小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學教案 >

高中數(shù)學教案反思

時間: 新華 數(shù)學教案

編寫教案有助于教師更好地準備教學,提高教學質量和效果。好的高中數(shù)學教案反思要怎么寫?小編給大家?guī)砀咧袛?shù)學教案反思,供大家參考。

高中數(shù)學教案反思篇1

教學目標:1、理解集合的概念和性質.

2、了解元素與集合的表示方法.

3、熟記有關數(shù)集.

4、培養(yǎng)學生認識事物的能力.

教學重點:集合概念、性質

教學難點:集合概念的理解

教學過程:

1、定義:

集合:一般地,某些指定的對象集在一起就成為一個集合(集).元素:集合中每個對象叫做這個集合的元素.

由此上述例中集合的元素是什么?

例(1)的元素為1、3、5、7,

例(2)的元素為到兩定點距離等于兩定點間距離的點,

例(3)的元素為滿足不等式3x-2>x+3的實數(shù)x,

例(4)的元素為所有直角三角形,

例(5)為高一·六班全體男同學.

一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??

為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(1)確定性;(2)互異性;(3)無序性.

3、元素與集合的關系:隸屬關系

元素與集合的關系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A.

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)

注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??

元素通常用小寫的拉丁字母表示,如a、b、c、p、q??

2、“∈”的開口方向,不能把a∈A顛倒過來寫。

4

注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0。

(2)非負整數(shù)集內排除0的集。記作N_或N+。Q、Z、R等其它數(shù)集內排除0

的集,也是這樣表示,例如,整數(shù)集內排除0的集,表示成Z_

請回答:已知a+b+c=m,A={xax2+bx+c=m},判斷1與A的關系。

1.1.2集合間的基本關系

教學目標:1.理解子集、真子集概念;

2.會判斷和證明兩個集合包含關系;

3.理解“?”、“?”的含義;≠

4.會判斷簡單集合的相等關系;

5.滲透問題相對的觀點。

教學重點:子集的概念、真子集的概念

教學難點:元素與子集、屬于與包含間區(qū)別、描述法給定集合的運算教學過程:

觀察下面幾組集合,集合A與集合B具有什么關系?

(1)A={1,2,3},B={1,2,3,4,5}.

(2)A={__>3},B={x3x-6>0}.

(3)A={正方形},B={四邊形}.

(4)A=?,B={0}.

(5)A={銀川九中高一(11)班的女生},B={銀川九中高一(11)班的學生}。

1.子集

定義:一般地,對于兩個集合A與B,如果集合A中的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A,記作A?B(或B?A),即若任意x?A,有x?B,則A?B(或A?B)。

這時我們也說集合A是集合B的子集(subset)。

如果集合A不包含于集合B,或集合B不包含集合A,就記作A?B(或B?A),即:若存在x?A,有x?B,則A?B(或B?A)

說明:A?B與B?A是同義的,而A?B與B?A是互逆的。

規(guī)定:空集?是任何集合的子集,即對于任意一個集合A都有??A。

(2)除去?與A本身外,集合A的其它子集與集合A的關系如何?

3.真子集:

由“包含”與“相等”的關系,可有如下結論:

(1)A?A(任何集合都是其自身的子集);

(2)若A?B,而且A?B(即B中至少有一個元素不在A中),則稱集合A是集合B的真子集(propersubset),記作A≠B。(空集是任何非空集合的真

子集)

(3)對于集合A,B,C,若A?B,B?C,即可得出A?C;對A?B,B?C,同樣≠≠

?有A≠C,即:包含關系具有“傳遞性”。

4.證明集合相等的方法:

?

第3/7頁

(1)證明集合A,B中的元素完全相同;(具體數(shù)據(jù))

(2)分別證明A?B和B?A即可。(抽象情況)

對于集合A,B,若A?B而且B?A,則A=B。

1.1.3集合的基本運算

教學目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并

集與交集;

(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補

集;

(3)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽

象概念的作用。

教學重點:集合的交集與并集、補集的概念;

教學難點:集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;

【知識點】

1.并集

一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)

記作:A∪B讀作:“A并B”

即:A∪B={__∈A,或x∈B}

Venn圖表示:

第4/7頁

A與B的所有元素來表示。A與B的交集。

2.交集

一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。

記作:A∩B讀作:“A交B”

即:A∩B={x∈A,且x∈B}

交集的Venn圖表示

說明:兩個集合求交集,結果還是一個集合,是由集合A與B的公共元素組成的集合。

拓展:求下列各圖中集合A與B的并集與交集

A

說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,不能說兩個集合沒有交集

3.補集

全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。

補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(complementaryset),簡稱為集合A的補集,

記作:CUA

即:CUA={__∈U且x∈A}

第5/7頁

補集的Venn圖表示

說明:補集的概念必須要有全集的限制

4.求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分

交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法。

5.集合基本運算的一些結論:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,則A?B,反之也成立

若A∪B=B,則A?B,反之也成立

若x∈(A∩B),則x∈A且x∈B

若x∈(A∪B),則x∈A,或x∈B

¤例題精講:

【例1】設集合U?R,A?{x?1?x?5},B?{x3?x?9},求A?B,?U(A?B).解:在數(shù)軸上表示出集合A、B

【例2】設A?{x?Zx?6},B??1,2,3?,C??3,4,5,6?,求:

(1)A?(B?C);(2)A??A(B?C).

【例3】已知集合A?{x?2?x?4},B?{__?m},且A?B?A,求實數(shù)m的取值范圍.

_且x?N}【例4】已知全集U?{__?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關系.

高中數(shù)學教案反思篇2

橢圓的簡單幾何性質中的考查點:

(一)、對性質的考查:

1、范圍:要注意方程與函數(shù)的區(qū)別與聯(lián)系;與橢圓有關的求最值是變量的取值范圍;作橢圓的草圖。

2、對稱性:橢圓的中心及其對稱性;判斷曲線關于x軸、y軸及原點對稱的依據(jù);如果曲線具有關于x軸、y軸及原點對稱中的任意兩種,那么它也具有另一種對稱性;注意橢圓不因坐標軸改變的固有性質。

3、頂點:橢圓的頂點坐標;一般二次曲線的頂點即是曲線與對稱軸的交點;橢圓中a、b、c的幾何意義(橢圓的特征三角形及離心率的三角函數(shù)表示)。

4、離心率:離心率的定義;橢圓離心率的取值范圍:(0,1);橢圓的離心率的變化對橢圓的影響:當e趨向于1時:c趨向于a,此時,橢圓越扁平;當e趨向于0時:c趨向于0,此時,橢圓越接近于圓;當且僅當a=b時,c=0,兩焦點重合,橢圓變成圓。

(二)、課本例題的變形考查:

1、近日點、遠日點的概念:橢圓上任意一點p(x,y)到橢圓一焦點距離的最大值:a+c與最小值:a-c及取最值時點p的坐標;

2、橢圓的第二定義及其應用;橢圓的準線方程及兩準線間的距離、焦準距:焦半徑公式。

3、已知橢圓內一點m,在橢圓上求一點p,使點p到點m與到橢圓準線的距離的和最小的求法。

4、橢圓的參數(shù)方程及橢圓的離心角:橢圓的參數(shù)方程的簡單應用:

5、直線與橢圓的位置關系,直線與橢圓相交時的弦長及弦中點問題。

高中數(shù)學教案反思篇3

教學目標

1.了解函數(shù)的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.

(1)了解并區(qū)分增函數(shù),減函數(shù),單調性,單調區(qū)間,奇函數(shù),偶函數(shù)等概念.

(2)能從數(shù)和形兩個角度認識單調性和奇偶性.

(3)能借助圖象判斷一些函數(shù)的單調性,能利用定義證明某些函數(shù)的單調性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

2.通過函數(shù)單調性的證明,提高學生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學生的觀察,歸納,抽象的能力,同時滲透數(shù)形結合,從特殊到一般的數(shù)學思想.

3.通過對函數(shù)單調性和奇偶性的理論研究,增學生對數(shù)學美的體驗,培養(yǎng)樂于求索的精神,形成科學,嚴謹?shù)难芯繎B(tài)度.

教學建議

一、知識結構

(1)函數(shù)單調性的概念。包括增函數(shù)、減函數(shù)的定義,單調區(qū)間的概念函數(shù)的單調性的判定方法,函數(shù)單調性與函數(shù)圖像的關系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

二、重點難點分析

(1)本節(jié)教學的重點是函數(shù)的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數(shù)單調性, 奇偶性的本質,掌握單調性的證明.

(2)函數(shù)的單調性這一性質學生在初中所學函數(shù)中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數(shù)內容中首次接觸到的代數(shù)論證內容,學生在代數(shù)論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.

三、教法建議

(1)函數(shù)單調性概念引入時,可以先從學生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關系的角度來解釋,引導學生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學語言表示出來.在這個過程中對一些關鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.

(2)函數(shù)單調性證明的步驟是嚴格規(guī)定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規(guī)律.

函數(shù)的奇偶性概念引入時,可設計一個課件,以的圖象為例讓自變量互為相反數(shù)觀察對應的函數(shù)值的變化規(guī)律先從具體數(shù)值開始逐漸讓在數(shù)軸上動起來觀察任意性再讓學生把看到的用數(shù)學表達式寫出來.經歷了這樣的過程再得到等式就比較容易體會它代表的是無數(shù)多個等式是個恒等式.關于定義域關于原點對稱的問題也可借助課件將函數(shù)圖象進行多次改動幫助學生發(fā)現(xiàn)定義域的對稱性同時還可以借助圖象(如)說明定義域關于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

高中數(shù)學教案反思篇4

【教學目標】

1. 知識與技能

(1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列:

(2)賬務等差數(shù)列的通項公式及其推導過程:

(3)會應用等差數(shù)列通項公式解決簡單問題。

2.過程與方法

在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

3.情感、態(tài)度與價值觀

通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結的良好習慣。

【教學重點】

①等差數(shù)列的概念;②等差數(shù)列的通項公式

【教學難點】

①理解等差數(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導過程.

【學情分析】

我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數(shù)學學習,大部分學生知識經驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展.

【設計思路】

1.教法

①啟發(fā)引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發(fā)揮其創(chuàng)造性.

②分組討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調動學生的積極性.

③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.

2.學法

引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

【教學過程】

一:創(chuàng)設情境,引入新課

1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

2.水庫管理人員為了保證優(yōu)質魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?

3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數(shù)列?

教師:以上三個問題中的數(shù)蘊涵著三列數(shù).

學生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(設置意圖:從實例引入,實質是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型.通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力.

二:觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數(shù)列有什么共同特點?

思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?

思考3你能將上述的文字語言轉換成數(shù)學符號語言嗎?

教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義.

(設計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)

三:舉一反三,鞏固定義

1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.

注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0 .

(設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用).

2思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

(設計意圖:強化等差數(shù)列的證明定義法)

四:利用定義,導出通項

1.已知等差數(shù)列:8,5,2,…,求第200項?

2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法.

(設計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質,激發(fā)學生的創(chuàng)造意識.鼓勵學生自主解答,培養(yǎng)學生運算能力)

五:應用通項,解決問題

1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?

2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差數(shù)列 3,7,11,…的第4項和第10項

教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式

(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)

六:反饋練習:教材13頁練習1

七:歸納總結:

1.一個定義:

等差數(shù)列的定義及定義表達式

2.一個公式:

等差數(shù)列的通項公式

3.二個應用:

定義和通項公式的應用

教師:讓學生思考整理,找?guī)讉€代表發(fā)言,最后教師給出補充

(設計意圖:引導學生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

【設計反思】

本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節(jié)課教學采用啟發(fā)方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.

高中數(shù)學教案反思篇5

【高考要求】:三角函數(shù)的有關概念(B).

【教學目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.

理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.

【教學重難點】:終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.

【知識復習與自學質疑】

一、問題.

1、角的概念是什么?角按旋轉方向分為哪幾類?

2、在平面直角坐標系內角分為哪幾類?與終邊相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數(shù)有什么樣的關系?

4、弧度制下圓的弧長公式和扇形的面積公式是什么?

5、任意角的三角函數(shù)的定義是什么?在各象限的符號怎么確定?

6、你能在單位圓中畫出正弦、余弦和正切線嗎?

7、同角三角函數(shù)有哪些基本關系式?

二、練習.

1.給出下列命題:

(1)小于的角是銳角;(2)若是第一象限的角,則必為第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;

(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

(6)角2與角的終邊不可能相同;

(7)若角與角有相同的終邊,則角(的終邊必在軸的非負半軸上。其中正確的命題的序號是

2.設P點是角終邊上一點,且滿足則的值是

3.一個扇形弧AOB的面積是1,它的周長為4,則該扇形的中心角=弦AB長=

4.若則角的終邊在象限。

5.在直角坐標系中,若角與角的終邊互為反向延長線,則角與角之間的關系是

6.若是第三象限的角,則-,的終邊落在何處?

【交流展示、互動探究與精講點撥】

例1.如圖,分別是角的終邊.

(1)求終邊落在陰影部分(含邊界)的所有角的集合;

(2)求終邊落在陰影部分、且在上所有角的集合;

(3)求始邊在OM位置,終邊在ON位置的所有角的集合.

例2.(1)已知角的終邊在直線上,求的值;

(2)已知角的終邊上有一點A,求的值。

例3.若,則在第象限.

例4.若一扇形的周長為20,則當扇形的圓心角等于多少弧度時,這個扇形的面積最大?最大面積是多少?

【矯正反饋】

1、若銳角的終邊上一點的坐標為,則角的弧度數(shù)為.

2、若,又是第二,第三象限角,則的取值范圍是.

3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是弧度或角度,該扇形的面積是.

4、已知點P在第三象限,則角終邊在第象限.

5、設角的終邊過點P,則的值為.

6、已知角的終邊上一點P且,求和的值.

【遷移應用】

1、經過3小時35分鐘,分針轉過的角的弧度是.時針轉過的角的弧度數(shù)是.

2、若點P在第一象限,則在內的取值范圍是.

3、若點P從(1,0)出發(fā),沿單位圓逆時針方向運動弧長到達Q點,則Q點坐標為.

4、如果為小于360的正角,且角的7倍數(shù)的角的終邊與這個角的終邊重合,求角的值.

高中數(shù)學教案反思篇6

上個學期,根據(jù)需要,學校安排我上高二數(shù)學文科,在這一學期里我從各方面嚴格要求自己,在教學上虛心向老教師請教,結合本校和班級學生的實際狀況,針對性的開展教學工作,使工作有計劃,有組織,有步驟。經過了一學期,我對教學工作有了如下感想:

一、認真?zhèn)湔n,做到既備學生又備教材與備教法。

上學期我根據(jù)教材資料及學生的實際狀況設計課程教學,擬定教學方法,并對教學過程中遇到的問題盡可能的預先思考到,認真寫好教案。每一課都做到“有備而去”,每堂課都在課前做好充分的準備,課后及時對該課作出小結,并認真整理每一章節(jié)的知識要點,幫忙學生進行歸納總結。

二、增強上課技能,提高教學質量。

增強上課技能,提高教學質量是我們每一名新教師不斷努力的目標。因為應對的是文科生,基礎普遍比較差,所以我主要是立足于基礎,讓學生學得簡單,學得愉快。注意精講精練,在課堂上講得盡量少些,而讓學生自己動口動手動腦盡量多些;同時在每一堂課上都充分思考每一個層次的學生學習需求和理解潛力,讓各個層次的學生都得到提高。

三、虛心向其他老師學習,在教學上做到有疑必問。

在每個章節(jié)的學習上都用心征求其他有經驗老師的意見,學習他們的方法。同時多聽老教師的課,做到邊聽邊學,給自己不斷充電,彌補自己在教學上的不足,征求他們的意見,改善教學工作。

四、認真批改作業(yè)、布置作業(yè)有針對性,有層次性。

作業(yè)是學生對所學知識鞏固的過程。為了做到布置作業(yè)有針對性,有層次性,我常常多方面的搜集資料,對各種輔導資料進行篩選,力求每一次練習都能讓學生起到的效果。同時對學生的作業(yè)批改及時、認真,并分析學生的作業(yè)狀況,將他們在作業(yè)過程出現(xiàn)的問題及時評講,并針對反映出的狀況及時改善自己的教學方法,做到有的放矢。

然而,在肯定成績、總結經驗的同時,我清楚地認識到我所獲得的教學經驗還是膚淺的,在教學中存在的問題也不容忽視,也有一些困惑有待解決今后我將努力工作,用心向老老師學習以提高自己的教學水平。

以上幾點便是我的一點心得,期望能發(fā)揚優(yōu)點,克服不足,總結經驗教訓,為今后的教育教學工作積累經驗,以便盡快地提高自己的水平。

高中數(shù)學教案反思篇7

教學內容:簡單的排列和組合

教學目標:

1.知識能力目標:

①通過觀察、猜測、比較、實驗等活動,找出最簡單的事物的排列數(shù)和組合數(shù)。

②初步培養(yǎng)有序地全面地思考問題的能力。

③培養(yǎng)初步的觀察、分析、及推理能力。

2.情感態(tài)度目標:

①感受數(shù)學與生活的密切聯(lián)系,激發(fā)學習數(shù)學、探索數(shù)學的濃厚興趣。

②初步培養(yǎng)有順序地、全面地思考問題的意識。

③使學生在數(shù)學活動中養(yǎng)成與人合作的良好習慣。

教學重點:

經歷探索簡單事物排列與組合規(guī)律的過程。

教學難點:

初步理解簡單事物排列與組合的不同。

教學準備:

多媒體課件、數(shù)字卡片、1角、2角、5角的人民幣。

教學過程:

一、創(chuàng)設情境,引發(fā)探究

師:今天老師帶你們去一個很有趣的地方,哪呢?我們今天要到“數(shù)學廣角”里去走一走、看一看。

二、操作探究,學習新知。

(一)組合問題

l、看一看,說一說

師:今天老師給大家?guī)砹藥准恋囊路銈儊硖暨x吧。(課件出示主題圖)

師引導思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學生說一說)

2、想一想,擺一擺

(l)引導討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復呢?

①學生小組討論交流,老師參與小組討論。

②學生匯報

(2)引導操作:小組同學互相合作,把你們設計的穿法有序的貼在紙板上。(要求:小組長拿出學具衣服圖片、紙板。)

①學生小組合作操作擺,教師巡視參與小組活動。

②學生展示作品,介紹搭配方案。

③生生互相評價。

(3)師引導觀察:

第一種方案(按上裝搭配下裝)有幾種穿法?(4種)

第二種方案(按下裝搭配上裝)有幾種穿法?(4種)

師小結:不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復、不遺漏的把所有的方法找出來。在今后的學習和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。、操作探究,學習新知。

(二)排列問題

1、初步感知排列

(1)師:我們穿上漂亮的衣服,來到了數(shù)學廣角,可是這有一扇密碼門,(出示課件:密碼門)我們只要說對密碼,就可以到數(shù)學廣角游玩了。看小精靈給了我們提示(點小精靈)你們猜密碼是什么?

(2)學生猜密碼(情景預設:有的學生說是12,有的學生說是21。)

(3)試密碼,打開密碼門,進入數(shù)學廣角樂園。

2、合作探究排列

(1)師問:數(shù)學廣角樂園美不美呀?(學生回答)它雖然很美,可處處充滿著挑戰(zhàn),你們愿意接受嗎?(學生回答)那么我們先到數(shù)學樂園里去看一看吧!(點數(shù)學樂園)

(2)師:同學們,我們到了數(shù)學樂園里看到了什么呀?(回答)現(xiàn)在我們每個人都當一個小魔術師看誰的本領大?誰能把1、2、3這三個數(shù)字變成兩位數(shù),看誰變得最多?

(3)學生活動,師巡視指導

(4)學生匯報擺法,師板書。。

方法一:每次拿出兩張數(shù)字卡片能擺出不同的兩位數(shù);

方法二:固定十位上的數(shù)字,交換個位數(shù)字得到不同的.兩位數(shù);

方法三:固定個位上的數(shù)字,交換十位數(shù)字得到不同的兩位

(5)小結。

三、課堂實踐,鞏固新知

1、握手游戲:

師:同學們真棒!都能把數(shù)字1、2、3組成不同的兩位數(shù),而且不重復、不遺漏。下面老師帶大家到運動樂園去看一看。(出示課件)看小朋友們在干什么?(生回答)

師:看到他們握手,老師有一個問題需要大家?guī)椭鉀Q一下。

(1)出示問題

(2)小組活動:握手

(3)抽生上臺表演

(4)小結。

2、乒乓球比賽

三個人進行乒乓球比賽要舉行幾場?

(1)小組討論

(2)學生匯報

(3)小結

3、生活樂園

看來數(shù)學廣角處處充滿挑戰(zhàn)一點不假,你們愿不愿意接受新的挑戰(zhàn)?(生)那我們一起到生活樂園去看一看吧!出示《生活樂園》課件。

(1)看課件

(2)學生活動

(3)學生匯報,師相機演示課件。

四、全課總結

今天我們到數(shù)學樂園玩的開不開心?看到了什么?你有什么收獲?

高中數(shù)學教案反思篇8

教學準備

1.教學目標

1、知識與技能:

函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學模型.高中階段不僅把函數(shù)看成變量之間的依

賴關系,同時還用集合與對應的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.

2、過程與方法:

(1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用;

(2)了解構成函數(shù)的要素;

(3)會求一些簡單函數(shù)的定義域和值域;

(4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;

3、情感態(tài)度與價值觀,使學生感受到學習函數(shù)的必要性和重要性,激發(fā)學習的積極性.

教學重點/難點

重點:理解函數(shù)的模型化思想,用集合與對應的語言來刻畫函數(shù);

難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

教學用具

多媒體

4.標簽

函數(shù)及其表示

教學過程

(一)創(chuàng)設情景,揭示課題

1、復習初中所學函數(shù)的概念,強調函數(shù)的模型化思想;

2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學模型的思想:

(1)炮彈的射高與時間的變化關系問題;

(2)南極臭氧空洞面積與時間的變化關系問題;

(3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關系問題.

3、分析、歸納以上三個實例,它們有什么共同點;

4、引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;

5、根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量間的關系是否是函數(shù)關系.

(二)研探新知

1、函數(shù)的有關概念

(1)函數(shù)的概念:

設A、B是非空的數(shù)集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).

記作:y=f(x),x∈A.

其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應的y值叫做函數(shù)值,函數(shù)值的.集合{f(x)x∈A}叫做函數(shù)的值域(range).

注意:

①“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.

(2)構成函數(shù)的三要素是什么?

定義域、對應關系和值域

(3)區(qū)間的概念

①區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

②無窮區(qū)間;

③區(qū)間的數(shù)軸表示.

(4)初中學過哪些函數(shù)?它們的定義域、值域、對應法則分別是什么?

通過三個已知的函數(shù):y=ax+b(a≠0)

y=ax2+bx+c(a≠0)

y=(k≠0)比較描述性定義和集合,與對應語言刻畫的定義,談談體會.

師:歸納總結

(三)質疑答辯,排難解惑,發(fā)展思維。

1、如何求函數(shù)的定義域

例1:已知函數(shù)f(x)=+

(1)求函數(shù)的定義域;

(2)求f(-3),f()的值;

(3)當a>0時,求f(a),f(a-1)的值.

分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

例2、設一個矩形周長為80,其中一邊長為x,求它的面積關于x的函數(shù)的解析式,并寫出定義域.

分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.

所以s==(40-x)x(0<x<40)

引導學生小結幾類函數(shù)的定義域:

(1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.

(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.

(3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內的式子大于或等于零的實數(shù)的集合.

(4)如果f(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)

(5)滿足實際問題有意義.

鞏固練習:課本P19第1

2、如何判斷兩個函數(shù)是否為同一函數(shù)

例3、下列函數(shù)中哪個與函數(shù)y=x相等?

分析:

1、構成函數(shù)三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數(shù)的定義域和對應關系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

2、兩個函數(shù)相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數(shù)值的字母無關。

解:

課本P18例2

(四)歸納小結

①從具體實例引入了函數(shù)的概念,用集合與對應的語言描述了函數(shù)的定義及其相關概念;

②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.

(五)設置問題,留下懸念

1、課本P24習題1.2(A組)第1—7題(B組)第1題

2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應關系.

課堂小結

高中數(shù)學教案反思篇9

【一】教學背景分析

1。教材結構分析

《圓的方程》安排在高中數(shù)學第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節(jié)內容在整個解析幾何中起著承前啟后的作用。

2。學情分析

圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現(xiàn)困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。

根據(jù)上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

3。教學目標

(1)知識目標:①掌握圓的標準方程;

②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;

③利用圓的標準方程解決簡單的實際問題。

(2)能力目標:①進一步培養(yǎng)學生用代數(shù)方法研究幾何問題的能力;

②加深對數(shù)形結合思想的理解和加強對待定系數(shù)法的運用;

③增強學生用數(shù)學的意識。

(3)情感目標:①培養(yǎng)學生主動探究知識、合作交流的意識;

②在體驗數(shù)學美的過程中激發(fā)學生的學習興趣。

根據(jù)以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

4。教學重點與難點

(1)重點:圓的標準方程的求法及其應用。

(2)難點:①會根據(jù)不同的已知條件求圓的`標準方程;

②選擇恰當?shù)淖鴺讼到鉀Q與圓有關的實際問題。

為使學生能達到本節(jié)設定的教學目標,我再從教法和學法上進行分析:

好學教育:

【二】教法學法分析

1。教法分析為了充分調動學生學習的積極性,本節(jié)課采用“啟發(fā)式”問題教學法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發(fā)展區(qū)上。另外我恰當?shù)睦枚嗝襟w課件進行輔助教學,借助信息技術創(chuàng)設實際問題的情境既能激發(fā)學生的學習興趣,又直觀的引導了學生建模的過程。

2。學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數(shù)法求的過程。下面我就對具體的教學過程和設計加以說明:

【三】教學過程與設計

整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環(huán)節(jié):

創(chuàng)設情境啟迪思維深入探究獲得新知應用舉例鞏固提高

反饋訓練形成方法小結反思拓展引申

下面我從縱橫兩方面敘述我的教學程序與設計意圖。

首先:縱向敘述教學過程

(一)創(chuàng)設情境——啟迪思維

問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?

通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創(chuàng)設問題情境,讓學生感受到問題來源于實際,應用于實際,激發(fā)了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。

(二)深入探究——獲得新知

問題二1。根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

2。如果圓心在,半徑為時又如何呢?

好學教育:

這一環(huán)節(jié)我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。

得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環(huán)節(jié)。

(三)應用舉例——鞏固提高

I。直接應用內化新知

問題三1。寫出下列各圓的標準方程:

(1)圓心在原點,半徑為3;

(2)經過點,圓心在點。

2。寫出圓的圓心坐標和半徑。

我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。

II。靈活應用提升能力

問題四1。求以點為圓心,并且和直線相切的圓的方程。

2。求過點,圓心在直線上且與軸相切的圓的方程。

3。已知圓的方程為,求過圓上一點的切線方程。

你能歸納出具有一般性的結論嗎?

已知圓的方程是,經過圓上一點的切線的方程是什么?

我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發(fā)散思維創(chuàng)設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮。

III。實際應用回歸自然

問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

好學教育:

我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養(yǎng)了學生建模的習慣和用數(shù)學的意識。

(四)反饋訓練——形成方法

問題六1。求過原點和點,且圓心在直線上的圓的標準方程。

2。求圓過點的切線方程。

3。求圓過點的切線方程。

接下來是第四環(huán)節(jié)——反饋訓練。這一環(huán)節(jié)中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數(shù)學的樂趣,成功的喜悅,找到自信,增強學習數(shù)學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數(shù)形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養(yǎng)學生思維的嚴謹性具有良好的效果。

(五)小結反思——拓展引申

1。課堂小結

把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數(shù)形結合的思想和待定系數(shù)的方法①圓心為,半徑為r的圓的標準方程為:

圓心在原點時,半徑為r的圓的標準方程為:。

②已知圓的方程是,經過圓上一點的切線的方程是:。

2。分層作業(yè)

(A)鞏固型作業(yè):教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業(yè):試推導過圓上一點的切線方程。

3。激發(fā)新疑

問題七1。把圓的標準方程展開后是什么形式?

2。方程表示什么圖形?

在本課的結尾設計這兩個問題,作為對這節(jié)課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準備。

以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:橫向闡述教學設計

(一)突出重點抓住關鍵突破難點

好學教育:

求圓的標準方程既是本節(jié)課的教學重點也是難點,為此我布設了由淺入深的學習環(huán)境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。

第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據(jù)問題情境構建數(shù)學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數(shù)學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。

(二)學生主體教師主導探究主線

本節(jié)課的設計用問題做鏈,環(huán)環(huán)相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發(fā)現(xiàn)的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節(jié)的學習任務。

(三)培養(yǎng)思維提升能力激勵創(chuàng)新

為了培養(yǎng)學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養(yǎng)學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學生的創(chuàng)新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。

以上是我對這節(jié)課的教學預設,具體的教學過程還要根據(jù)學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術的事業(yè)”。

高中數(shù)學教案反思篇10

教學目的

1、使學生通過觀察、猜測、實驗等活動,找出簡單事物的排列數(shù)與組合數(shù)。

2、培養(yǎng)學生初步的觀察、分析、推理能力以及有順序地全面思考問題的意識。

3、引導學生使用數(shù)學方法解決實際生活中的問題,學會表達解決問題的大致過程。

4、培養(yǎng)學生的合作意識和人際交往能力。

教學重點:

自主探究,掌握有序排列、巧妙組合的方法,并用所學知識解決實際生活的問題。

教學難點:

怎樣排列可以不重復、不遺漏。

教學準備:

三只小動物的頭像、兩頂小雨傘圖片、上鎖的大門圖片、紙條、實物投影儀等。

教學過程:

一、以故事形式引入新課

師:同學們,今天老師為大家?guī)砹?只可愛的小動物,你們看它們是誰呀?小刺猬、小鴨和小雞三個好朋友今天準備到企鵝博士家去做客呢,可是剛走了一半路,突然下起雨來,可是三只小動物只有兩把傘,怎么辦呢?

▲當學生在回答以上方法時,教師根據(jù)學生的回答把相應的動物頭像帖在傘的下面。

師:大家想的辦法都不錯。的確,三只小動物都和你們一樣試了上面這三種方法,可最后它們卻選擇了第③種方法,你們知道這是為什么嗎?原來呀,當它們開始用前面兩種方法時,可沒走幾步,小刺猬身上的刺就把小鴨和小雞給刺疼了,所以只能選擇第③種方法。

二、用開密碼鎖的方法進行數(shù)的排列活動

師:三只小動物到了企鵝博士家的數(shù)學城堡,卻發(fā)現(xiàn)大門緊閉,門上還掛著一把鎖。想要開鎖就要找到開鎖的密碼。鎖的密碼提示是:請用數(shù)字1、2、3擺出所有的兩位數(shù),密碼就是這些數(shù)從小到大排列中的第4個。──企鵝博士留。)

師:三只小動物都犯傻了,怎么辦呢?同學們能不能給他們幫幫忙?

(生略)

師:那么我們就先每人拿出數(shù)字卡片,自己擺一擺,邊擺邊記,完成后,再小組內交流匯總,組長把整個小組擺出的數(shù)全寫出來,當然重復的數(shù)字不用再寫,然后全組同學一起把這些兩位數(shù)從小到大排列起來,找到密碼。

▲學生先自己擺、記,然后小組匯總、排列、交流,教師進行巡視并作適當指導。

師:你們找到密碼了嗎?是多少?你們是怎么找到的呢?

▲請幾個小組的學生匯報找密碼的過程。(略)

師:那么剛才你們擺兩位數(shù)時,你擺出了幾個呢?請用手勢表示一下。

▲學生舉手后,問沒擺全的學生是怎么擺的,問全擺出的學生又是怎么擺的,學生出現(xiàn)的情況可能有:有把1、2組成12,然后再交換位置變成21;1、3組成13,交換位置后是31;2、3組成23,交換位置后是32。或者是隨便擺一個看一個的。或者是這樣擺12、13、23、21、31、32等。對這些擺法可讓學生去比較一下,得出這兩種方法都是可行的。

師:同學們都擺得很好,都動了腦筋,要想擺得快又不漏掉,我們應該選擇一定的順序去擺。

三、模擬小動物之間的握手來解決組合問題。

師:通過大家的幫忙,企鵝博士家的密碼鎖被打開了,歡迎各位小動物來闖關。

第一關:握握手

小明、小紅、小華三個小朋友,如果每兩人握一次手,三人一共握幾次手。

▲學生猜好后,教師指出可以以四人小組為單位,三人模擬小動物握手,一人數(shù)握手的次數(shù),找出答案。最后通過模擬得出:3人一共握了3次手。

師:排數(shù)時用了3個數(shù)字,握手時是3個學生,都是“3”,為什么出現(xiàn)的結果卻不一樣呢?

第二關:購買大比拼

如果要買一本5角的練習本,你有幾種不同的付法呢?

先自己獨立思考,然后在小組中交流一下,組長負責收集不同的方法,記錄在表格中。

四、通過不同層次的練習,使知識得到鞏固。

師:同學們說得都非常好。今天,我們不僅幫3只小動物解決了不少的問題,還學到了許多的數(shù)學知識,大家高興嗎?

師:那現(xiàn)在我們就帶著這份興奮的心情,來做幾道題吧!

1、問有幾種不同的穿法?

2、乒乓球大賽

小明、小紅、小華、小麗想參加學校的乒乓球雙打比賽,你認為他們有多少種不同的組合方式呢?

高中數(shù)學教案反思篇11

教學準備

教學目標

o了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量·

o通過對向量的學習,使學生初步認識現(xiàn)實生活中的向量和數(shù)量的本質區(qū)別·

o通過學生對向量與數(shù)量的識別能力的訓練,培養(yǎng)學生認識客觀事物的數(shù)學本質的能力·

教學重難點

教學重點:理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會表示向量·

教學難點:平行向量、相等向量和共線向量的&39;區(qū)別和聯(lián)系·

教學過程

(一)向量的概念:我們把既有大小又有方向的量叫向量。

(二)(教材P74面的四個圖制作成幻燈片)請同學閱讀課本后回答:(7個問題一次出現(xiàn))

1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)

2、如何表示向量?

3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?

4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?

5、滿足什么條件的兩個向量是相等向量?單位向量是相等向量嗎?

6、有一組向量,它們的方向相同或相反,這組向量有什么關系?

7、如果把一組平行向量的起點全部移到一點O,這是它們是不是平行向量?

這時各向量的終點之間有什么關系?

課后小結

1、描述向量的兩個指標:模和方向·

2、平面向量的概念和向量的幾何表示;

3、向量的模、零向量、單位向量、平行向量等概念。

高中數(shù)學教案反思篇12

教學準備

教學目標

1·掌握平面向量的數(shù)量積及其幾何意義;

2·掌握平面向量數(shù)量積的重要性質及運算律;

3·了解用平面向量的數(shù)量積可以處理有關長度、角度和垂直的問題;

4·掌握向量垂直的條件·

教學重難點

教學重點:平面向量的數(shù)量積定義

教學難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應用

教學工具

投影儀

教學過程

一、復習引入:

1·向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ

五,課堂小結

(1)請學生回顧本節(jié)課所學過的知識內容有哪些?所涉及到的主要數(shù)學思想方法有那些?

(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

六、課后作業(yè)

P107習題2·4A組2、7題

課后小結

(1)請學生回顧本節(jié)課所學過的知識內容有哪些?所涉及到的.主要數(shù)學思想方法有那些?

(2)在本節(jié)課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?

課后習題

作業(yè)

P107習題2·4A組2、7題

板書

高中數(shù)學教案反思篇13

高二數(shù)學《橢圓的幾何性質1》教學反思

近期,我開設了一節(jié)公開課《橢圓的幾何性質1》。在新課程背景下,如何有效利用課堂教學時間,如何盡可能地提高學生的學習興趣,提高學生在課堂上45分鐘的學習效率,是一個很重要的課題。要教好高中數(shù)學,首先要對新課標和新教材有整體的把握和認識,這樣才能將知識系統(tǒng)化,注意知識前后的聯(lián)系,形成知識框架;其次要了解學生的現(xiàn)狀和認知結構,了解學生此階段的知識水平,以便因材施教;再次要處理好課堂教學中教師的教和學生的學的關系。課堂教學是實施高中新課程教學的主陣地,也是對學生進行思想品德教育和素質教育的主渠道。課堂教學不但要加強雙基而且要提高智力,發(fā)展學生的智力,而且要發(fā)展學生的創(chuàng)造力;不但要讓學生學會,而且要讓學生會學,特別是自學。尤其是在課堂上,不但要發(fā)展學生的智力因素,而且要提高學生在課堂45分鐘的學習效率,在有限的時間里,出色地完成教學任務。

一、要有明確的教學目標

教學目標分為三大領域,即認知領域、情感領域和動作技能領域。因此,在備課時要圍繞這些目標選擇教學的策略、方法和媒體,把內容進行必要的重組。備課時要依據(jù)教材,但又不拘泥于教材,靈活運用教材。在數(shù)學教學中,要通過師生的共同努力,使學生在知識、能力、技能、心理、思想品德等方面達到預定的目標,以提高學生的綜合素質。

二、要能突出重點、化解難點

每一堂課都要有教學重點,而整堂的教學都是圍繞著教學重點來逐步展開的。為了讓學生明確本堂課的重點、難點,教師在上課開始時,可以在黑板的一角將這些內容簡短地寫出來,以便引起學生的重視。講授重點內容,是整堂課的教學高潮。教師要通過聲音、手勢、板書等的變化或應用模型、投影儀等直觀教具,刺激學生的大腦,使學生能夠興奮起來,對所學內容在大腦中刻下強烈的印象,激發(fā)學生的學習興趣,提高學生對新知識的接受能力。尤其是在選擇例題時,例題最好是呈階梯式展現(xiàn),我在準備例2時,就設置了三個小題,從易到難,便于學生理解接受。

三、要善于應用現(xiàn)代化教學手段

在新課標和新教材的背景下,教師掌握現(xiàn)代化的多媒體教學手段顯得尤為重要和迫切。現(xiàn)代化教學手段的顯著特點:

一是能有效地增大每一堂課的課容量;

二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;

三是直觀性強,容易激發(fā)起學生的學習興趣,有利于提高學生的學習主動性;

四是有利于對整堂課所學內容進行回顧和小結。

在課堂教學結束時,教師引導學生總結本堂課的內容,學習的重點和難點。同時通過投影儀,同步地將內容在瞬間躍然“幕”上,使學生進一步理解和掌握本堂課的內容。在課堂教學中,對于板演量大的內容,如解析幾何中的一些幾何圖形、一些簡單但數(shù)量較多的小問答題、文字量較多應用題,復習課中章節(jié)內容的總結、選擇題的訓練等等都可以借助于投影儀來完成。

四、根據(jù)具體內容,選擇恰當?shù)慕虒W方法

每一堂課都有規(guī)定的教學任務和目標要求。所謂“教學有法,但無定法”,教師要能隨著教學內容的變化,教學對象的變化,教學設備的變化,靈活應用教學方法。這節(jié)課是高三的復習課,我采取了讓學生自己回憶講述橢圓的幾何性質,教師補充的方法,改變了傳統(tǒng)的教師講,學生聽的模式,調動了學生的積極性。在例題的解決過程中,我也盡量讓學生多動手,多動腦,激發(fā)學生的思維。此外,我們還可以結合課堂內容,靈活采用談話、讀書指導、作業(yè)、練習等多種教學方法。在一堂課上,有時要同時使用多種教學方法。“教無定法,貴要得法”。只要能激發(fā)學生的學習興趣,提高學生的學習積極性,有助于學生思維能力的培養(yǎng),有利于所學知識的.掌握和運用,都是好的教學方法。

五、關愛學生,及時鼓勵

高中新課程的宗旨是著眼于學生的發(fā)展。對學生在課堂上的表現(xiàn),要及時加以總結,適當給予鼓勵,并處理好課堂的偶發(fā)事件,及時調整課堂教學。在教學過程中,教師要隨時了解學的對所講內容的掌握情況。如在講完一個概念后,讓學生復述;講完一個例題后,將解答擦掉,請中等水平學生上臺板演。有時,對于基礎差的學生,可以對他們多提問,讓他們有較多的鍛煉機會,同時教師根據(jù)學生的表現(xiàn),及時進行鼓勵,培養(yǎng)他們的自信心,讓他們能熱愛數(shù)學,學習數(shù)學。

六、切實重視基礎知識、基本技能和基本方法

眾所周知,近年來數(shù)學試題的新穎性、靈活性越來越強,不少師生把主要精力放在難度較大的綜合題上,認為只有通過解決難題才能培養(yǎng)能力,因而相對地忽視了基礎知識、基本技能、基本方法的教學。教學中急急忙忙把公式、定理推證拿出來,或草草講一道例題就通過大量的題目來訓練學生。

其實定理、公式推證的過程就蘊含著重要的解題方法和規(guī)律,教師沒有充分暴露思維過程,沒有發(fā)掘其內在的規(guī)律,就讓學生去做題,試圖通過讓學生大量地做題去“悟”出某些道理。結果是多數(shù)學生“悟”不出方法、規(guī)律,理解浮淺,記憶不牢,只會機械地模仿,思維水平較低,有時甚至生搬硬套;照葫蘆畫瓢,將簡單問題復雜化。如果教師在教學中過于粗疏或學生在學習中對基本知識不求甚解,都會導致在考試中判斷錯誤。

不少學生說:現(xiàn)在的試題量過大,他們往往無法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低。可見,在切實重視基礎知識的落實中同時應重視基本技能和基本方法的培養(yǎng)。

七、滲透教學思想方法,培養(yǎng)綜合運用能力

常用的數(shù)學思想方法有:轉化的思想,類比歸納與類比聯(lián)想的思想,分類討論的思想,數(shù)形結合的思想以及配方法、換元法、待定系數(shù)法、反證法等。這些基本思想和方法分散地滲透在中學數(shù)學教材的條章節(jié)之中。在平時的教學中,教師要在傳授基礎知識的同時,有意識地、恰當在講解與滲透基本數(shù)學思想和方法,幫助學生掌握科學的方法,從而達到傳授知識,培養(yǎng)能力的目的,只有這樣。學生才能靈活運用和綜合運用所學的知識。

總之,在新課程背景下的數(shù)學課堂教學中,要提高學生在課堂45分鐘的學習效率,要提高教學質量,我們就應該多思考、多準備,充分做到用教材、備學生、備教法,提高自身的教學機智,發(fā)揮自身的主導作用。

99952 主站蜘蛛池模板: 三价铬_环保铬_环保电镀_东莞共盈新材料贸易有限公司 | 快干水泥|桥梁伸缩缝止水胶|伸缩缝装置生产厂家-广东广航交通科技有限公司 | 超声波清洗机-超声波清洗设备定制生产厂家 - 深圳市冠博科技实业有限公司 | 小型玉石雕刻机_家用玉雕机_小型万能雕刻机_凡刻雕刻机官网 | 【同风运车官网】一站式汽车托运服务平台,验车满意再付款 | 沈阳庭院景观设计_私家花园_别墅庭院设计_阳台楼顶花园设计施工公司-【沈阳现代时园艺景观工程有限公司】 | 庭院灯_太阳能景观灯_草坪灯厂家_仿古壁灯-重庆恒投科技 | 通信天线厂家_室分八木天线_对数周期天线_天线加工厂_林创天线源头厂家 | 心得体会网_心得体会格式范文模板 | 扫地车厂家-山西洗地机-太原电动扫地车「大同朔州吕梁晋中忻州长治晋城洗地机」山西锦力环保科技有限公司 | 除尘器布袋骨架,除尘器滤袋,除尘器骨架,电磁脉冲阀膜片,卸灰阀,螺旋输送机-泊头市天润环保机械设备有限公司 | 食药成分检测_调料配方还原_洗涤剂化学成分分析_饲料_百检信息科技有限公司 | 板框压滤机-隔膜压滤机-厢式压滤机生产厂家-禹州市君工机械设备有限公司 | 广东护栏厂家-广州护栏网厂家-广东省安麦斯交通设施有限公司 | 气力输送_输送机械_自动化配料系统_负压吸送_制造主力军江苏高达智能装备有限公司! | 阴离子_阳离子聚丙烯酰胺厂家_聚合氯化铝价格_水处理絮凝剂_巩义市江源净水材料有限公司 | 培训中心-翰香原香酥板栗饼加盟店总部-正宗板栗酥饼技术 | 冷却塔厂家_冷却塔维修_冷却塔改造_凉水塔配件填料公司- 广东康明节能空调有限公司 | 预制舱-电力集装箱预制舱-模块化预制舱生产厂家-腾达电器设备 | 上海深蓝_缠绕机_缠膜机-上海深蓝机械装备有限公司 | 通辽信息港 - 免费发布房产、招聘、求职、二手、商铺等信息 www.tlxxg.net | 中式装修设计_全屋定制家具_实木仿古门窗花格厂家-喜迎门 | 翅片管散热器价格_钢制暖气片报价_钢制板式散热器厂家「河北冀春暖气片有限公司」 | 物流之家新闻网-最新物流新闻|物流资讯|物流政策|物流网-匡匡奈斯物流科技 | 耐火浇注料价格-高强高铝-刚玉碳化硅耐磨浇注料厂家【直销】 | 设定时间记录电子秤-自动累计储存电子秤-昆山巨天仪器设备有限公司 | 不锈钢闸阀_球阀_蝶阀_止回阀_调节阀_截止阀-可拉伐阀门(上海)有限公司 | 致胜管家软件服务【在线免费体验】 | 脑钠肽-白介素4|白介素8试剂盒-研域(上海)化学试剂有限公司 | Win10系统下载_32位/64位系统/专业版/纯净版下载 | 光泽度计_测量显微镜_苏州压力仪_苏州扭力板手维修-苏州日升精密仪器有限公司 | 礼至家居-全屋定制家具_一站式全屋整装_免费量房设计报价 | 纸塑分离机-纸塑分离清洗机设备-压力筛-碎浆机厂家金双联环保 | 企业管理培训,企业培训公开课,企业内训课程,企业培训师 - 名课堂企业管理培训网 | 精密线材测试仪-电线电缆检测仪-苏州欣硕电子科技有限公司 | 润滑脂-高温润滑脂-轴承润滑脂-食品级润滑油-索科润滑油脂厂家 | 砂磨机_立式纳米砂磨机_实验室砂磨机-广州儒佳化工设备厂家 | 高中学习网-高考生信息学习必备平台 | 软启动器-上海能曼电气有限公司 真空搅拌机-行星搅拌机-双行星动力混合机-广州市番禺区源创化工设备厂 | 纸塑分离机-纸塑分离清洗机设备-压力筛-碎浆机厂家金双联环保 | 河北凯普威医疗器材有限公司,高档轮椅系列,推车系列,座厕椅系列,协步椅系列,拐扙系列,卫浴系列 |