究,我們發現等比數列和等差數列之間似乎有著相似的地方,這為我們研究等比數列的性質提供了一條思路:我們可以利用等差數列的性質,通過類比得到等比數列的性質。

問題4:如果{an}是一個等差數列,它有哪些性質?

(根據學生實際情況,可引導學生通過具體例子,尋找規律,如:

3、例題鞏固:

例1、一個等比數列的第二項是2,第三項與第四項的和是12,求它的第八項的值。_

答案:1458或128。

例2、正項等比數列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.

例3、已知一個等差數列:2,4,6,8,10,12,14,16,……,2n,……,能否在這個數列中取出一些項組成一個新的數列{cn},使得{cn}是一個公比為2的等比數列,若能請指出{cn}中的第k項是等差數列中的第幾項?

(本題為開放題,沒有的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數列中的第2k-1項。關鍵是對通項公式的理解)

1、小結:

今天我們主要學習了有關等比數列的概念、通項公式、以及它的性質,通過今天的學習

我們不僅學到了關于等比數列的有關知識,更重要的是我們學會了由類比——猜想——證明的科學思維的過程。

2、作業:

P129:1,2,3

思考題:在等差數列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些項:6,12,24,48,……,組成一個新的數列{cn},{cn}是一個公比為2的等比數列,請指出{cn}中的第k項是等差數列中的第幾項?

教學設計說明:

1、教學目標和重難點:首先作為等比數列的第一節課,對于等比數列的概念、通項公式及其性質是學生接下來學習等比數列的基礎,是必須要落實的;其次,數學教學除了要傳授知識,更重要的是傳授科學的研究方法,等比數列是在等差數列之后學習的因此對等比數列的學習必然要和等差數列結合起來,通過等比數列和等差數列的類比學習,對培養學生類比——猜想——證明的科學研究方法是有利的。這也就成了本節課的重點。

2、教學設計過程:本節課主要從以下幾個方面展開:

1)通過復習等差數列的定義,類比得出等比數列的定義;

2)等比數列的通項公式的推導;

3)等比數列的性質;

有意識的引導學生復習等差數列的定義及其通項公式的探求思路,一方面使學生回顧舊

知識,另一方面使學生通過聯想,為類比地探索等比數列的定義、通項公式奠定基礎。

在類比得到等比數列的定義之后,再對幾個具體的數列進行鑒別,旨在遵循“特殊——一般——特殊”的認識規律,使學生體會觀察、類比、歸納等合情推理方法的應用。培養學生應用知識的能力。

在得到等比數列的定義之后,探索等比數列的通項公式又是一個重點。這里通過問題3的設計,使學生產生不得不考慮通項公式的心理傾向,造成學生認知上的沖突,從而使學生主動完成對知識的接受。

通過等差數列和等比數列的通項公式的比較使學生初步體會到等差和等比的相似性,為下面類比學習等比數列的性質,做好鋪墊。

等比性質的研究是本節課的_,通過類比

關于例題設計:重知識的應用,具有開放性,為使學生更好的掌握本節課的內容。

數學復習教案設計篇7

一、目標

1.知識與技能

(1)理解流程圖的順序結構和選擇結構。

(2)能用字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的`流程圖

2.過程與方法:學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。

3.情感、態度與價值觀:學生通過動手作圖,用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養學生的邏輯思維能力。

二、重點、難點

重點:算法的順序結構與選擇結構。

難點:用含有選擇結構的流程圖表示算法。

三、學法與教學用具

學法:學生通過動手作圖,.用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。

教學用具:尺規作圖工具,多媒體。

四、教學思路

(一)、問題引入揭示題

例1尺規作圖,確定線段的一個5等分點。

要求:同桌一人作圖,一人寫算法,并請學生說出答案。

提問:用字語言寫出算法有何感受?

引導學生體驗到:顯得冗長,不方便、不簡潔。

教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。

本節要學習的是順序結構與選擇結構。

右圖即是同流程圖表示的算法。

(二)、觀察類比理解題

1、投影介紹流程圖的符號、名稱及功能說明。

2、講授順序結構及選擇結構的概念及流程圖

(1)順序結構

依照步驟依次執行的一個算法

流程圖:

(2)選擇結構

對條進行判斷決定后面的步驟的結構

流程圖:

3.用自然語言表示算法與用流程圖表示算法的比較

(1)半徑為r的圓的面積公式當r=10時寫出計算圓的面積的算法,并畫出流程圖。

解:

算法(自然語言)

①把10賦與r

②用公式求s

③輸出s

流程圖

(2)已知函數對于每輸入一個X值都得到相應的函數值,寫出算法并畫流程圖。

算法:(語言表示)

①輸入X值

②判斷X的范圍,若,用函數Y=x+1求函數值;否則用Y=2-x求函數值

③輸出Y的值

流程圖

小結:含有數學中需要分類討論的或與分段函數有關的問題,均要用到選擇結構。

學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)

(三)模仿操作經歷題

1.用流程圖表示確定線段A.B的一個16等分點

2.分析講解例2;

分析:

思考:有多少個選擇結構?相應的流程圖應如何表示?

流程圖:

(四)歸納小結鞏固題

1.順序結構和選擇結構的模式是怎樣的?

2.怎樣用流程圖表示算法。

(五)練習P992

(六)作業P991

數學復習教案設計篇8

教學內容:北師大版教材5年級上冊。

教材分析:

教材安排了幾個不同的數學活動和游戲讓學生體會數的奇偶變化規律,引發學生的思考,讓他們在探究規律的活動中,發現解決問題的方法,從而運用這些方法去解決生活中的實際問題。

根據我對教材的理解,本課主要設計了兩個活動:

活動一:通過具體情境讓學生體會數的奇偶性規律,會利用數的奇偶性規律解決一些簡單的實際問題。主要是讓學生發現小船開始狀態在南岸,“奇數次在北岸,偶數次在南岸”的規律。對學生進行列表、畫圖等解決問題策略的指導。

活動二:主要是運用上面的奇偶規律探索數學計算中的奇偶變化規律。

學情分析:

5年級學生已經有了一些探索數學問題的方法和總結規律的經驗,思維比較活躍。他們能隨時發現并提出數學問題。在解決問題的過程中,能根據具體問題選擇有效的解決方法和策略,并能及時地總結自己的方法,在運用中積累經驗。學生是伴隨課程改革成長起來的,他們有較好的學習習慣,能認真傾聽,敏銳地捕捉有用的信息,并能與同學有效的合作。他們好奇心和探索的欲望極強,渴望發現規律。在幾年的學習中,他們的學習能力越來越強,準確的表達、恰當的評價、嚴肅認真的態度都很突出。估計學生可以在活動中自主探索本課的學習內容,形成認識,實現學習目標。

教學目標:

1.通過具體情境,讓學生學會運用“列表”、“畫示意圖”等方法解決問題的策略,發現規律,運用數的奇偶性規律解決生活中的一些簡單問題。

2.經歷探索加法中數的奇偶性變化的過程,在活動中發現加法中的奇偶的變化規律,并嘗試探索減法的奇偶變化規律。

3.在活動中經歷運用數學方法的過程,提高推理能力,提升數學思想。

教學重、難點:

1.學生嘗試運用“列表”、“畫示意圖”等解決問題的策略發現規律,運用數的奇偶性規律解決生活中的一些簡單問題,積累數學經驗。

2.在活動中自主探索奇偶性的變化規律的策略。

教學設想:

本節課是在學生認識了奇數、偶數以后,進一步發現生活中的奇偶性的變化規律,進而開闊學生的視野,拓寬學生的認知領域。難度不大,所以本節課力求體現以下幾點:

1.創設情境,激發學生的學習興趣。

2.引導學生主動探究,給予學生探索的時間和空間。

3.指導學生學會用自己的方法探索解決問題。

4.在探索規律的過程中培養學生的數學思維品質。

52626 主站蜘蛛池模板: 薪动-人力资源公司-灵活用工薪资代发-费用结算-残保金优化-北京秒付科技有限公司 | 磁力抛光机_磁力研磨机_磁力去毛刺机_精密五金零件抛光设备厂家-冠古科技 | elisa试剂盒-PCR试剂盒「上海谷研实业有限公司」 | 搜活动房网—活动房_集装箱活动房_集成房屋_活动房屋 | 生物制药洁净车间-GMP车间净化工程-食品净化厂房-杭州波涛净化设备工程有限公司 | 大型果蔬切片机-水果冬瓜削皮机-洗菜机切菜机-肇庆市凤翔餐饮设备有限公司 | 好杂志网-首页| 防爆大气采样器-防爆粉尘采样器-金属粉尘及其化合物采样器-首页|盐城银河科技有限公司 | 氧化铁红厂家-淄博宗昂化工 | 上海平衡机-单面卧式动平衡机-万向节动平衡机-圈带动平衡机厂家-上海申岢动平衡机制造有限公司 | 欧美日韩国产一区二区三区不_久久久久国产精品无码不卡_亚洲欧洲美洲无码精品AV_精品一区美女视频_日韩黄色性爱一级视频_日本五十路人妻斩_国产99视频免费精品是看4_亚洲中文字幕无码一二三四区_国产小萍萍挤奶喷奶水_亚洲另类精品无码在线一区 | 铝镁锰板厂家_进口钛锌板_铝镁锰波浪板_铝镁锰墙面板_铝镁锰屋面-杭州军晟金属建筑材料 | 深圳品牌设计公司-LOGO设计公司-VI设计公司-未壳创意 | 我爱古诗词_古诗词名句赏析学习平台 | 制氮设备-变压吸附制氮设备-制氧设备-杭州聚贤气体设备制造有限公司 | 吸污车_吸粪车_抽粪车_电动三轮吸粪车_真空吸污车_高压清洗吸污车-远大汽车制造有限公司 | ZHZ8耐压测试仪-上海胜绪电气有限公司 | 七维官网-水性工业漆_轨道交通涂料_钢结构漆 | 仓储笼_仓储货架_南京货架_仓储货架厂家_南京货架价格低-南京一品仓储设备制造公司 | IPO咨询公司-IPO上市服务-细分市场研究-龙马咨询 | 恒温水槽与水浴锅-上海熙浩实业有限公司 | 多功能真空滤油机_润滑油全自动滤油机_高效真空滤油机价格-重庆润华通驰 | FFU_空气初效|中效|高效过滤器_空调过滤网-广州梓净净化设备有限公司 | 北京中创汇安科贸有限公司 | 水冷散热器_水冷电子散热器_大功率散热器_水冷板散热器厂家-河源市恒光辉散热器有限公司 | 盐水蒸发器,水洗盐设备,冷凝结晶切片机,转鼓切片机,絮凝剂加药系统-无锡瑞司恩机械有限公司 | 中高频感应加热设备|高频淬火设备|超音频感应加热电源|不锈钢管光亮退火机|真空管烤消设备 - 郑州蓝硕工业炉设备有限公司 | 螺钉式热电偶_便携式温度传感器_压簧式热电偶|无锡联泰仪表有限公司|首页 | KBX-220倾斜开关|KBW-220P/L跑偏开关|拉绳开关|DHJY-I隔爆打滑开关|溜槽堵塞开关|欠速开关|声光报警器-山东卓信有限公司 | 代理记账_免费注册公司_营业执照代办_资质代办-【乐财汇】 | 无线讲解器-导游讲解器-自助讲解器-分区讲解系统 品牌生产厂家[鹰米讲解-合肥市徽马信息科技有限公司] | 细沙回收机-尾矿干排脱水筛设备-泥石分离机-建筑垃圾分拣机厂家-青州冠诚重工机械有限公司 | 快速卷帘门_硬质快速卷帘门-西朗门业 | 微水泥_硅藻泥_艺术涂料_艺术漆_艺术漆加盟-青岛泥之韵环保壁材 武汉EPS线条_EPS装饰线条_EPS构件_湖北博欧EPS线条厂家 | 南溪在线-南溪招聘找工作、找房子、找对象,南溪综合生活信息门户! | 谈股票-今日股票行情走势分析-牛股推荐排行榜 | 卫生型双针压力表-高温防腐差压表-安徽康泰电气有限公司 | 焊管生产线_焊管机组_轧辊模具_焊管设备_焊管设备厂家_石家庄翔昱机械 | 潍坊青州古城旅游景点攻略_青州酒店美食推荐-青州旅游网 | 水质传感器_水质监测站_雨量监测站_水文监测站-山东水境传感科技有限公司 | 美国PARKER齿轮泵,美国PARKER柱塞泵,美国PARKER叶片泵,美国PARKER电磁阀,美国PARKER比例阀-上海维特锐实业发展有限公司二部 |