小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

八年級上冊數(shù)學教案課件

時間: 新華 教學設計

八年級上冊數(shù)學教案課件篇1

教材分析

1本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式

1、以教材作為出發(fā)點,依據(jù)《數(shù)學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。

2、用標準的數(shù)學語言得出結論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。

學情分析

1、在學習本課之前應具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學習者對即將學習的內(nèi)容已經(jīng)具備的水平:

在學習完全平方公式之前,學生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

教學目標

(一)教學目標:

1、經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推力能力。

2、會推導完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理

數(shù)、實數(shù)、代數(shù)式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關系和變化規(guī)律,并能運用代數(shù)式、、不等式、函數(shù)等進行描述。

(四)解決問題:能結合具體情景發(fā)現(xiàn)并提出數(shù)學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。

(五)情感與態(tài)度:敢于面對數(shù)學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數(shù)學的自信心;并尊重與理解他人的見解;能從交流中獲益。

教學重點和難點

重點:能運用完全平方公式進行簡單的計算。

難點:會推導完全平方公式

教學過程

教學過程設計如下:

〈一〉、提出問題

[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結果的項數(shù)特點。

(3)三項系數(shù)的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關系。

2、[學生回答]總結完全平方公式的語言描述:

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學生回答]完全平方公式的數(shù)學表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、一現(xiàn)身手

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學生小結]

你認為完全平方公式在應用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、探險之旅

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

板書設計

完全平方公式

兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;

兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2

八年級上冊數(shù)學教案課件篇2

教學目標

1.知識與技能

領會運用完全平方公式進行因式分解的方法,發(fā)展推理能力.

2.過程與方法

經(jīng)歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態(tài)度與價值觀

培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力.

重、難點與關鍵

1.重點:理解完全平方公式因式分解,并學會應用.

2.難點:靈活地應用公式法進行因式分解.

3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的.

教學方法

采用“自主探究”教學方法,在教師適當指導下完成本節(jié)課內(nèi)容.

教學過程

一、回顧交流,導入新知

【問題牽引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知識遷移】

2.計算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教師活動】引導學生完成下面兩道題,并運用數(shù)學“互逆”的思想,尋找因式分解的規(guī)律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【學生活動】從逆向思維的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學習,應用所學

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路點撥】根據(jù)完全平方式的定義,解此題時應分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應求出a的值,即可求出a3.

三、隨堂練習,鞏固深化

課本P170練習第1、2題.

【探研時空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、課堂總結,發(fā)展?jié)撃?/p>

由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運用公式因式分解時,要注意:

(1)每個公式的形式與特點,通過對多項式的項數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;(2)在有些情況下,多項式不一定能直接用公式,需要進行適當?shù)慕M合、變形、代換后,再使用公式法分解;(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解.

五、布置作業(yè),專題突破

八年級上冊數(shù)學教案課件篇3

一、 內(nèi)容和內(nèi)容解析

1.內(nèi)容

三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.

2.內(nèi)容解析

本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現(xiàn)實生活中的真實性,激發(fā)學生熱愛生活、勇于探索的思想感情.

理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準備.

本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.

二、目標和目標解析

1.教學目標

(1)理解三角形的高、中線與角平分線等概念;

(2)會用工具畫三角形的高、中線與角平分線;

2.教學目標解析

(1)經(jīng)歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.

(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質(zhì).

(3)掌握三角形的高、中線與角平分線的畫法.

(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.

三、教學問題診斷分析

三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.

三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.

三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個 端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.

八年級上冊數(shù)學教案課件篇4

一、創(chuàng)設情境

在學習與生活中,經(jīng)常要研究一些數(shù)量關系,先看下面的問題.

問題1如圖是某地一天內(nèi)的氣溫變化圖.

看圖回答:

(1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.

(2)這一天中,最高氣溫是多少?最低氣溫是多少?

(3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?

解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;

(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;

(3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.

從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關系呢?

二、探究歸納

問題2銀行對各種不同的存款方式都規(guī)定了相應的利率,下表是20__年7月中國工商銀行為“整存整取”的存款方式規(guī)定的年利率:

觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.

解隨著存期x的增長,相應的年利率y也隨著增長.

問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數(shù)值:

觀察上表回答:

(1)波長l和頻率f數(shù)值之間有什么關系?

(2)波長l越大,頻率f就________.

解(1)l與f的乘積是一個定值,即

lf=300000,

或者說.

(2)波長l越大,頻率f就越小.

問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.

利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:

由此可以看出,圓的半徑越大,它的面積就_________.

解S=πr2.

圓的半徑越大,它的面積就越大.

在上面的問題中,我們研究了一些數(shù)量關系,它們都刻畫了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會發(fā)生變化的量.例如問題1中,刻畫氣溫變化規(guī)律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數(shù)值.像這樣在某一變化過程中,可以取不同數(shù)值的量,叫做變量(variable).

上面各個問題中,都出現(xiàn)了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值

八年級上冊數(shù)學教案課件篇5

【教學目標】

1、了解三角形的中位線的概念

2、了解三角形的中位線的性質(zhì)

3、探索三角形的中位線的性質(zhì)的一些簡單的應用

【教學重點、難點】

重點:三角形的中位線定理。

難點:三角形的中位線定理的證明中添加輔助線的思想方法。

【教學過程】

(一)創(chuàng)設情景,引入新課

1、如圖,為了測量一個池塘的寬BC,在池塘一側的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

(1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

(2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?

3、引導學生概括出中位線的概念。

問題:(1)三角形有幾條中位線?(2)三角形的`中位線與中線有什么區(qū)別?

啟發(fā)學生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。

4、猜想:DE與BC的關系?(位置關系與數(shù)量關系)

(二)、師生互動,探究新知

1、證明你的猜想

引導學生寫出已知,求證,并啟發(fā)分析。

(已知:⊿ABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)

啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)

啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補短)

學生分小組討論,教師巡回指導,經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強調(diào)有其他證法。

證明:如圖,以點E為旋轉中心,把⊿ADE繞點E,按順時針方向旋轉180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

∴∠ADE=∠F,AD=CF,

∴AB∥CF。

又∵BD=AD=CF,

∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),

∴DF∥BC(根據(jù)什么?),

∴DE1/2BC

2、啟發(fā)學生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。

(三)學以致用、落實新知

1、練一練:已知三角形邊長分別為6、8、10,順次連結各邊中點所得的三角形周長是多少?

2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?

3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點。

求證:四邊形EFGH是平行四邊形。

啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點,你會聯(lián)想到什么圖形?

啟發(fā)2:要使EF成為三角的中位線,應如何添加輔助線?應用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

證明:如圖,連接AC。

∵EF是⊿ABC的中位線,

∴EF1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

同理,HG1/2AC。

∴EFHG。

∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)

挑戰(zhàn):順次連結上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續(xù)作下去。。。你能得出什么結論?

(四)學生練習,鞏固新知

1、請回答引例中的問題(1)

2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC,BD的中點。求證:∠PNM=∠PMN

(五)小結回顧,反思提高

今天你學到了什么?還有什么困惑?

八年級上冊數(shù)學教案課件篇6

16.1.2分式的基本性質(zhì)

一、教學目標

1.理解分式的基本性質(zhì).

2.會用分式的基本性質(zhì)將分式變形.

二、重點、難點

1.重點:理解分式的基本性質(zhì).

2.難點:靈活應用分式的基本性質(zhì)將分式變形.

3.認知難點與突破方法

教學難點是靈活應用分式的基本性質(zhì)將分式變形.突破的方法是通過復習分數(shù)的通分、約分總結出分數(shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應用分式的基本性質(zhì)導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.

三、例、習題的意圖分析

1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質(zhì),相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.

2.P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.

教師要講清方法,還要及時地糾正學生做題時出現(xiàn)的錯誤,使學生在做提示加深對相應概念及方法的理解.

3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應用之一,所以補充例5.

四、課堂引入

1.請同學們考慮:與相等嗎?與相等嗎?為什么?

2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

3.提問分數(shù)的基本性質(zhì),讓學生類比猜想出分式的基本性質(zhì).

五、例題講解

P7例2.填空:

[分析]應用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

P11例3.約分:

[分析]約分是應用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.

P11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.

八年級上冊數(shù)學教案課件篇7

一、教學目標:理解分式乘除法的法則,會進行分式乘除運算.

二、重點、難點

1.重點:會用分式乘除的法則進行運算.

2.難點:靈活運用分式乘除的法則進行運算 .

3. 難點與突破方法

分式的運算以有理數(shù)和整式的運算為基礎,以因式分解為手段,經(jīng)過轉化后往經(jīng)過轉化后往往可視為整式的運算.分式的乘除的法則和運算順序可類比分數(shù)的有關內(nèi)容得到.所以,教給學生類比的數(shù)學思想方法能較好地實現(xiàn)新知識的轉化.只要做到這一點就可充分發(fā)揮學生的主體性,使學生主動獲取知識.教師要重點處理分式中有別于分數(shù)運算的有關內(nèi)容,使學生規(guī)范掌握,特別是運算符號的問題,要抓住出現(xiàn)的問題認真落實.

三、例、習題的意圖分析

1.P13本節(jié)的引入還是用問題1求容積的高,問題2求大拖拉機的工作效率是小拖拉機的工作效率的多少倍,這兩個引例所得到的容積的高是 ,大拖拉機的工作效率是小拖拉機的工作效率的 倍.引出了分式的乘除法的實際存在的意義,進一步引出P14[觀察]從分數(shù)的乘除法引導學生類比出分式的乘除法的法則.但分析題意、列式子時,不易耽誤太多時間.

2.P14例1應用分式的乘除法法則進行計算,注意計算的結果如能約分,應化簡到最簡.

3.P14例2是較復雜的分式乘除,分式的分子、分母是多項式,應先把多項式分解因式,再進行約分.

4.P14例3是應用題,題意也比較容易理解,式子也比較容易列出來,但要注意根據(jù)問題的實際意義可知a>1,因此(a-1)2=a2-2a+1四、課堂引入

1.出示P13本節(jié)的引入的問題1求容積的高 ,問題2求大拖拉機的工作效率是小拖拉機的工作效率的 倍.

[引入]從上面的問題可知,有時需要分式運算的乘除.本節(jié)我們就討論數(shù)量關系需要進行分式的乘除運算.我們先從分數(shù)的乘除入手,類比出分式的乘除法法則.

1. P14[觀察] 從上面的算式可以看到分式的乘除法法則.

3.[提問] P14[思考]類比分數(shù)的乘除法法則,你能說出分式的乘除法法則?

類似分數(shù)的乘除法法則得到分式的乘除法法則的結論.

五、例題講解

P14例1.

[分析]這道例題就是直接應用分式的乘除法法則進行運算.應該注意的是運算結果應約分到最簡,還應注意在計算時跟整式運算一樣,先判斷運算符號,在計算結果.

P15例2.

[分析] 這道例題的分式的分子、分母是多項式,應先把多項式分解因式,再進行約分.結果的分母如果不是單一的多項式,而是多個多項式相乘是不必把它們展開.

P15例.

[分析]這道應用題有兩問,第一問是:哪一種小麥的單位面積產(chǎn)量?先分別求出“豐收1號”、“豐收2號”小麥試驗田的面積,再分別求出“豐收1號”、“豐收2號”小麥試驗田的單位面積產(chǎn)量,分別是 、 ,還要判斷出以上兩個分式的值,哪一個值更大.要根據(jù)問題的實際意義可知a>1,因此(a-1)2=a2-2a+1六、隨堂練習

計算

(1) (2) (3)

(4)-8xy (5) (6)

七、課后練習

計算

(1) (2) (3)

(4) (5) (6)

八、答案:

六、(1)ab (2) (3) (4)-20x2 (5)

(6)

七、(1) (2) (3) (4)

(5) (6)

八年級上冊數(shù)學教案課件篇8

一、教學目標

1.了解分式、有理式的概念.

2.理解分式有意義的條件,能熟練地求出分式有意義的條件.

二、重點、難點

1.重點:理解分式有意義的條件.

2.難點:能熟練地求出分式有意義的條件.

三、課堂引入

1.讓學生填寫P127[思考],學生自己依次填出:,,,.

2.學生看問題:一艘輪船在靜水中的最大航速為30/h,它沿江以最大航速順流航行90所用時間,與以最大航速逆流航行60所用時間相等,江水的流速為多少?

請同學們跟著教師一起設未知數(shù),列方程.

設江水的流速為v/h.

輪船順流航行90所用的時間為小時,逆流航行60所用時間小時,所以=.

3.以上的式子,,,,有什么共同點?它們與分數(shù)有什么相同點和不同點?

四、例題講解

P128例1.當下列分式中的字母為何值時,分式有意義.

[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解

出字母的取值范圍.

[補充提問]如果題目為:當字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.

(補充)例2.當為何值時,分式的值為0?

(1)(2)(3)

[分析]分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.

[答案](1)=0(2)=2(3)=1

五、隨堂練習

1.判斷下列各式哪些是整式,哪些是分式?

9x+4,,,,,

2.當x取何值時,下列分式有意義?

(1)(2)(3)

3.當x為何值時,分式的值為0?

(1)(2)(3)

六、課后練習

1.下列代數(shù)式表示下列數(shù)量關系,并指出哪些是正是?哪些是分式?

(1)甲每小時做x個零件,則他8小時做零件個,做80個零件需小時.

(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是千米/時,輪船的逆流速度是千米/時.

(3)x與的差于4的商是.

2.當x取何值時,分式無意義?

3.當x為何值時,分式的值為0?

48818 主站蜘蛛池模板: 山东集装箱活动房|济南集装箱活动房-济南利森集装箱有限公司 | 连续油炸机,全自动油炸机,花生米油炸机-烟台茂源食品机械制造有限公司 | 渣土车电机,太阳能跟踪器电机,蜗轮蜗杆减速电机厂家-淄博传强电机 | 手板_手板模型制作_cnc手板加工厂-东莞天泓 | 深圳彩钢板_彩钢瓦_岩棉板_夹芯板_防火复合彩钢板_长鑫 | 定制防伪标签_防伪标签印刷_防伪标签厂家-510品保防伪网 | 桂林腻子粉_内墙外墙抗裂砂浆腻子粉推荐广西鑫达涂料厂家供应 | 板式换热器_板式换热器价格_管式换热器厂家-青岛康景辉 | pbootcms网站模板|织梦模板|网站源码|jquery建站特效-html5模板网 | RTO换向阀_VOC高温阀门_加热炉切断阀_双偏心软密封蝶阀_煤气蝶阀_提升阀-湖北霍科德阀门有限公司 | 深圳货架厂家_金丽声精品货架_广东金丽声展示设备有限公司官网 | 北京乾茂兴业科技发展有限公司| 淄博不锈钢,淄博不锈钢管,淄博不锈钢板-山东振远合金科技有限公司 | 硬度计_影像测量仪_维氏硬度计_佛山市精测计量仪器设备有限公司厂家 | 标策网-专注公司商业知识服务、助力企业发展 | 山楂片_雪花_迷你山楂片_山楂条饼厂家-青州市丰源食品厂 | 塑胶跑道_学校塑胶跑道_塑胶球场_运动场材料厂家_中国塑胶跑道十大生产厂家_混合型塑胶跑道_透气型塑胶跑道-广东绿晨体育设施有限公司 | 西安展台设计搭建_西安活动策划公司_西安会议会场布置_西安展厅设计西安旭阳展览展示 | 啤酒设备-小型啤酒设备-啤酒厂设备-济南中酿机械设备有限公司 | 加气混凝土砌块设备,轻质砖设备,蒸养砖设备,新型墙体设备-河南省杜甫机械制造有限公司 | 上海噪音治理公司-专业隔音降噪公司-中广通环保 | 珠海冷却塔降噪维修_冷却塔改造报价_凉水塔风机维修厂家- 广东康明节能空调有限公司 | 浙江富广阀门有限公司 | 电液推杆生产厂家|电动推杆|液压推杆-扬州唯升机械有限公司 | 山东PE给水管厂家,山东双壁波纹管,山东钢带增强波纹管,山东PE穿线管,山东PE农田灌溉管,山东MPP电力保护套管-山东德诺塑业有限公司 | 篮球地板厂家_舞台木地板品牌_体育运动地板厂家_凯洁地板 | 飞扬动力官网-广告公司管理软件,广告公司管理系统,喷绘写真条幅制作管理软件,广告公司ERP系统 | 贵州成人高考网_贵州成考网 | 紫外荧光硫分析仪-硫含量分析仪-红外光度测定仪-泰州美旭仪器 | 儋州在线-儋州招聘找工作、找房子、找对象,儋州综合生活信息门户! | 加盟店-品牌招商加盟-创业项目商机平台 | 电动球阀_不锈钢电动球阀_电动三通球阀_电动调节球阀_上海湖泉阀门有限公司 | 硬齿面减速机_厂家-山东安吉富传动设备股份有限公司 | 户外-组合-幼儿园-不锈钢-儿童-滑滑梯-床-玩具-淘气堡-厂家-价格 | 炭黑吸油计_测试仪,单颗粒子硬度仪_ASTM标准炭黑自销-上海贺纳斯仪器仪表有限公司(HITEC中国办事处) | 浩方智通 - 防关联浏览器 - 跨境电商浏览器 - 云雀浏览器 | 花纹铝板,合金铝卷板,阴极铝板-济南恒诚铝业有限公司 | 诗词大全-古诗名句 - 古诗词赏析| 深圳宣传片制作-企业宣传视频制作-产品视频拍摄-产品动画制作-短视频拍摄制作公司 | 退火炉,燃气退火炉,燃气热处理炉生产厂家-丹阳市丰泰工业炉有限公司 | 渣土车电机,太阳能跟踪器电机,蜗轮蜗杆减速电机厂家-淄博传强电机 |