八年級上冊數學教案2024
編寫教案有助于教師提高教學水平,使教學更加規范化和科學化。優秀的八年級上冊數學教案2024應該是怎樣的?快來學習八年級上冊數學教案2024的撰寫技巧,跟著小編一起來參考!
八年級上冊數學教案2024篇1
三角形的證明
1、等腰三角形
①定理:兩角分別相等且其中一組等角的對邊相等的兩個三角形全等(AAS)
②全等三角形的對應邊相等、對應角相等
③定理:等腰三角形的兩底角相等,即位等邊對等角
④推論:等腰三角形頂角的平分線、底邊上的中線以及底邊上的高線互相重合
⑤定理:等邊三角形的三個內角都想等,并且每個角都等于60°
⑥定理:有兩個角相等的是三角形是等腰三角形(等角對等邊)
⑦定理:三個角都相等的三角形是等邊三角形
⑧定理;有一個角等于60°的等腰三角形是等邊三角形
⑨定理:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半
⑩反證法:在證明時,先假設命題的結論不成立,然后推導出與定義,基本事實、已有定理或已知條件相矛盾的結果,從而證明命題的結論一定成立。
2、直角三角形
①定理:直角三角形的兩個銳角互余
②定理有兩個角互余的三角形是直角三角形
③勾股定理:直角三角形兩條直角邊的平方和等于斜邊的平方
④如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形
⑤在兩個命題中,如果一個命題的條件和結論分別是另一個命題的結論和條件,那么這兩個命題稱為互逆命題,其中一個命題稱為另一個命題的逆命題
⑥一個命題是真命題,它的逆命題不一定是真命題。如果一個定理的逆命題經過證明是真命題,那么它也是一個定理,其中一個定理稱為另一個定理的逆定理
⑦定理:斜邊和一條直角邊分別相等的兩個直角三角形全等
3、線段的垂直平分線
①定理:線段垂直平分線上的點到這條線段兩個端點的距離相等
②定理:到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
4、角平分線
①定理:角平分線上的點到這個角的兩邊的距離相等
②定理:在一個角的內部,到角的兩邊距離相等的點在這個角的平分線上
八年級上冊數學教案2024篇2
初二上冊數學知識點總結:等腰三角形
一、等腰三角形的性質:
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
5、等邊三角形的性質:
①等邊三角形三邊都相等.
②等邊三角形三個內角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).
6.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的.三角形是等腰三角形.
②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
③有一個角是60°的等腰三角形是等邊三角形.
八年級上冊數學教案2024篇3
一、教學分析
1、教學內容分析
本節課是新人教版教材《數學》八年級上冊第11.3節第一課時內容,是在七年級學習了角平分線的概念和前面剛學完證明直角三角形全等的基礎上進行教學的內容包括角平分線的作法。角平分線的性質及初步應用。作角的平分線是基本作圖,角平分線的性質為證明線段或角相等開辟了新的途徑,體現了數學的簡潔美,同時也是全等三角形知識的延續,又為后面角平分線的判定定理的學習奠定了基礎。因此,本節內容在數學知識體系中起到了承上啟下的作用。同時教材的安排由淺入深。由易到難。知識結構合理,符合學生的心理特點和認知規律。
2、教學對象分析
剛進入初二的學生觀察。操作。猜想能力較強,但歸納。運用數學意識的思想比較薄弱,思維的廣闊性。敏捷性。靈活性比較欠缺,需要在課堂教學中進一步加強引導。根據學生的認知特點和接受水平,我把第一課時的教學任務定為:掌握角平分線的畫法及會用角平分線的性質定理解題,同時為下節判定定理的學習打好基礎。
二、教學目標
1、知識與技能:
(1)掌握用尺規作已知角的平分線的方法。
(2)理解角的平分線的性質并能初步運用。
2、數學思考:通過讓學生經歷觀察演示,動手操作,合作交流,自主探究等過程,培養學生用數學知識解決問題的能力。
3、解決問題:
(1)初步了解角的平分線的性質在生產。生活中的應用。
(2)培養學生的數學建模能力。
4、情感與態度:充分利用多媒體教學優勢,培養學生探究問題的興趣,增強解決問題的信心,獲得解決問題的成功體驗,激發學生應用數學的熱情。
三、教學重點。難點
重點:掌握角平分線的尺規作圖,理解角的平分線的性質并能初步運用。
難點:
(1)對角平分線性質定理中點到角兩邊的距離的正確理解;
(2)對于性質定理的運用(學生習慣找三角形全等的方法解決問題而不注重利用剛學過的定理來解決,結果相當于對定理的重復證明)
四、教學過程
教學環節設計
1、提出問題,思考探究
問題1:
生活中有很多數學問題:
小明家居住在某小區一棟居民樓的一樓,剛好位于一條暖氣和天然氣管道所成角的平分線上的P點,要從P點建兩條管道,分別與暖氣管道和天然氣管道相連。
(1)怎樣修建管道最短?
(2)新修的兩條管道長度有什么關系,畫來看一看。
[設計意圖]
依據新課程理念,教師要創造性地使用教材,作為本課的第一個引例,從學生的生活出發,激發學生的學習興趣,培養學生運用數學知識,解決實際問題的意識,復習了點到直線的距離這一概念,為后續的學習作好知識上的儲備。
問題2:
要研究角的平分線的性質我們必須會畫角的平分線,工人師傅常用簡易平分角的儀器來畫角的平分線。出示儀器模型,介紹儀器特點(有兩對邊相等),將A點放在角的頂點處,AB和AD沿角的兩邊放下,過AC畫一條射線AE,AE即為∠BAD的平分線。為什么?
[設計意圖]
體驗從生產生活中分離,抽象出數學模型,并主動運用所學知識來解決問題。從上面的探究中可以得到作已知角的平分線的方法。
問題3:
把簡易平分角的儀器放在角的兩邊時,平分角的儀器兩邊相等,從幾何作圖角度怎么畫?BC=DC,從幾何作圖角度怎么畫?
[設計意圖]
從實驗操作中獲得啟示,明確幾何作圖的基本思路和方法。
問題4:
作一個平角∠AOB的平分線OC,反向延長OC得到直線CD,請學生說出直線CD與AB的位置關系。并在此基礎上再作出一個45度的角。
[設計意圖]
通過作特殊角的平分線,讓學生掌握過直線上一點作已知直線的垂線及特殊角的方法,達到培養學生的發散思維的目的
問題5:
讓學生用紙剪一個角,把紙片對折,使角的兩邊疊合在一起,把對折后的紙片繼續折一次,折出一個直三角形(使第一次的折痕為斜邊),然后展開,觀察兩次折疊形成的三條折痕。
(1)第一次的折痕和角有什么關系?為什么?
(2)第二次折疊形成的兩條折痕與角的兩邊有何關系,它們的長度有何關系?
[設計意圖]
培養學生的動手操作能力和觀察能力,為下面進一步揭示角平分線的性質作好鋪墊。
2、教師點撥,歸納概括
按照折紙的順序畫出角及折紙形成的三條折痕。讓學生分組討論。交流,再利用幾何畫板軟件驗證結論,并用文字語言闡述得到的性質。(角的平分線上的點到角兩邊的距離相等)結合圖形寫出已知,求證,分析后寫出證明過程。教師歸納,強調定理的條件和作用。
教師用文字語言敘述得到的結論。引導學生結合圖形寫出已知。求證,分析后寫出證明過程,并利用實物投影展示。證明后,教師強調經過證明正確的命題可作為定理。同時強調文字命題的證明步驟。
[設計意圖]
經歷實踐→猜想→證明→歸納的過程,符合學生的認知規律,尤其是對于結論的驗證,信息技術在此體現其不可替代性,從而把學生的直觀體驗上升到理性思維。
3、例題解析、應用新知
例1在△ABC中,AD是它的角平分線,且BD=CD,DE⊥AB,
DF⊥AC,垂足分別是E,F。
求證:EB=FC。
[設計意圖]
為突出本節課重點。突破難點而設計的一項活動。讓學生運用性質解決數學問題,通過利用多媒體對一些邊進行變色,提醒學生直接運用定理,不要仍舊去找全等三角形。同時通過信息技術方便進行一題多解及一題多變研究,更好的拓展學生解題思路及形成知識運用能力。兩道變題同時展示,符合高效課堂要求。通過學生觀察識圖。獨立思考。小組討論,培養學生合作交流的意識。
例2已知:△ABC的角平分線BM。CN相交于點P。
求證:點P到三邊AB。BC。CA的距離相等。
[教學方法手段]
限時讓學生獨立思考分析,然后交流證題思路,再通過多媒體展示一般證明過程。
[設計意圖]
通過問題的解決,幫助學生更好的理解角平分線的性質,并達到能熟練運用的程度。
4、課堂練習,鞏固提高
課后練習1、2題。
[設計意圖]
通過練習,鞏固角平分線的性質。
5、課堂小結,回顧反思
(1)。這節課你有哪些收獲,還有什么困惑?
(2)。通過本節課你了解了哪些思考問題的方法?
[設計意圖]
通過引導學生自主歸納,調動學生的主動參與意識,鍛煉學生歸納概括與表達能力。
6、布置作業,信息反饋
[設計意圖]
通過課后動手練習作業,教師批改作業,檢查學生本節課的學習效果,從中發現問題,及時調整教學策略。
必做題:教材第22頁第1、2、3題
選做題:教材第23頁第6題
五、板書設計:
(略)
八年級上冊數學教案2024篇4
一、創設情境
在學習與生活中,經常要研究一些數量關系,先看下面的問題.
問題1如圖是某地一天內的氣溫變化圖.
看圖回答:
(1)這天的6時、10時和14時的氣溫分別為多少?任意給出這天中的某一時刻,說出這一時刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
(3)這一天中,什么時段的氣溫在逐漸升高?什么時段的氣溫在逐漸降低?
解(1)這天的6時、10時和14時的氣溫分別為-1℃、2℃、5℃;
(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時~14時的氣溫在逐漸升高.0時~3時和14時~24時的氣溫在逐漸降低.
從圖中我們可以看到,隨著時間t(時)的變化,相應地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數量關系呢?
二、探究歸納
問題2銀行對各種不同的存款方式都規定了相應的利率,下表是20__年7月中國工商銀行為“整存整取”的存款方式規定的年利率:
觀察上表,說說隨著存期x的增長,相應的年利率y是如何變化的.
解隨著存期x的增長,相應的年利率y也隨著增長.
問題3收音機刻度盤的波長和頻率分別是用米(m)和千赫茲(kHz)為單位標刻的.下面是一些對應的數值:
觀察上表回答:
(1)波長l和頻率f數值之間有什么關系?
(2)波長l越大,頻率f就________.
解(1)l與f的乘積是一個定值,即
lf=300000,
或者說.
(2)波長l越大,頻率f就越?。?/p>
問題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關系:S=_________.
利用這個關系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時圓的面積,并將結果填入下表:
由此可以看出,圓的半徑越大,它的面積就_________.
解S=πr2.
圓的半徑越大,它的面積就越大.
在上面的問題中,我們研究了一些數量關系,它們都刻畫了某些變化規律.這里出現了各種各樣的量,特別值得注意的是出現了一些數值會發生變化的量.例如問題1中,刻畫氣溫變化規律的量是時間t和氣溫T,氣溫T隨著時間t的變化而變化,它們都會取不同的數值.像這樣在某一變化過程中,可以取不同數值的量,叫做變量(variable).
上面各個問題中,都出現了兩個變量,它們互相依賴,密切相關.一般地,如果在一個變化過程中,有兩個變量,例如x和y,對于x的每一個值
八年級上冊數學教案2024篇5
教材分析
1本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式
1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。
2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。
學情分析
1、在學習本課之前應具備的基本知識和技能:
①同類項的定義。
②合并同類項法則
③多項式乘以多項式法則。
2、學習者對即將學習的內容已經具備的水平:
在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。
教學目標
(一)教學目標:
1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。
2、會推導完全平方公式,并能運用公式進行簡單的計算。
(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理
數、實數、代數式、、;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、、不等式、函數等進行描述。
(四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。
(五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。
教學重點和難點
重點:能運用完全平方公式進行簡單的計算。
難點:會推導完全平方公式
教學過程
教學過程設計如下:
〈一〉、提出問題
[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點。
(2)結果的項數特點。
(3)三項系數的特點(特別是符號的特點)。
(4)三項與原多項式中兩個單項式的關系。
2、[學生回答]總結完全平方公式的語言描述:
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學生回答]完全平方公式的數學表達式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判斷:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、一現身手
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[學生小結]
你認為完全平方公式在應用過程中,需要注意那些問題?
(1)公式右邊共有3項。
(2)兩個平方項符號永遠為正。
(3)中間項的符號由等號左邊的兩項符號是否相同決定。
(4)中間項是等號左邊兩項乘積的2倍。
〈五〉、探險之旅
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
板書設計
完全平方公式
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;(a+b)2=a2+2ab+b2;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。(a-b)2=a2-2ab+b2
八年級上冊數學教案2024篇6
【教學目標】
知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式。
過程與方法
使學生經歷探索多項式各項公因式的過程,依據數學化歸思想方法進行因式分解。
情感、態度與價值觀
培養學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經驗,體會其應用價值。
【教學重難點】
重點:掌握用提公因式法把多項式分解因式。
難點:正確地確定多項式的最大公因式。
關鍵:提公因式法關鍵是如何找公因式。方法是:一看系數、二看字母.公因式的系數取各項系數的最大公約數;字母取各項相同的字母,并且各字母的指數取最低次冪。
【教學過程】
一、回顧交流,導入新知
【復習交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2);
(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;
(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2.
問題:
1.多項式mn+mb中各項含有相同因式嗎?
2.多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由。
【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y。
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法。
二、小組合作,探究方法
教師提問:多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數、二看字母,公因式的系數取各項系數的最大公約數;字母取各項相同的字母,并且各字母的指數取最低次冪。
三、范例學習,應用所學
例1:把-4x2yz-12xy2z+4xyz分解因式.
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
例2:分解因式:3a2(x-y)3-4b2(y-x)2
【分析】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法。
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2·3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2·3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
例3:用簡便的方法計算:
0.84×12+12×0.6-0.44×12.
【教師活動】引導學生觀察并分析怎樣計算更為簡便。
解:0.84×12+12×0.6-0.44×12
=12×(0.84+0.6-0.44)
=12×1=12.
【教師活動】在學生完成例3之后,指出例3是因式分解在計算中的應用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習,鞏固深化
課本115頁練習第1、2、3題。
【探研時空】
利用提公因式法計算:
0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69
五、課堂總結,發展潛能
1.利用提公因式法因式分解,關鍵是找準最大公因式.在找最大公因式時應注意:(1)系數要找最大公約數;(2)字母要找各項都有的;(3)指數要找最低次冪。
2.因式分解應注意分解徹底,也就是說,分解到不能再分解為止。
六、布置作業,專題突破
課本119頁習題14.3第1、4(1)、6題。
八年級上冊數學教案2024篇7
【教學目標】
1、了解因式分解的概念和意義;
2、認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。
【教學重點、難點】
重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。
【教學過程】
㈠、情境導入
看誰算得快:(搶答)
(1)若a=101,b=99,則a2-b2=___________;
(2)若a=99,b=-1,則a2-2ab+b2=____________;
(3)若x=-3,則20x2+60x=____________。
㈡、探究新知
1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)
3、類比小學學過的因數分解概念,得出因式分解概念。(學生概括,老師補充。)
板書課題:§6.1因式分解
因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。
㈢、前進一步
1、讓學生繼續觀察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯系與區別?
2、因式分解與整式乘法的關系:
因式分解
結合:a2-b2(a+b)(a-b)
整式乘法
說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。
結論:因式分解與整式乘法的相互關系——相反變形。
㈣、鞏固新知
1、下列代數式變形中,哪些是因式分解?哪些不是?為什么?
(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。
㈤、應用解釋
例檢驗下列因式分解是否正確:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。
練習計算下列各題,并說明你的算法:(請學生板演)
(1)872+87×13
(2)1012-992
㈥、思維拓展
1.若x2+mx-n能分解成(x-2)(x-5),則m=,n=
2.機動題:(填空)x2-8x+m=(x-4)(),且m=
㈦、課堂回顧
今天這節課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。
㈧、布置作業
作業本(1),一課一練
八年級上冊數學教案2024篇8
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:
a2-b2=(a+b)(a-b)
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。
(二)平方差公式
1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等于這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。
(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。
(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:
a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等于這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。
上面兩個公式叫完全平方公式。
(2)完全平方式的形式和特點
①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。
③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。
(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)?(a+b)。
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式。
八年級上冊數學教案2024篇9
教學目標:
1、理解三角形的內外角平分線定理;
2、會證明三角形的內外角平分線定理;
3、通過對定理的證明,學習幾何證明方法和作輔助線的方法;
4、培養邏輯思維能力。
教學重點:
1、幾何證明中的證法分析;
2、添加輔助線的方法。
教學難點:
如何添加有用的輔助線。
教學關鍵:
抓住相似三角形的判定和性質進行教學。
教學方法:
“四段式”教學法,即讀、議、講、練。
一、閱讀課本,注意問題
1、復習舊知識,回答下列問題
①在等腰三角形中,怎樣從等邊得出等角?又怎樣從等角得出等邊?請畫圖說明。
②輔助線的作法中,除了過兩個點連接一條線段外,最常見的就是過某個已知點作某條已知直線的平行線。平行線有哪些性質?
③怎樣判斷兩個三角形是相似的?相似三角形最基本的性質是什么?
④幾何證明中怎樣構造有用的相似三角形?
2、閱讀課本,弄清楚教材的內容,并注意教材上是怎樣講的。
提示:課本上在這一節講了三角形的內外角平分線定理,每個定理各講了一種證明方法。為了敘述定理的需要,課本上還講了線段的內分點和外分點兩個概念。最后用一個例題來說明怎樣運用三角形的內外角平分線定理。閱讀時要注意課本上有關問題的敘述、分析以及作輔助線的方法。通過適當的聯想和猜測,找出一些課本上尚未出現的新的證明方法。
3、注意下列問題:
⑴如圖,等腰中,頂角的平分線交底邊于,那么,圖中出現的相等線段是__即__。通過比較得到。
⑵如果上面問題中的換成任意三角形,即右圖的,平分,交于,那么,是不是還成立?請同學們用刻度尺量一量線段的長度,計算,然后再比較(小的誤差忽略不計)。
⑶三角形的內角平分線定理說的是什么意思?課本上是怎樣寫已知、求證的?
⑷課本上是怎樣進行分析、證明的?都用了哪些學過的知識?證明的根據是什么?
⑸課本上證明的過程中是怎樣作輔助線的?這樣作輔助線的目的是什么?
⑹過、、三點能不能作出有用的輔助線?如果能,輔助線應該怎樣作?各能作出幾條?
⑺就作出的輔助線,怎樣尋找證明的思路和方法?分析的過程中用到了哪些知識?
⑻你能不能類似地敘述三角形的外角平分線定理?
⑼回答練習中的第一題。
⑽總結證明方法和作輔助線的方法。
⑾注意內分點和外分點兩個概念及其應用。
4、閱讀指導叢書《平面幾何》第二冊。
⑴注意輔助線中平行線的作法,通過對圖、、的觀察分析,找出解決問題的證明方法。
⑵叢書利用正弦定理中的面積公式來證明三角形的內角平分線定理,既把有關的知識聯系起來、拓展了解題思路,又為我們提供了一種比較簡單的解決問題的方法,值得我們借鑒。要注意三角形面積的幾種不同的計算方法。
二、互相討論,解答疑點
1、上面提出的問題,希望大家獨立思考、獨立完成。根據已有的思路和線索,參照課本上的方法進行分析。
2、思考中實在是有困難的同學,可以和周圍的同學互相討論,發表看法;也可以請老師幫助、提示或指點。
3、把同學之間討論的結果,整理成一個完整的證明過程,寫出每一步證明的根據。最后,適當地總結一些解題的經驗和方法。
三、講評糾正,整理內容
1、把學生討論的結果歸納出來,加以補充說明,糾正錯誤后進行適當的分類總結,點明證題法中的要點。
①證明比例式的依據是平行截割定理的推論,因此,我們作的輔助線都是平行線。
②從上述幾種證明方法可以看出,證明的關鍵在于通過作輔助線把某些線段“移動”到適當的位置,以便根據平行截割定理的推論得出所要的結論。
③輔助平行線的作法,只能是過__三點分別作不過、三點的邊(線段)的平行線,和另一條邊(線段)的延長線相交,構成一個等腰三角形,達到“移動”的目的。
2、整理教學內容
⑴線段的內分點和外分點
(?。┒x:
①在線段上,把線段分成兩條線段的點叫做這條線段的內分點。
②在線段的延長線上的點叫做這條線段的外分點。
(ⅱ)舉例
點在線段上,把線段分成了和兩條線段,所以,點是線段的內分點,線段和叫做點內分線段所得的兩條線段。
點在線段的延長線上,和、兩個端點構成了、兩條線段,所以,點是線段的外分點,線段和叫做點外分線段所得的兩條線段。
(ⅲ)條件
①內分點的條件:
a)在已知線段上;
b)把已知線段分成另外兩條線段。
②外分點a)在已知線段的延長線上;
b)和已知線段的兩端點構成另外的兩條線段。
(ⅳ)特殊情況
a)線段的中點是不是線段的內分點?內分點是不是線段的中點?
b)線段的黃金分割點是不是線段的內分點?內分點是不是線段的黃金分割點?
c)一條已知線段有幾個中點?有幾個黃金分割點?有幾個內分點?幾個外分點?
(?。┒ɡ恚喝切蔚膬冉瞧椒志€分對邊所得的兩條線段與夾這個角的兩邊對應成比例。
(ⅱ)已知:中,平分,交于。
求證:__。
(ⅲ)簡單分析
從結論來考慮,橫著看,兩個比的前項、在中,兩個比的后項、在中。按照相似三角形的性質,只要∽,那么,結論就是成立的。但是,與不是一對相似三角形,所以,不可能用相似三角形來證明。豎著看,有和,事實上,不成一個三角形。若是從“平行線分兩條線段所得的線段對應成比例”(平行截割定理的推論)來考慮,顯然,圖中也沒有平行線。因此,要想得到結論,只有把其中的某條線段進行適當的移動,使其構成相似三角形的對應邊,或者成為兩條直線上被平行線截得的對應線段。這樣,我們就確定了輔助線的作法以平行線為主。
例如,把線段繞著它的端點旋轉適當的角度到圖中的位置(即的延長線)。由于旋轉不改變線段的長度,所以,從旋轉情況可得。由于平分,所以,連接后可以證明。因此,實際證明時,一般都敘述為“過點作交的延長線于”。不管是哪種說法,其結果都是一樣的。類似地,我們還可以把線段繞著它的端點旋轉適當的角度到端點落在線段的延長線上,同樣也可以證明。
(ⅳ)證法提要
①證法一:如上圖,過點作交的延長線于,可以得到:
a)(為什么?);
b)(為什么?)。通過等量代換便可以得到結論。同樣,過點作的平行線和邊的延長線相交,也可以證得結論,證明的方法是完全一樣的。
②證法二:如右圖,過點作交的延長線于,可以得到:
a)(為什么?);
b)(為什么?)。通過等量代換便可以得到所要的結論。同樣,過點作的平行線和的延長線相交,也可以得到結論,證明的方法是完全一樣的。
③證法三:如右圖,過點作交于,可以得到:
a)(為什么?);
b)(為什么?);
c)。通過等量代換便可以得到所要的結論。同樣,過點作的平行線和相交,也可以得到結論,證明的方法是完全一樣的。
④證法四:如下頁圖,過點作交于,根據三角形的面積公式可得:__
又根據正弦定理的面積公式有:
通過比較就可以得到:所要的結論。
(?。┒ɡ恚喝切蔚耐饨瞧椒志€外分對邊所得的兩條線段與夾這個角的兩邊對應成比例。
(ⅱ)已知:中,是的一個外角,平分,交的延長線于。
求證:__。
(ⅲ)簡單分析:(類同內角平分線定理的分析方法)
(ⅳ)證法提要;(類同內角平分線定理的分析方法)
四、小結全節,練習鞏固
1、小結
⑴兩個定理
(ⅰ)三角形的內角平分線定理
(ⅱ)三角形的外角平分線定理
⑵證明方法
分為四大類共七種方法。
2、練習
⑴教材,2、3兩題。
⑵補充題:
①畫任意一個三角形的某個角的內外角平分線,說明內外角平分線之間的關系,證明你的結論。
②畫等腰三角形的外角平分線,說明外角平分線和底邊之間的關系,證明你的結論。
3、作業
教材,17、18兩題。
八年級上冊數學教案2024篇10
教學目標
1.了解角平分線的性質,并運用其解決一些實際問題。
2.經歷操作,推理等活動,探索角平分線的性質,發展空間觀念,在解決問題的過程中進行有條理的思考和表達。
教材分析
重點:角平分線性質的探索。
難點:角平分線性質的應用。
教學方法:
預學----探究----精導----提升
教學過程
一創設問題情境,預學角平分線的性質
閱讀課本P128-P129,并完成預學檢測。
二合作探究
如圖,OC為∠AOB的角平分線,P為OC上任意一點。
提問:
1.如何畫出∠AOB的平分線?
2.若點P到角兩邊的距離分別為PD,PE,量一量,PD,PC是否相等?你能說明為什么嗎?
讓學生活動起來,通過測量,比較,得出結論。
教師鼓勵學生大膽猜測,肯定它們的發現。
歸納:角平分線上任意一點到角兩邊的距離相等。
三想一想,鞏固角平分線的性質
三條公路兩兩相交,為更好的使公路得到維護,決定在三角區建立一個公路維護站,那么這個維護站應該建在哪里?才能使維護站到三條公路的距離都相等?
三做一做,拓展課題
如圖,P為△ABC的外角平分線上一點,且PE⊥AB,PD⊥AC,E,D分別是垂足,試探索BE與PB+PD的大小關系。
讓學生充分討論,鼓勵學生自主完成。
教師歸納:
因為射線AP是△ABC的外角∠CAE平分線,
所以PD=PE(角平分線上的點到角兩邊的距離相等)
所以PB+PD=PB+PE
又PB+PE>BE(三角形兩邊之和大于第三邊)
所以PB+PD>BE
思考:若CP也平分△ABC中的∠ACB的外角,則射線BP有怎樣的性質?點P又有怎樣的位置?
四課堂練習
課本P130練習
五小結
本節課學習了角平分線的性質:角平分線上的點到這個角兩邊的距離相等,反過來,到一個角兩邊距離相等的點,在這個角的平分線上,三角形的三條角平分線交于一點,且這一點到三角形三邊的距離相等。
六作業
1.課本P130習題A組T1,T2
2.基礎訓練同步練習。
3.選作拓展題。
七課后反思:
新舊教法對比:新教法更有利于培養學生合作學習的能力。
學生對于角平分線的性質可以倒背如流,但就是容易把到角兩邊的距離看錯,在以后的教學中要多加強對距離的認識。
學案
學習目標:
1了解角平分線的性質。
2并運用角平分線的性質解決一些實際問題。
預學檢測:
1角平分線上任意一點到相等。
2⑴如圖,已知∠1=∠2,DE⊥AB,
DF⊥AC,垂足分別為E、F,則DE____DF.
⑵已知DE⊥AB,DF⊥AC,垂足分別
為E、F,且DE=DF,則∠1_____∠2.
學點訓練:
1.如圖,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分別是C、D.下列結論中錯誤的是()
A.PC=PDB.OC=OD
C.∠CPO=∠DPOD.OC=PC
2.如圖,△ABC中,∠C=90°,AC=BC,
AD是∠BAC的平分線,DE⊥AB于E,
若AC=10cm,則△DBE的周長等于()
A.10cmB.8cmC.6cmD.9cm
鞏固練習:
已知:如圖,在△ABC中,∠A=90°,AB=AC,
BD平分∠ABC.求證:BC=AB+AD
拓展提升:
如圖,P為△ABC的外角平分線上一點,且PE⊥AB,PD⊥AC,E,D分別是垂足,試探索BE與PB+PD的大小關系。
八年級上冊數學教案2024篇11
教學目標
1、知識與技能
能應用所學的函數知識解決現實生活中的問題,會建構函數“模型”。
2、過程與方法
經歷探索一次函數的應用問題,發展抽象思維。
3、情感、態度與價值觀
培養變量與對應的思想,形成良好的&39;函數觀點,體會一次函數的應用價值。
重、難點與關鍵
1、重點:一次函數的應用。
2、難點:一次函數的應用。
3、關鍵:從數形結合分析思路入手,提升應用思維。
教學方法
采用“講練結合”的教學方法,讓學生逐步地熟悉一次函數的應用。
教學過程
一、范例點擊,應用所學
例5、小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數關系式,并畫出函數圖象。
例6、A城有肥料200噸,B城有肥料300噸,現要把這些肥料全部運往C、D兩鄉。從A城往C、D兩鄉運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉運肥料的費用分別為每噸15元和24元,現C鄉需要肥料240噸,D鄉需要肥料260噸,怎樣調運總運費最少?
解:設總運費為y元,A城往運C鄉的肥料量為x噸,則運往D鄉的肥料量為(200—x)噸。B城運往C、D鄉的肥料量分別為(240—x)噸與(60+x)噸。y與x的關系式為:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。
由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉0噸,運往D鄉200噸;從B城運往C鄉240噸,運往D鄉60噸,此時總運費最少,總運費最小值為10040元。
拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應怎樣調運?
二、隨堂練習,鞏固深化
課本P119練習。
三、課堂總結,發展潛能
由學生自我評價本節課的表現。
四、布置作業,專題突破
課本P120習題14.2第9,10,11題。
八年級上冊數學教案2024篇12
16.1.2分式的基本性質
一、教學目標
1.理解分式的基本性質.
2.會用分式的基本性質將分式變形.
二、重點、難點
1.重點:理解分式的基本性質.
2.難點:靈活應用分式的基本性質將分式變形.
3.認知難點與突破方法
教學難點是靈活應用分式的基本性質將分式變形.突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.
三、例、習題的意圖分析
1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.
2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解.
3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.
“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5.
四、課堂引入
1.請同學們考慮:與相等嗎?與相等嗎?為什么?
2.說出與之間變形的過程,與之間變形的過程,并說出變形依據?
3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.
五、例題講解
P7例2.填空:
[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.
P11例3.約分:
[分析]約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.
P11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.
八年級上冊數學教案2024篇13
一、教學目標
(一)知識與技能
了解數軸的概念,能用數軸上的點準確地表示有理數。
(二)過程與方法
通過觀察與實際操作,理解有理數與數軸上的點的對應關系,體會數形結合的思想。
(三)情感、態度與價值觀
在數與形結合的過程中,體會數學學習的樂趣。
二、教學重難點
(一)教學重點
數軸的三要素,用數軸上的點表示有理數。
(二)教學難點
數形結合的思想方法。
三、教學過程
(一)引入新課
提出問題:通過實例溫度計上數字的意義,引出數學中也有像溫度計一樣可以用來表示數的軸,它就是我們今天學習的數軸。
(二)探索新知
學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:
提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數和負數可以表示具有相反意義的量,那么,如何用數表示這些樹、電線桿與汽車站牌的相對位置呢?
學生活動:畫圖表示后提問。
提問2:“0”代表什么?數的符號的實際意義是什么?對照體溫計進行解答。
教師給出定義:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足:任取一個點表示數0,代表原點;通常規定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。
提問3:你是如何理解數軸三要素的?
師生共同總結:“原點”是數軸的“基準”,表示0,是表示正數和負數的分界點,正方向是人為規定的,要依據實際問題選取合適的單位長度。
(三)課堂練習
如圖,寫出數軸上點A,B,C,D,E表示的數。
(四)小結作業
提問:今天有什么收獲?
引導學生回顧:數軸的三要素,用數軸表示數。
八年級上冊數學教案2024篇14
一、 內容和內容解析
1.內容
三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法.
2.內容解析
本節內容概念較多,有三角形的高、中線、角平分線和重心等有關概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現實生活中的真實性,激發學生熱愛生活、勇于探索的思想感情.
理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關問題,起著十分重要的作用.它也是學習三角形的角、邊的延續以及三角形全等、相似等后繼知識一個準備.
本節的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關系.
二、目標和目標解析
1.教學目標
(1)理解三角形的高、中線與角平分線等概念;
(2)會用工具畫三角形的高、中線與角平分線;
2.教學目標解析
(1)經歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念.
(2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質.
(3)掌握三角形的高、中線與角平分線的畫法.
(4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點.
三、教學問題診斷分析
三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或對邊所在的直線上.
三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點.
三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個 端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯系又有本質的區別.
八年級上冊數學教案2024篇15
1、平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,并且等于第三邊的一半。
2、特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等于斜邊的一半。
(2)菱形
性質:菱形的四條邊都相等;
菱形的對角線互相垂直,并且每一條對角線平分一組對角;
菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3、梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等;
同一個底上的兩個角相等的梯形是等腰梯形。
八年級上冊數學教案2024篇16
重點與難點分析:
本節內容的重點是及其推論。等腰三角形兩底角相等(等邊對等角)是證明同一三角形中兩角相等的重要依據;而在推論中提到的等腰三角形底邊上的高。中線及頂角平分線三線合一這條重要性質也是證明兩線段相等,兩個角相等及兩直線互相垂直的重要依據。為證明線段相等,角相等或垂直平提供了方法,在選擇時注意靈活運用。
本節內容的難點是文字題的證明。對文字題的證明,首先分析出命題的題設和結論,結合題意畫出草圖形,然后根據圖形寫出已知。求證,做到不重不漏,從而轉化為一般證明題。這些環節是學生感到困難的。
教法建議:
數學教學的核心是學生的“再創造”。根據這一指導思想,本節課教學可通過精心設置的一個個問題鏈,激發學生的求知欲,最終在老師的指導下發現問題。解決問題。為了充分調動學生的積極性,使學生變被動學習為主動學習,本課教學擬用啟發式問題教學法。具體說明如下:
(1)發現問題
本節課開始,先投影顯示圖形及問題,讓學生觀察并發現結論。提出問題讓學生思考,創設問題情境,激發學生學習的欲望和要求。
(2)解決問題
對所得到的結論通過教師啟發,讓學生完成證明。指導學生歸納總結,從而順其自然得到本節課的一個定理及其兩個推論。多讓學生親自實踐,參與探索發現,領略知識形成過程,這是課堂教學的基本思想和教學理念。
(3)加深理解
學生學習的過程是對知識的消化和理解的過程,通過例題的解決,提高和完善對定理及其推論理解。這一過程采用講練結合。適時點撥的教學方法,把學生的注意力緊緊吸引在解決問題身上,讓學生的思維活動在老師的引導下層層展開,讓中國學習聯盟膽參與課堂教學,使他們“聽”有所“思”?!熬殹庇兴矮@”,使傳授知識與培養能力融為一體。一。教學目標:
1、掌握定理的證明及這個定理的兩個推論;
2、會運用證明線段相等;
3、使學生掌握一般文字題的證明;
4、通過文字題的證明,提高學生幾何三種語言的互譯能力;
5、逐步培養學生邏輯思維能力及分析實際問題解決問題的能力;
6、滲透對稱的數學思想,培養學生數學應用的觀點;
教學重點:
及其推論
教學難點:
文字題的證明
教學用具:
直尺,微機
教學方法:
問題探究法
教學過程:
1、性質定理的發現與證明
(1)投影顯示:
一般學生都能發現等腰三角形的兩個底角相等(若有其它發現也要給予肯定),
(2)提醒學生:憑觀察作出的判斷準確嗎?怎樣證明你的判斷?
師生討論后,確定用全等三角形證明,學生親自動手作出證明。證明略。
教師指出:定理提示了三角形邊與角的轉化關系,由兩邊相等轉化為兩角相等,這是今后證明兩角相等常用的依據,其功效不亞于利用全等三角形證明兩角相等。
2、推論1的發現與證明
投影顯示:
由學生觀察發現,等腰三角形頂角平分線平分底邊并且垂直于底邊。
啟發學生自己歸納得出:頂角平分線。底邊上的中線。底邊上的高互相重合。
學生口述證明過程。
教師指出:等腰三角形的頂角的平分線,底邊上的中線。底邊上的高這“三線合一”的性質有多重功能,可以證明兩線段相等,兩個角相等以及兩條直線的互相垂直,也可證線段成角的倍分問題。
3、推論2的發現與證明
投影顯示:
一般學生都能發現等邊三角形的三個內角都為。然后啟發學生與等腰三角形的“三線合一”作類比,自己得出等邊三角形的“三線合一”。
4、定理及其推論的應用
小結:滲透分類思想,培養思維的嚴密性。
例2。已知:如圖,點D。E在△ABC的邊BC上,AB=AC,AD=AE
求證:BD=CE
證明:作AF⊥BC,,垂足為F,則AF⊥DE
∵AB=AC,AD=AE(已知)
AF⊥BC,AF⊥DE(輔助線作法)
∴BF=CF,DF=EF(等腰三角形底邊上的高與底邊上的中線互相重合)
∴BD=CE
強調說明:等腰三角形中的“三線合一”常常作為解決等腰三角形問題的輔助線,添加輔助線時,有時作頂角的平分線,有時作底邊中線,有時作底邊的高,有時作哪條線都可以,有時卻不能,還要根據實際情況來定。
例3、已知:如圖,D是等邊△ABC內一點,DB=DA,BP=AB,DBP=DBC
求證:P=
證明:連結OC
在△BPD和△BCD中
在△ADC和△BCD中
因此,P=
例4求證:等腰三角形兩腰上中線的交點到底邊兩端點的距離相等
已知:如圖,AB=AC,BD。CE分別為AC邊。AB邊的中線,它們相交于F點
求證:BF=CF
證明:∵BD。CE是△ABC的兩條中線,AB=AC
∴AD=AE,BE=CD
在△ABD和△ACE中
∴△ABD≌△ACE
∴1=2
在△BEF和△CED中
∴△BEF≌△CED
∴BF=FC
設想:例1到例4,由易到難地安排學生對新授內容的練習和鞏固。在以上教學中,特別注意“一般解題方法”的運用。
在四個例題的教學中,充分發揮學生與學生之間的互補性,從而提高認識,完善認知結構,使課堂成為學生發揮想象力和創造性的“學堂”
5、反饋練習:
出示圖形及題目:
將實際問題數學化,培養學生應用能力。
6、課堂小結:
教師引導學生小結
(1)
(2)等邊三角形的性質
(3)文字證明題的書寫步驟
7、布置作業:
a、書面作業P961.2
b、上交作業P964.7.8
c、思考題:
已知:如圖:在△ABC中,AB=AC,E在CA的延長線上,∠AEF=∠AFE。
求證:EF⊥BC
證明:作BC邊上的高AM,M為垂足
∵AM⊥BC
∴∠BAM=∠CAM
又∵∠BAC為△AEF的外角
∴∠BAC=∠E+∠EFA
即∠BAM+∠CAM=∠E=∠EFA
∵∠AEF=∠AFE
∴∠CAM=∠E
∴EF∥AM
∵AM⊥BC
∴EF⊥BC
七、板書設計:
(略)
八年級上冊數學教案2024篇17
教學目標:
1、本節課使學生掌握可化為一元二次方程的分式方程的解法,能用去分母的方法或換元的方法求此類方程的解,并會驗根。
2、使學生掌握運用去分母或換元的方法解可化為一元二次方程的分式方程;使學生理解轉化的數學基本思想;
3、使學生能夠利用最簡公分母進行驗根。
教學重點:
可化為一元二次方程的分式方程的解法。
教學難點:
教學難點:解分式方程,學生不容易理解為什么必須進行檢驗。
教學過程:
在初二我們已經學過分式方程的概念及可化為一元一次方程的分式方程的解法,知道了解可化為一元一次方程的分式方程的解題步驟以及驗根的目的,了解了轉化的思想方法的基本運用.今天,我們將在此基礎上,來學習可化為一元二次方程的分式方程的解法.“12.7節”是在學生已經掌握的同類型的方程的解法,直接點出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的解法相類同,及產生增根的原因,以激發學生歸納總結的欲望,使學生理解類比方法在數學解題中的重要性,使學生進一步加深對“轉化”這一基本數學思想的理解,抓住學生的注意力,同時可以激起學生探索知識的欲望。
為了使學生能進一步加深對“類比”、“轉化”的理解,可以通過回憶復習可化為一元一次方程的分式方程的解法,探求解可化為一元二次方程的分式方程的解法,同時通過對產生增根的分析,來達到學生對“類比”的方法及“轉化”的基本數學思想在數學學習中的重要性的理解,從而調動學生能積極主動地參與到教學活動中去。
一、新課引入:
1.什么叫做分式方程?解可化為一元一次方程的分化方程的方法與步驟是什么?
2.解可化為一元一次方程的分式方程為什么要檢驗?檢驗的方法是什么?
3、產生增根的原因是什么?.
二、新課講解:
通過新課引入,可直接點出本節的內容:可化為一元二次方程的分式方程及其解法,類比地提出可化為一元二次方程的分式方程的解法與可化為一元一次方程的分式方程的解法相同。
點出本節內容的處理方法與以前所學的知識完全類同后,讓全體學生對照前面復習過的分式方程的解,來進一步加深對“類比”法的理解,以便學生全面地參與到教學活動中去,全面提高教學質量。
在前面的基礎上,為了加深學生對新知識的理解,與學生共同分析解決例題,以提高學生分析問題和解決問題的能力。
八年級上冊數學教案2024篇18
【教學目標】
1、了解三角形的中位線的概念
2、了解三角形的中位線的性質
3、探索三角形的中位線的性質的一些簡單的應用
【教學重點、難點】
重點:三角形的中位線定理。
難點:三角形的中位線定理的證明中添加輔助線的思想方法。
【教學過程】
(一)創設情景,引入新課
1、如圖,為了測量一個池塘的寬BC,在池塘一側的平地上選一點A,再分別找出線段AB、AC的中點D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?
2、動手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張梯形紙片
(1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?
(2)要把所剪得的兩個圖形拼成一個平行四邊形,可將其中的三角形做怎樣的圖形變換?
3、引導學生概括出中位線的概念。
問題:(1)三角形有幾條中位線?(2)三角形的`中位線與中線有什么區別?
啟發學生得出:三角形的中位線的兩端點都是三角形邊的中點,而三角形中線只有一個端點是邊中點,另一端點上三角形的一個頂點。
4、猜想:DE與BC的關系?(位置關系與數量關系)
(二)、師生互動,探究新知
1、證明你的猜想
引導學生寫出已知,求證,并啟發分析。
(已知:⊿ABC中,D、E分別是AB、AC的中點,求證:DE∥BC,DE=1/2BC)
啟發1:證明直線平行的方法有哪些?(由角的相等或互補得出平行,由平行四邊形得出平行等)
啟發2:證明線段的倍分的方法有哪些?(截長或補短)
學生分小組討論,教師巡回指導,經過分析后,師生共同完成推理過程,板書證明過程,強調有其他證法。
證明:如圖,以點E為旋轉中心,把⊿ADE繞點E,按順時針方向旋轉180゜,得到⊿CFE,則D,E,F同在一直線上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,
∴AB∥CF。
又∵BD=AD=CF,
∴四邊形BCFD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形),
∴DF∥BC(根據什么?),
∴DE1/2BC
2、啟發學生歸納定理,并用文字語言表達:三角形中位線平行于第三邊且等于第三邊的一半。
(三)學以致用、落實新知
1、練一練:已知三角形邊長分別為6、8、10,順次連結各邊中點所得的三角形周長是多少?
2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點分別為D、E、F,則⊿DEF的周長是多少?
3、例題:已知:如圖,在四邊形ABCD中,E,F,G,H分別是AB,BC,CD,DA的中點。
求證:四邊形EFGH是平行四邊形。
啟發1:由E,F分別是AB,BC的中點,你會聯想到什么圖形?
啟發2:要使EF成為三角的中位線,應如何添加輔助線?應用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?
證明:如圖,連接AC。
∵EF是⊿ABC的中位線,
∴EF1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。
同理,HG1/2AC。
∴EFHG。
∴四邊形EFGH是平行四邊形(一組對邊平行并且相等的四邊形是平行四邊形)
挑戰:順次連結上題中,所得到的四邊形EFGH四邊中點得到一個四邊形,繼續作下去。。。你能得出什么結論?
(四)學生練習,鞏固新知
1、請回答引例中的問題(1)
2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC,BD的中點。求證:∠PNM=∠PMN
(五)小結回顧,反思提高
今天你學到了什么?還有什么困惑?