數學復習教案怎么寫
數學復習教案怎么寫篇1
教學準備
教學目標
知識目標:使學生掌握等比數列的定義及通項公式,發現等比數列的一些簡單性質,并能運用定義及通項公式解決一些實際問題。
能力目標:培養運用歸納類比的方法發現問題并解決問題的能力及運用方程的思想的計算能力。
德育目標:培養積極動腦的學習作風,在數學觀念上增強應用意識,在個性品質上培養學習興趣。
教學重難點
本節的重點是等比數列的定義、通項公式及其簡單應用,其解決辦法是歸納、類比。
本節難點是對等比數列定義及通項公式的深刻理解,突破難點的關鍵在于緊扣定義,另外,靈活應用定義、公式、性質解決一些相關問題也是一個難點。
教學過程
二、教法與學法分析
為了突出重點、突破難點,本節課主要采用觀察、分析、類比、歸納的方法,讓學生參與學習,將學生置于主體位置,發揮學生的主觀能動性,將知識的形成過程轉化為學生親自探索類比歸納的過程,使學生獲得發現的成就感。在這個過程中,力求把握好以下幾點:_
①通過實例,讓學生發現規律。讓學生在問題情景中,經歷知識的形成和發展,力求使學生學會用類比的思想去看待問題。②營造_的教學氛圍,把握好師生的情感交流,使學生參與教學全過程,讓學生唱主角,老師任導演。③力求反饋的全面性、及時性。通過精心設計的提問,讓學生思維動起來,針對學生回答的問題,老師進行適當的調控。④給學生思考的時間和空間,不急于把結果拋給學生,讓學生自己去觀察、分析、類比得出結果,老師點評,逐步養成科學嚴謹的學習態度,提高學生的推理能力。⑤以啟迪思維為核心,啟發有度,留有余地,導而弗牽,牽而弗達。這樣做增加了學生的參與機會,增強學生的參與意識,教給學生獲取知識的途徑和思考問題的方法,使學生真正成為教學的主體,使學生學會學習,提高學生學習的興趣和能力。
三、教學程序設計
(4)等差中項:如果a、A、b成等差數列,那么A叫做a與b的等差中項。
說明:通過復習等差數列的相關知識,類比學習本節課的內容,用熟知的等差數列內容來分散本節課的難點。
2.導入新課
本章引言中關于在國際象棋棋盤各格子里放麥粒的問題中,各個格子的麥粒數依次是:
1,2,4,8,…,263
再來看兩個數列:
5,25,125,625,...
···
說明:引導學生通過“觀察、分析、歸納”,類比等差數列的定義得出等比數列的定義,為進一步理解定義,給出下面的問題:
判定以下數列是否為等比數列,若是寫出公比q,若不是,說出理由,然后回答下面問題。
-1,-2,-4,-8…
-1,2,-4,8…
-1,-1,-1,-1…
1,0,1,0…
提出問題:(1)公比q能否為零?為什么?首項a1呢?
(2)公比q=1時是什么數列?
(3)q>0是遞增數列嗎?q<0遞減嗎?
說明:通過師生問答,充分調動學生學習的主動性及學習熱情,活躍課堂氣氛,同時培養學生的口頭表達能力和臨場應變能力。另外通過趣味性的問題,來提高學生的學習興趣。激發學生發現等比數列的定義及其通項公式的強烈_。
3.嘗試推導通項公式
讓學生回顧等差數列通項公式的推導過程,引導推出等比數列的通項公式。
推導方法:疊乘法。
說明:學生從方法一中學會從特殊到一般的方法,并從次數中去發現規律,以培養學生的觀察能力;另外回憶等差數列的特點,并類比到等比數列中來,培養學生的類比能力及將新知識轉化到舊知識的能力。方法二是讓學生掌握“疊乘”的思路。
4.探索等比數列的圖像
等差數列的圖像可以看成是直線上一群孤立的點構成的,觀察等比數列的通項公式,你能得出什么結果?它的圖像如何?
變式2.等比數列{an}中,a2=2,a9=32,求q.
(學生自己動手解答。)
說明:例1的目的是讓學生熟悉公式并應用于實際,例2及變式是讓學生明白,公式中a1,q,n,an四個量中,知道任意三個即可求另一個。并從這些題中掌握等比數列運算中常規的消元方法。
6.探索等比數列的性質
類比等差數列的性質,猜測等比數列的性質,然后引導推證。
7.性質應用
例3.在等比數列{an}中,a5=2,a10=10,求a15
(讓學生自己動手,尋求多種解題方法。)
方法一:由題意列方程組解得
方法二:利用性質2
方法三:利用性質3
例4(見教材例3)已知數列{an}、{bn}是項數相同的等比數列,求證:{an·bn}是等比數列。
8.小結
為了讓學生將獲得的知識進一步條理化,系統化,同時培養學生的歸納總結能力及練習后進行再認識的能力,教師引導學生對本節課進行總結。
1、等比數列的定義,怎樣判斷一個數列是否是等比數列
2、等比數列的通項公式,每個字母代表的含義。
3、等比數列應注意那些問題(a1≠0,q≠0)
4、等比數列的圖像
5、通項公式的應用(知三求一)
6、等比數列的性質
7、等比數列的概念(注意兩點①同號兩數才有等比中項
②等比中項有兩個,他們互為相反數)
8、本節課采用的主要思想
——類比思想
9.布置作業
習題3.41②、④3.8.9.
10.板書設計
數學復習教案怎么寫篇2
教學準備
教學目標
1、數學知識:掌握等比數列的概念,通項公式,及其有關性質;
2、數學能力:通過等差數列和等比數列的類比學習,培養學生類比歸納的能力;
歸納——猜想——證明的數學研究方法;
3、數學思想:培養學生分類討論,函數的數學思想。
教學重難點
重點:等比數列的概念及其通項公式,如何通過類比利用等差數列學習等比數列;
難點:等比數列的性質的探索過程。
教學過程
教學過程:
1、問題引入:
前面我們已經研究了一類特殊的數列——等差數列。
問題1:滿足什么條件的數列是等差數列?如何確定一個等差數列?
(學生口述,并投影):如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。
要想確定一個等差數列,只要知道它的首項a1和公差d。
已知等差數列的首項a1和d,那么等差數列的通項公式為:(板書)an=a1+(n-1)d。
師:事實上,等差數列的關鍵是一個“差”字,即如果一個數列,從第2項起,每一項與它前一項的差等于同一個常數,那么這個數列就叫做等差數列。
(第一次類比)類似的,我們提出這樣一個問題。
問題2:如果一個數列,從第2項起,每一項與它的前一項的……等于同一個常數,那么這個數列叫做……數列。
(這里以填空的形式引導學生發揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數的話,這個數列是一個各項重復出現的“周期數列”,而與等差數列最相似的是“比”為同一個常數的情況。而這個數列就是我們今天要研究的等比數列了。)
2、新課:
1)等比數列的定義:如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,那么這個數列就叫做等比數列。這個常數叫做公比。
師:這就牽涉到等比數列的通項公式問題,回憶一下等差數列的通項公式是怎樣得到的?類似于等差數列,要想確定一個等比數列的通項公式,要知道什么?
師生共同簡要回顧等差數列的通項公式推導的方法:累加法和迭代法。
公式的推導:(師生共同完成)
若設等比數列的公比為q和首項為a1,則有:
方法一:(累乘法)
3)等比數列的性質:
下面我們一起來研究一下等比數列的性質
通過上面的研究,我們發現等比數列和等差數列之間似乎有著相似的地方,這為我們研究等比數列的性質提供了一條思路:我們可以利用等差數列的性質,通過類比得到等比數列的性質。
問題4:如果{an}是一個等差數列,它有哪些性質?
(根據學生實際情況,可引導學生通過具體例子,尋找規律,如:
3、例題鞏固:
例1、一個等比數列的第二項是2,第三項與第四項的和是12,求它的第八項的值。_
答案:1458或128。
例2、正項等比數列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.
例3、已知一個等差數列:2,4,6,8,10,12,14,16,……,2n,……,能否在這個數列中取出一些項組成一個新的數列{cn},使得{cn}是一個公比為2的等比數列,若能請指出{cn}中的第k項是等差數列中的第幾項?
(本題為開放題,沒有的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數列中的第2k-1項。關鍵是對通項公式的理解)
1、小結:
今天我們主要學習了有關等比數列的概念、通項公式、以及它的性質,通過今天的學習
我們不僅學到了關于等比數列的有關知識,更重要的是我們學會了由類比——猜想——證明的科學思維的過程。
2、作業:
P129:1,2,3
思考題:在等差數列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些項:6,12,24,48,……,組成一個新的數列{cn},{cn}是一個公比為2的等比數列,請指出{cn}中的第k項是等差數列中的第幾項?
教學設計說明:
1、教學目標和重難點:首先作為等比數列的第一節課,對于等比數列的概念、通項公式及其性質是學生接下來學習等比數列的基礎,是必須要落實的;其次,數學教學除了要傳授知識,更重要的是傳授科學的研究方法,等比數列是在等差數列之后學習的因此對等比數列的學習必然要和等差數列結合起來,通過等比數列和等差數列的類比學習,對培養學生類比——猜想——證明的科學研究方法是有利的。這也就成了本節課的重點。
2、教學設計過程:本節課主要從以下幾個方面展開:
1)通過復習等差數列的定義,類比得出等比數列的定義;
2)等比數列的通項公式的推導;
3)等比數列的性質;
有意識的引導學生復習等差數列的定義及其通項公式的探求思路,一方面使學生回顧舊
知識,另一方面使學生通過聯想,為類比地探索等比數列的定義、通項公式奠定基礎。
在類比得到等比數列的定義之后,再對幾個具體的數列進行鑒別,旨在遵循“特殊——一般——特殊”的認識規律,使學生體會觀察、類比、歸納等合情推理方法的應用。培養學生應用知識的能力。
在得到等比數列的定義之后,探索等比數列的通項公式又是一個重點。這里通過問題3的設計,使學生產生不得不考慮通項公式的心理傾向,造成學生認知上的沖突,從而使學生主動完成對知識的接受。
通過等差數列和等比數列的通項公式的比較使學生初步體會到等差和等比的相似性,為下面類比學習等比數列的性質,做好鋪墊。
等比性質的研究是本節課的_,通過類比
關于例題設計:重知識的應用,具有開放性,為使學生更好的掌握本節課的內容。
數學復習教案怎么寫篇3
教學目的:
1掌握平面向量數量積運算規律;
2能利用數量積的5個重要性質及數量積運算規律解決有關問題;
3掌握兩個向量共線、垂直的幾何判斷,會證明兩向量垂直,以及能解決一些簡單問題
教學重點:平面向量數量積及運算規律
教學難點:平面向量數量積的應用
授課類型:新授課
課時安排:1課時
教具:多媒體、實物投影儀
內容分析:
啟發學生在理解數量積的運算特點的基礎上,逐步把握數量積的運算律,引導學生注意數量積性質的相關問題的特點,以熟練地應用數量積的性質
教學過程:
一、復習引入:
1.兩個非零向量夾角的概念
已知非零向量與,作=,=,則∠aob=θ(0≤θ≤π)叫與的夾角
2.平面向量數量積(內積)的定義:已知兩個非零向量與,它們的夾角是θ,則數量cos?叫與的數量積,記作?,即有?=cos?,
(0≤θ≤π)并規定與任何向量的數量積為0
3.“投影”的概念:作圖
定義:cos?叫做向量在方向上的投影
投影也是一個數量,不是向量;當?為銳角時投影為正值;當?為鈍角時投影為負值;當?為直角時投影為0;當?=0?時投影為;當?=180?時投影為?
4.向量的數量積的幾何意義:
數量積?等于的長度與在方向上投影cos?的乘積
5.兩個向量的數量積的性質:
設、為兩個非零向量,是與同向的單位向量
1??=?=cos?;2????=0
3?當與同向時,?=;當與反向時,?=?
特別的?=2或
4?cos?=;5??≤
6.判斷下列各題正確與否:
1?若=,則對任一向量,有?=0(√)
2?若?,則對任一非零向量,有??0(×)
3?若?,?=0,則=(×)
4?若?=0,則、至少有一個為零(×)
5?若?,?=?,則=(×)
6?若?=?,則=當且僅當?時成立(×)
7?對任意向量、、,有(?)???(?)(×)
8?對任意向量,有2=2(√)
數學復習教案怎么寫篇4
三角函數的周期性
一、學習目標與自我評估
1掌握利用單位圓的幾何方法作函數的圖象
2結合的圖象及函數周期性的定義了解三角函數的周期性,及最小正周期
3會用代數方法求等函數的周期
4理解周期性的幾何意義
二、學習重點與難點
“周期函數的概念”,周期的求解。
三、學法指導
1、是周期函數是指對定義域中所有都有
,即應是恒等式。
2、周期函數一定會有周期,但不一定存在最小正周期。
四、學習活動與意義建構
五、重點與難點探究
例1、若鐘擺的高度與時間之間的函數關系如圖所示
(1)求該函數的周期;
(2)求時鐘擺的高度。
例2、求下列函數的周期。
(1)(2)
總結:(1)函數(其中均為常數,且
的周期T=。
(2)函數(其中均為常數,且
的周期T=。
例3、求證:的周期為。
例4、(1)研究和函數的圖象,分析其周期性。(2)求證:的周期為(其中均為常數,
且
總結:函數(其中均為常數,且
的周期T=。
例5、(1)求的周期。
(2)已知滿足,求證:是周期函數
課后思考:能否利用單位圓作函數的圖象。
六、作業:
七、自主體驗與運用
1、函數的周期為()
A、B、C、D、
2、函數的最小正周期是()
A、B、C、D、
3、函數的最小正周期是()
A、B、C、D、
4、函數的周期是()
A、B、C、D、
5、設是定義域為R,最小正周期為的函數,
若,則的值等于()
A、1B、C、0D、
6、函數的最小正周期是,則
7、已知函數的最小正周期不大于2,則正整數
的最小值是
8、求函數的最小正周期為T,且,則正整數
的值是
9、已知函數是周期為6的奇函數,且則
10、若函數,則
11、用周期的定義分析的周期。
12、已知函數,如果使的周期在內,求
正整數的值
13、一機械振動中,某質子離開平衡位置的位移與時間之間的
函數關系如圖所示:
(1)求該函數的周期;
(2)求時,該質點離開平衡位置的位移。
14、已知是定義在R上的函數,且對任意有
成立,
(1)證明:是周期函數;
(2)若求的值。
數學復習教案怎么寫篇5
1、教學目標
(1)知識目標:
1、在平面直角坐標系中,探索并掌握圓的標準方程;
2、會由圓的方程寫出圓的半徑和圓心,能根據條件寫出圓的方程;
3、利用圓的方程解決與圓有關的實際問題。
(2)能力目標:
1、進一步培養學生用解析法研究幾何問題的能力;
2、使學生加深對數形結合思想和待定系數法的理解;
3、增強學生用數學的意識。
(3)情感目標:培養學生主動探究知識、合作交流的意識,在體驗數學美的過程中激發學生的學習興趣。
2、教學重點、難點
(1)教學重點:圓的標準方程的&39;求法及其應用。
(2)教學難點:①會根據不同的已知條件,利用待定系數法求圓的標準方程
②選擇恰當的坐標系解決與圓有關的實際問題。
3、教學過程
(一)創設情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?
[引導]:畫圖建系
[學生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復習)
解:以某一截面半圓的圓心為坐標原點,半圓的直徑AB所在直線為x軸,建立直角坐標系,則半圓的方程為x2+y2=16(y≥0)
將x=2。7代入,得
即在離隧道中心線2。7m處,隧道的高度低于貨車的高度,因此貨車不能駛入這個隧道。
(二)深入探究(獲得新知)
問題二:1、根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
答:x2+y2=r2
2、如果圓心在,半徑為時又如何呢?
[學生活動]:探究圓的方程。
[教師預設]:方法一:坐標法
如圖,設M(x,y)是圓上任意一點,根據定義點M到圓心C的距離等于r,所以圓C就是集合P={MMC=r}
由兩點間的距離公式,點M適合的條件可表示為①
把①式兩邊平方,得(x―a)2+(y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應用舉例(鞏固提高)
I.直接應用(內化新知)
問題三:1、寫出下列各圓的方程(課本P77練習1)
(1)圓心在原點,半徑為3;
(2)圓心在,半徑為
(3)經過點,圓心在點
2、根據圓的方程寫出圓心和半徑
II.靈活應用(提升能力)
問題四:1、求以為圓心,并且和直線相切的圓的方程。
[教師引導]由問題三知:圓心與半徑可以確定圓。
2、求過點,圓心在直線上且與軸相切的圓的方程。
[教師引導]應用待定系數法尋找圓心和半徑。
3、已知圓的方程為,求過圓上一點的切線方程。
[學生活動]探究方法
[教師預設]方法一:待定系數法(利用幾何關系求斜率—垂直)
方法二:待定系數法(利用代數關系求斜率—聯立方程)
方法三:軌跡法(利用勾股定理列關系式)[多媒體課件演示]
方法四:軌跡法(利用向量垂直列關系式)
4、你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是:
III.實際應用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
[多媒體課件演示創設實際問題情境]
(四)反饋訓練(形成方法)
問題六:1、求以C(-1,-5)為圓心,并且和y軸相切的圓的方程。
2、已知點A(-4,-5),B(6,-1),求以AB為直徑的圓的方程。
3、求過點,且圓心在直線上的圓的標準方程。
4、求圓x2+y2=13過點P(—2,3)的切線方程。
5、已知圓的方程為,求過點的切線方程。
(五)小結反思(拓展引申)
1、課堂小結:
(1)知識性小結:
①圓心為C(a,b),半徑為r的圓的標準方程為:
當圓心在原點時,圓的標準方程為:
②已知圓的方程是,經過圓上一點的切線的方程是:
(2)方法性小結:
①求圓的方程的方法:I。找出圓心和半徑;II。待定系數法
②求解應用問題的一般方法
2、分層作業:(A)鞏固型作業:課本P81—82:(習題7。6)1、2、4
(B)思維拓展型作業:
試推導過圓上一點的切線方程。
3、激發新疑:
問題七:1、把圓的標準方程展開后是什么形式?
2、方程:的曲線是什么圖形?
設計說明
圓是學生比較熟悉的曲線。初中平面幾何對圓的基本性質作了比較系統的研究,因此這節課的重點就放在了用解析法研究它的方程和圓的標準方程的一些應用上。首先,在已有圓的定義和求曲線方程的一般步驟的基礎上,用實際問題引導學生探究獲得圓的標準方程,然后,利用圓的標準方程由潛入深的解決問題,并通過最終在實際問題中的應用,增強學生用數學的意識。另外,為了培養學生的理性思維,我分別在引例和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,能力與知識的形成相伴而行,這樣的設計不但突出了重點,更使難點的突破水到渠成。
本節課的設計了五個環節,以問題為紐帶,以探究活動為載體,使學生在問題的指引下、我的指導下把探究活動層層展開、步步深入,充分體現以教師為主導,以學生為主體的指導思想,應用啟發式的教學方法把學生學習知識的過程轉變為學生觀察問題、發現問題、分析問題、解決問題的過程,在解決問題的同時提鍛煉了思維、提高了能力、培養了興趣、增強了信心。
數學復習教案怎么寫篇6
教學內容:北師大版教材5年級上冊。
教材分析:
教材安排了幾個不同的數學活動和游戲讓學生體會數的奇偶變化規律,引發學生的思考,讓他們在探究規律的活動中,發現解決問題的方法,從而運用這些方法去解決生活中的實際問題。
根據我對教材的理解,本課主要設計了兩個活動:
活動一:通過具體情境讓學生體會數的奇偶性規律,會利用數的奇偶性規律解決一些簡單的實際問題。主要是讓學生發現小船開始狀態在南岸,“奇數次在北岸,偶數次在南岸”的規律。對學生進行列表、畫圖等解決問題策略的指導。
活動二:主要是運用上面的奇偶規律探索數學計算中的奇偶變化規律。
學情分析:
5年級學生已經有了一些探索數學問題的方法和總結規律的經驗,思維比較活躍。他們能隨時發現并提出數學問題。在解決問題的過程中,能根據具體問題選擇有效的解決方法和策略,并能及時地總結自己的方法,在運用中積累經驗。學生是伴隨課程改革成長起來的,他們有較好的學習習慣,能認真傾聽,敏銳地捕捉有用的信息,并能與同學有效的合作。他們好奇心和探索的欲望極強,渴望發現規律。在幾年的學習中,他們的學習能力越來越強,準確的表達、恰當的評價、嚴肅認真的態度都很突出。估計學生可以在活動中自主探索本課的學習內容,形成認識,實現學習目標。
教學目標:
1.通過具體情境,讓學生學會運用“列表”、“畫示意圖”等方法解決問題的策略,發現規律,運用數的奇偶性規律解決生活中的一些簡單問題。
2.經歷探索加法中數的奇偶性變化的過程,在活動中發現加法中的奇偶的變化規律,并嘗試探索減法的奇偶變化規律。
3.在活動中經歷運用數學方法的過程,提高推理能力,提升數學思想。
教學重、難點:
1.學生嘗試運用“列表”、“畫示意圖”等解決問題的策略發現規律,運用數的奇偶性規律解決生活中的一些簡單問題,積累數學經驗。
2.在活動中自主探索奇偶性的變化規律的策略。
教學設想:
本節課是在學生認識了奇數、偶數以后,進一步發現生活中的奇偶性的變化規律,進而開闊學生的視野,拓寬學生的認知領域。難度不大,所以本節課力求體現以下幾點:
1.創設情境,激發學生的學習興趣。
2.引導學生主動探究,給予學生探索的時間和空間。
3.指導學生學會用自己的方法探索解決問題。
4.在探索規律的過程中培養學生的數學思維品質。
數學復習教案怎么寫篇7
重點難點教學:
1.正確理解映射的概念;
2.函數相等的兩個條件;
3.求函數的定義域和值域。
一.教學過程:
1.使學生熟練掌握函數的概念和映射的定義;
2.使學生能夠根據已知條件求出函數的定義域和值域;3.使學生掌握函數的三種表示方法。
二.教學內容:1.函數的定義
設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:
(),yfA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()}fA?叫值域(range)。顯然,值域是集合B的子集。
注意:
①“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.2.構成函數的三要素定義域、對應關系和值域。3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。
4.區間及寫法:
設a、b是兩個實數,且a
(1)滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];
(2)滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);
5.函數的三種表示方法①解析法②列表法③圖像法