怎么寫高中數學教案
好的教案應該突出學生的主體地位,培養學生的思維能力和創造力,提高學生的綜合素質。寫好怎么寫高中數學教案有什么技巧?這里給大家整理怎么寫高中數學教案,方便大家學習。
怎么寫高中數學教案篇1
一、教學目標
1.知識與能力目標
①使學生理解數列極限的概念和描述性定義。
②使學生會判斷一些簡單數列的極限,了解數列極限的“e-N"定義,能利用逐步分析的方法證明一些數列的極限。
③通過觀察運動和變化的過程,歸納總結數列與其極限的特定關系,提高學生的數學概括能力和抽象思維能力。
2.過程與方法目標
培養學生的極限的思想方法和獨立學習的能力。
3.情感、態度、價值觀目標
使學生初步認識有限與無限、近似與精確、量變與質變的辯證關系,培養學生的辯證唯物主義觀點。
二、教學重點和難點
教學重點:數列極限的概念和定義。
教學難點:數列極限的“ε―N”定義的理解。
三、教學對象分析
這節課是數列極限的第一節課,足學生學習極限的入門課,對于學生來說是一個全新的內容,學生的思維正處于由經驗型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內容求球的表面積和體積時對極限思想已有接觸,而學生在以往的數學學習中主要接觸的是關于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導他們作出描述性定義“當n無限增大時,數列{an}中的項an無限趨近于常數A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數列的極限。但要使他們在一節課內掌握“ε-N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數列的極限。使學生理解極限的基本概念,認識什么叫做數列的極限以及數列極限的定義即可。
四、教學策略及教法設計
本課是采用啟發式講授教學法,通過多媒體課件演示及學生討論的方法進行教學。通過學生比較熟悉的一個實際問題入手,引起學生的注意,激發學生的學習興趣。然后通過具體的兩個比較簡單的數列,運用多媒體課件演示向學生展示了數列中的各項隨著項數的增大,無限地趨向于某個常數的過程,讓學生在觀察的基礎上討論總結出這兩個數列的特征,從而得出數列極限的一個描述性定義。再在教師的引導下分析數列極限的各種不同情況。從而對數列極限有了直觀上的認識,接著讓學生根據數列中各項的情況判斷一些簡單的數列的極限。從而達到深化定義的效果。最后進行練習鞏固,通過這樣的一個完整的教學過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學生逐步地了解極限這個新的概念,為下節課的極限的運算及應用做準備,為以后學習高等數學知識打下基礎。在整個教學過程中注意突出重點,突破難點,達到教學目標的要求。
五、教學過程
1.創設情境
課件展示創設情境動畫。
今天我們將要學習一個很重要的新的知識。
情境
1、我國古代數學家劉徽于公元263年創立“割圓術”,“割之彌細,所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。
情境
2、我國古代哲學家莊周所著的《莊子?天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之???如此下去,無限次地切,每次都切一半,問是否會切完?
大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠不會變成零。從而引出極限的概念。
2.定義探究
展示定義探索(一)動畫演示。
問題1:請觀察以下無窮數列,當n無限增大時,a,I的變化趨勢有什么特點?
(1)1/2,2/3,3/4,?n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n??
問題2:觀察課件演示,請分析以上兩個數列隨項數n的增大項有那些特點?
師生一起歸納總結出以下結論:數列(1)項數n無限增大時,項無限趨近于1;數列(2)項數n無限增大時,項無限趨近于1。
那么就把1叫數列(1)的極限,1叫數列(2)的極限。這兩個數列只是形式不同,它們都是隨項數n的無限增大,項無限趨近于某一確定常數,這個常數叫做這個數列的極限。
那么,什么叫數列的極限呢?對于無窮數列an,如果當n無限增大時,an無限趨向于某一個常數A,則稱A是數列an的極限。
提出問題3:怎樣用數學語言來定量描述呢?怎樣用數學語言來描述上述數列的變化趨勢?
展示定義探索(二)動畫演示,師生共同總結發現在數軸上兩點間距離越小,項與1越趨近,因此可以借助兩點間距離無限小的方式來描述項無限趨近常數。無論預先指定多么小的正數e,如取e=O-1,總能在數列中找到一項am,使得an項后面的所有項與1的差的絕對值都小于ε,若取£=0。0001,則第6項后面的所有項與1的差的絕對值都小于ε,即1是數列(1)的極限。最后,師生共同總結出數列的極限定義中應包含哪量(用這些量來描述數列1的極限)。
數列的極限為:對于任意的ε>0,如果總存在自然數N,當n>N時,不等式|an-A|n的極限。
定義探索動畫(一):
課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值,并且動畫演示數列的變化過程。如圖1所示是課件運行時的一個畫面。
定義探索動畫(二)課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值和Ian一1I的值,并且動畫演示出第an項和1之間的距離。如圖2所示是課件運行時的一個畫面。
3.知識應用
這里舉了3道例題,與學生一塊思考,一起分析作答。
例1.已知數列:
1,-1/2,1/3,-1/4,1/5??,(-1)n+11/n,??
(1)計算an-0(2)第幾項后面的所有項與0的差的絕對值都小于0.017都小于任意指定的正數。
(3)確定這個數列的極限。
例2.已知數列:
已知數列:3/2,9/4,15/8??,2+(-1/2)n,??。
猜測這個數列有無極限,如果有,應該是什么數?并求出從第幾項開始,各項與這個極限的差都小于0.1,從第幾項開始,各項與這個極限的差都小于0.017
例3.求常數數列一7,一7,一7,一7,??的極限。
5.知識小結
這節課我們研究了數列極限的概念,對數列極限有了初步的認識。數列極限研究的是無限變化的趨勢,而通過對數列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質變之間的辯證關系在這里得到了充分的體現。
課后練習:
(1)判斷下列數列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。
(2)課本練習1,2。
6.探究性問題
設計研究性學習的思考題。
提出問題:
芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠也無法超過在他前面慢慢爬行的烏龜,因為當阿基里斯到達烏龜的起跑點時,烏龜已經走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當阿基里斯追到O.1公里的地方,烏龜又向前跑了0.01公里。當阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里??這樣一直追下去,阿基里斯能追上烏龜嗎?
這里是研究性學習內容,以學生感興趣的悖論作為課后作業,鞏固本節所學內容,進一步提高了學生學習數列的極限的興趣。同時也為學生創設了課下交流與討論的情境,逐步培養學生相互合作、交流和討論的習慣,使學生感受到了數學來源于生活,又服務于生活的實質,逐步養成用數學的知識去解決生活中遇到的實際問題的習慣。
怎么寫高中數學教案篇2
課題:指數與指數冪的運算
課型:新授課
教學方法:講授法與探究法
教學媒體選擇:多媒體教學
指數與指數冪的運算——學習者分析:
1.需求分析:在研究指數函數前,學生應熟練掌握指數與指數冪的運算,通過本節內容將指數的取值范圍擴充到實數,為學習指數函數打基礎.
2.學情分析:在中學階段已經接觸過正數指數冪的運算,但是這對我們研究指數函數是遠遠不夠的,通過本節課使學生對指數冪的運算和理解更加深入.
指數與指數冪的運算——學習任務分析:
1.教材分析:本節的內容蘊含了許多重要的數學思想方法,如推廣思想,逼近思想,教材充分關注與實際問題的聯系,體現了本節內容的重要性和數學的實際應用價值.
2.教學重點:根式的概念及n次方根的性質;分數指數冪的意義及運算性質;分數指數冪與根式的互化.
3.教學難點:n次方根的性質;分數指數冪的意義及分數指數冪的運算.
指數與指數冪的運算——教學目標闡明:
1.知識與技能:理解根式的概念及性質,掌握分數指數冪的運算,能夠熟練的進行分數指數冪與根式的互化.
2.過程與方法:通過探究和思考,培養學生推廣和逼近的數學思想方法,提高學生的知識遷移能力和主動參與能力.
3.情感態度和價值觀:在教學過程中,讓學生自主探索來加深對n次方根和分數指數冪的理解,而具有探索能力是學習數學、理解數學、解決數學問題的重要方面.
教學流程圖:
指數與指數冪的運算——教學過程設計:
一.新課引入:
(一)本章知識結構介紹
(二)問題引入
1.問題:當生物體死亡后,它機體內原有的碳14會按確定的規律衰減,大約每經過5730年衰減為原來的一半,這個時間稱為“半衰期”.根據此規律,人們獲得了生物體內含量P與死亡年數t之間的關系:
(1)當生物死亡了5730年后,它體內的碳14含量P的值為
(2)當生物死亡了5730×2年后,它體內的碳14含量P的值為
(3)當生物死亡了6000年后,它體內的碳14含量P的值為
(4)當生物死亡了10000年后,它體內的碳14含量P的值為
2.回顧整數指數冪的運算性質
整數指數冪的運算性質:
3.思考:這些運算性質對分數指數冪是否適用呢?
【師】這就是我們今天所要學習的內容《指數與指數冪的運算》
【板書】2.1.1指數與指數冪的運算
二.根式的概念:
【師】下面我們來看幾個簡單的例子.口述平方根,立方根的概念引導學生總結n次方根的概念..
【板書】平方根,立方根,n次方根的符號,并舉一些簡單的方根運算,以便學生觀察總結.
【師】現在我們請同學來總結n次方根的概念..
1.根式的概念
【板書】概念
即如果一個數的n次方等于a(n>1,且n∈N_),那么這個數叫做a的n次方根.
【師】通過剛才所舉的例子不難看出n的奇偶以及a的正負都會影響a的n次方根,下面我們來共同完成這樣一個表格.
【板書】表格
【師】通過這個表格,我們知道負數沒有偶次方根.那么0的n次方根是什么?
【學生】0的n次方根是0.
【師】現在我們來對這個符號作一說明.
例1.求下列各式的值
【注】本題較為簡單,由學生口答即可,此處過程省略.
三.n次方根的性質
【注】對于1提問學生a的取值范圍,讓學生思考便能得出結論.
【注】對于2,少舉幾個例子讓學生觀察,并起來說他們的結論.
1.n次方根的性質
四.分數指數冪
【師】這兩個根式可以寫成分數指數冪的形式,是因為根指數能整除被開方數的指數,那么請大家思考下面的問題.
思考:根指數不能整除被開方數的指數時還能寫成分數指數冪的形式嗎
【師】如果成立那么它的意義是什么,我們有這樣的規定.
(一)分數指數冪的意義:
1.我們規定正數的正分數指數冪的意義是:
2.我們規定正數的負分數指數冪的意義是:
3.0的正分數指數冪等于0,0的負分數指數冪沒有意義.
(二)指數冪運算性質的推廣:
五.例題
例2.求值
【注】此處例2讓學生上黑板做,例3待學生完成后老師在黑板板演,例4讓學生黑板上做,然后糾正錯誤.
六.課堂小結
1.根式的定義;
2.n次方根的性質;
3.分數指數冪.
七.課后作業
P59習題2.1A組1.2.4.
八.課后反思
1.在第一節課的時候沒有把重要的內容寫在黑板上,而且運算性質中a,r,s的條件沒有給出,另外課件中有一處錯誤.第二節課時改正了第一節課的錯誤.
2.有許多問題應讓學生回答,不能自問自答.根式性質的思考沒有講清楚,應該給學生更多的時間來回答和思考問題,與之互動太少.
3.講課過程中還有很多細節處理不好,并且講課聲音較小,沒有起伏.
4.課前的章節知識結構很好,引入簡單到位,亮點是概念后的表格.
怎么寫高中數學教案篇3
【高考要求】:三角函數的有關概念(B).
【教學目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.
理解任意角三角函數(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數線表示任意角的正弦、余弦、正切.
【教學重難點】:終邊相同的角的意義和任意角三角函數(正弦、余弦、正切)的定義.
【知識復習與自學質疑】
一、問題.
1、角的概念是什么?角按旋轉方向分為哪幾類?
2、在平面直角坐標系內角分為哪幾類?與終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數有什么樣的關系?
4、弧度制下圓的弧長公式和扇形的面積公式是什么?
5、任意角的三角函數的定義是什么?在各象限的符號怎么確定?
6、你能在單位圓中畫出正弦、余弦和正切線嗎?
7、同角三角函數有哪些基本關系式?
二、練習.
1.給出下列命題:
(1)小于的角是銳角;(2)若是第一象限的角,則必為第一象限的角;
(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2與角的終邊不可能相同;
(7)若角與角有相同的終邊,則角(的終邊必在軸的非負半軸上。其中正確的命題的序號是
2.設P點是角終邊上一點,且滿足則的值是
3.一個扇形弧AOB的面積是1,它的周長為4,則該扇形的中心角=弦AB長=
4.若則角的終邊在象限。
5.在直角坐標系中,若角與角的終邊互為反向延長線,則角與角之間的關系是
6.若是第三象限的角,則-,的終邊落在何處?
【交流展示、互動探究與精講點撥】
例1.如圖,分別是角的終邊.
(1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在上所有角的集合;
(3)求始邊在OM位置,終邊在ON位置的所有角的集合.
例2.(1)已知角的終邊在直線上,求的值;
(2)已知角的終邊上有一點A,求的值。
例3.若,則在第象限.
例4.若一扇形的周長為20,則當扇形的圓心角等于多少弧度時,這個扇形的面積最大?最大面積是多少?
【矯正反饋】
1、若銳角的終邊上一點的坐標為,則角的弧度數為.
2、若,又是第二,第三象限角,則的取值范圍是.
3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數是弧度或角度,該扇形的面積是.
4、已知點P在第三象限,則角終邊在第象限.
5、設角的終邊過點P,則的值為.
6、已知角的終邊上一點P且,求和的值.
【遷移應用】
1、經過3小時35分鐘,分針轉過的角的弧度是.時針轉過的角的弧度數是.
2、若點P在第一象限,則在內的取值范圍是.
3、若點P從(1,0)出發,沿單位圓逆時針方向運動弧長到達Q點,則Q點坐標為.
4、如果為小于360的正角,且角的7倍數的角的終邊與這個角的終邊重合,求角的值.
怎么寫高中數學教案篇4
一、 知識梳理
1.三種抽樣方法的聯系與區別:
類別 共同點 不同點 相互聯系 適用范圍
簡單隨機抽樣 都是等概率抽樣 從總體中逐個抽取 總體中個體比較少
系統抽樣 將總體均勻分成若干部分;按事先確定的規則在各部分抽取 在起始部分采用簡單隨機抽樣 總體中個體比較多
分層抽樣 將總體分成若干層,按個體個數的比例抽取 在各層抽樣時采用簡單隨機抽樣或系統抽樣 總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為
(2)系統抽樣的步驟: ①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數;③各層抽樣;④匯合成樣本.
(4) 要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數是矩形的中點的橫坐標③中位數的左邊與右邊的直方圖的面積相等,可以由此估計中位數的值
2.方差和標準差都是刻畫數據波動大小的數字特征,一般地,設一組樣本數據 , ,…, ,其平均數為 則方差 ,標準差
3.古典概型的概率公式:如果一次試驗中可能出現的結果有 個,而且所有結果都是等可能的,如果事件 包含 個結果,那么事件 的概率P=
特別提醒:古典概型的兩個共同特點:
○1 ,即試中有可能出現的基本事件只有有限個,即樣本空間Ω中的元素個數是有限的;
○2 ,即每個基本事件出現的可能性相等。
4. 幾何概型的概率公式: P(A)=
特別提醒:幾何概型的特點:試驗的結果是無限不可數的;○2每個結果出現的可能性相等。
二、夯實基礎
(1)某單位有職工160名,其中業務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業務人員、管理人員、后勤人員的人數應分別為____________.
(2)某賽季,甲、乙兩名籃球運動員都參加了
11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運動員得分的中位數分別為( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)統計某校1000名學生的數學會考成績,
得到樣本頻率分布直方圖如右圖示,規定不低于60分為
及格,不低于80分為優秀,則及格人數是 ;優秀率為 。
(4)在一次歌手大獎賽上,七位評委為歌手打出的分數如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一個分和一個最低分后,所剩數據的平均值和方差分別為( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點數,則以第一次向上點數為橫坐標x,第二次向上的點數為縱坐標y的點(x,y)在圓x2+y2=27的內部的概率________.
(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )
三、高考鏈接
07、某班50名學生在一次百米測試中,成績全部介于13秒與19秒之間,將測試結果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒; 第六組,成績大于等于18秒且小于等于19秒.右圖
是按上述分組方法得到的頻率分布直方圖.設成績小于17秒的學生人數占全班總人數的百分比為 ,成績大于等于15秒且小于17秒的學生人數為 ,則從頻率分布直方圖中可分析出 和 分別為( )
08、從某項綜合能力測試中抽取100人的成績,統計如表,則這100人成績的標準差為( )
分數 5 4 3 2 1
人數 20 10 30 30 10
09、在區間 上隨機取一個數x, 的值介于0到 之間的概率為( ).
08、現有8名奧運會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(Ⅰ)求 被選中的概率;(Ⅱ)求 和 不全被選中的概率.
怎么寫高中數學教案篇5
一.教學目標:
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的交集與并集
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集
(3)能使用venn圖表達集合的運算,體會直觀圖示對理解抽象概念的作用
2.過程與方法
學生通過觀察和類比,借助venn圖理解集合的基本運算
3.情感.態度與價值觀
(1)進一步樹立數形結合的思想
(2)進一步體會類比的作用
(3)感受集合作為一種語言,在表示數學內容時的簡潔和準確
二.教學重點.難點
重點:交集與并集,全集與補集的概念
難點:理解交集與并集的概念,符號之間的區別與聯系
三.學法與教學用具
1.學法:學生借助venn圖,通過觀察、類比、思考、交流和討論等,理解集合的基本運算
2.教學用具:投影儀
四.教學思路
(一)創設情景,揭示課題
問題1:我們知道,實數有加法運算。類比實數的加法運算,集合是否也可以“相加”呢?
請同學們考察下列各個集合,你能說出集合c與集合a、b之間的關系嗎?
引導學生通過觀察,類比、思考和交流,得出結論。教師強調集合也有運算,這就是我們本節課所要學習的內容。
(二)研探新知
l.并集
—般地,由所有屬于集合a或屬于集合b的元素所組成的集合,稱為集合a與b的并集
記作:a∪b
讀作:a并b
其含義用符號表示為:
用venn圖表示如下:
請同學們用并集運算符號表示問題1中a,b,c三者之間的關系
練習、檢查和反饋
(1)設a={4,5,6,8),b={3,5,7,8),求a∪b
(2)設集合
讓學生獨立完成后,教師通過檢查,進行反饋,并強調:
(1)在求兩個集合的并集時,它們的公共元素在并集中只能出現一次
(2)對于表示不等式解集的集合的運算,可借助數軸解題
2.交集
(1)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?
請同學們考察下面的問題,集合a、b與集合c之間有什么關系?
②b={是新華中學20--年9月入學的高一年級同學},c={是新華中學20--年9月入學的高一年級女同學}
教師組織學生思考、討論和交流,得出結論,從而得出交集的定義;
一般地,由屬于集合a且屬于集合b的所有元素組成的集合,稱為a與b的交集
記作:a∩b
讀作:a交b
其含義用符號表示為:
接著教師要求學生用venn圖表示交集運算
(2)練習、檢查和反饋
①設平面內直線上點的集合為,直線上點的集合為,試用集合的運算表示的位置關系
②學校里開運動會,設a={是參加一百米跑的同學},b={是參加二百米跑的同學},c={是參加四百米跑的同學},學校規定,在上述比賽中,每個同學最多只能參加兩項比賽,請你用集合的運算說明這項規定,并解釋集合運算a∩b與a∩c的含義
學生獨立練習,教師檢查,作個別指導,并對學生中存在的問題進行反饋和糾正
(三)學生自主學習,閱讀理解
1.教師引導學生閱讀教材第10~11頁中有關補集的內容,并思考回答下例問題:
(1)什么叫全集?
(2)補集的含義是什么?用符號如何表示它的含義?用venn圖又表示?
(3)已知集合
(4)設s={是至少有一組對邊平行的四邊形},a={是平行四邊形},b={是菱形},c={是矩形},求。
在學生閱讀、思考的過程中,教師作個別指導,待學生經過閱讀和思考完后,請學生回答上述問題,并及時給予評價
(四)歸納整理,整體認識
1.通過對集合的學習,同學對集合這種語言有什么感受?
2.并集、交集和補集這三種集合運算有什么區別?
(五)作業
1.課外思考:對于集合的基本運算,你能得出哪些運算規律?
2.請你舉出現實生活中的一個實例,并說明其并集,交集和補集的現實含義
3.書面作業:教材第12頁習題1.1a組第7題和b組第4題
怎么寫高中數學教案篇6
1.樹立新型的數學教學觀念,明確數學的實用意義
高中數學是人類對社會認識的重要方面,也是一門極具實用性的基礎性學科。教師在進行數學教學的過程中,要將數學知識背后蘊含的文化背景與文化知識傳達給學生,讓學生從基礎的數學知識中掌握真正的數學思維,學會運用數學技巧解決生活中的實際問題,要讓學生明確數學所蘊含的社會意義,以更好地培養數學理念,使學生更好地運用數學,對數學產生真正的興趣。
2.提升教師的教學素質,轉變教師角色定位
在新課程標準下,教師在數學教學中的角色由控制者轉變為引導者。因此,教師必須要學會提升自身的素質,轉變教學觀念,通過良好的師風師德引導學生積極投入到學習過程中。學校要定期進行培訓,加強學校之間的交流,通過互相學習、合作提升教師的素質,促進教師角色的轉變。教師要在教學的過程中重視對學生個性的激發以及學生創新精神的鼓勵,教師要引導學生主動發表自身對學習問題的看法,要讓學生成為真正的主人,促進學生多元思維的發展。
3.合理運用信息技術,培養學生的科學思維
高中數學教學過程中,信息技術的應用必不可少,但是也不能過分強調信息技術的作用。教師在教學過程中,要充分把握數學知識的特點,要將抽象的數學概念、知識框架等內容通過多媒體技術轉化為形象具體的畫面以利于學生的理解和吸收,但是對于那些需要進行基礎性訓練、推理論證的問題,要讓學生親手進行實踐分析。教師可以利用科學性的計算器或者技術教育平臺,推廣計算機技術在數學領域的運用,要充分重視學生的地域性特征,在學生對計算機技術已經形成基本認識的基礎上進行新課標內容的講解和分析,防止出現盲目追求進度,忽視學生基礎等問題的發生。
怎么寫高中數學教案篇7
教學目標:
1、理解流程圖的選擇結構這種基本邏輯結構。
2、能識別和理解簡單的框圖的功能。
3、能運用三種基本邏輯結構設計流程圖以解決簡單的問題。
教學方法:
1、通過模仿、操作、探索,經歷設計流程圖表達求解問題的過程,加深對流程圖的感知。
2、在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結構。
教學過程:
一、問題情境
情境:
某鐵路客運部門規定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量。
試給出計算費用(單位:元)的一個算法,并畫出流程圖。
二、學生活動
學生討論,教師引導學生進行表達。
解算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費。
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6。
在上述計費過程中,第二步進行了判斷。
三、建構數學
1、選擇結構的概念:
先根據條件作出判斷,再決定執行哪一種操作的結構稱為選擇結構。
如圖:虛線框內是一個選擇結構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執行,否則執行。
2、說明:
(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判斷的不同情況進行不同的操作,這類問題的實現就要用到選擇結構的設計;
(2)選擇結構也稱為分支結構或選取結構,它要先根據指定的條件進行判斷,再由判斷的結果決定執行兩條分支路徑中的某一條;
(3)在上圖的選擇結構中,只能執行和之一,不可能既執行,又執行,但或兩個框中可以有一個是空的,即不執行任何操作;
(4)流程圖圖框的形狀要規范,判斷框必須畫成菱形,它有一個進入點和兩個退出點。
3、思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
怎么寫高中數學教案篇8
教學內容背景材料:
義務教育課程標準實驗教科書(人教版)二年級上冊第八單元的排列與組合
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。
2、經歷探索簡單事物排列與組合規律的過程。
3、培養學生有順序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,激發學生學好數學的信心。
教學重點:經歷探索簡單事物排列與組合規律的過程
教學難點:初步理解簡單事物排列與組合的不同
教具準備:教學課件
學具準備:每生準備3張數字卡片,學具袋
教學過程:
一、創設問題情境:
師:森林學校的數學課上,猴博士出了這樣一道題(課件出示)用數字1、2能寫出幾個兩位數?問題剛說完小動物們都紛紛舉手說能寫成兩個數:12、21。接著猴博士又加上了一個數字3,問:“用數字1、2、3能寫出幾個兩位數呢?”小豬站起來說能寫成3個,小熊說5個,小狗說7個,到底能寫出幾個呢?用學生感興趣的童話故事引入,易于激發起學生探究的興趣,同時也向學生滲透助人為樂的品德教育。
1.自主合作探索新知
試一試
師:請同學們也試著寫一寫,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。
學生活動教師巡視。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)引導學生根據自己的實際情況選擇不同的方法探究新知,體現了不同的孩子用不同的方式學習數學這一新的教學理念,易于吸引不同層次的學生積極主動的參與到活動中來。
2.發現問題
學生匯報所寫個數,教師根據巡視的情況重點展示幾份,引導學生發現問題:有的重復寫了,有的漏寫了。
引導學生發現寫數過程中出現的問題,并就此展開討論、交流,遵循了學生的認知特點。學生在交流的過程中體驗到解決問題方法的多樣性,并根據自己的實際選擇不同的方法,尊重了學生的主體地位。在此過程中學生收獲的不僅是知識本身,更多的是能力、情感。
3.小組討論
師:每個同學寫出的個數不同,怎樣才能很快寫出所有的用數字1、2、3組成的兩位數,并做到不重復不遺漏呢?
學生以小組為單位交流討論。
4.小組匯報
匯報時可能會出現下面幾種情況:
1、無序的。
2、先寫出1在十位上的有12、13;再寫出2在十位上的有21、23;再寫出3在十位上的有31、32。
3、用數字1、2能寫出12、21;用數字2、3能寫出23、32;用數字1、3能寫出13、31。
4、引導學生及時評價每一種方法的優缺點,使其把適合自己的方法掌握起來。
5.小結
教師簡單小結學生所想方法引出練習內容。
6、拓展應用
數字2、3、4、5、出個兩位數?寫完交流。(或者也可用這樣一道題:用△○□能擺成6種排法,例如:□○△
請你試著擺出其他幾種排法。學習的目的是為了應用,讓學生自主的選擇方法進行練習,有利于培養學生的自主學習的能力。
二、組合
故事引入
師:下課了小狗、小熊、小豬做“找朋友”的游戲,好朋友見面之后要握握手,每兩只小動物握一次手,小狗、小熊、小豬一共握幾次手?怎樣握?用同一條故事主線貫穿整節課的始終,以問題串的形式展開全課,能讓學生始終保持濃厚的學習興趣,充分體驗到數學與生活的聯系。
探索新知
學生在充分獨立思考的基礎上展開小組交流,并3人一組親身實踐一下。
匯報思考的過程。
三、比較
師:剛才我們幫森林學校的小動物們解決了用數字1、2、3能寫幾個兩位數;3只小動物每兩個握一次手共握幾次手的問題,森林學校的小動物們直夸同學們聰明呢!通過解決這兩個問題你發現了什么?
生可能說用3個數字能寫出6個兩位數,3只小動物每兩人握一次手共握3次。
引導學生明確排列與順序有關而組合與順序無關。兩只小動物握一次手個?通過比較明確兩種問題的同與不同,便于建立起清晰的知識結構,進一步深化學生的認識。
四、拓展應用
1.小狗要參加學校的時裝表演,媽媽為它準備了4件衣服(課件出示2件上衣、2件褲子的圖片),請你幫小狗設計一下共有多少種穿法。如果需要的話可以用學具擺一擺。
交流想法。在兒童的生活經驗里積累了一些搭配衣服,購物花錢的知識經驗,所以學生樂于參與。
2.完成課本99頁的第2題
五、課堂總結
怎么寫高中數學教案篇9
教學目標:
1、進一步熟練掌握比較法證明不等式;
2、了解作商比較法證明不等式;
3、提高學生解題時應變能力.
教學重點:
比較法的應用
教學難點:
常見解題技巧
教學方法啟發引導式
教學活動
(一)導入新課
(教師活動)教師打出字幕(復習提問),請三位同學回答問題,教師點評.
(學生活動)思考問題,回答.
[字幕]
1、比較法證明不等式的步驟是怎樣的?
2、比較法證明不等式的步驟中,依據、手段、目的各是什么?
3、用比較法證明不等式的步驟中,最關鍵的是哪一步?學了哪些常用的變形方法?對式子的變形還有其它方法嗎?
[點評]用比較法證明不等式步驟中,關鍵是對差式的變形.在我們所學的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節課我們將繼續學習比較法證明不等式,積累對差式變形的常用方法和比較法思想的應用.(板書課題)
設計意圖:復習鞏固已學知識,銜接新知識,引入本節課學習的內容.
(二)新課講授
【嘗試探索,建立新知】
(教師活動)提出問題,引導學生研究解決問題,并點評.
(學生活動)嘗試解決問題.
[問題]
1、化簡
2、比較與()的大小.
(學生解答問題)
[點評]
①問題1,我們采用了因式分解的方法進行簡化.
②通過學習比較法證明不等式,我們不難發現,比較法的思想方法還可用來比較兩個式子的大小.
設計意圖:啟發學生研究問題,建立新知,形成新的知識體系.
【例題示范,學會應用】
(教師活動)教師打出字幕(例題),引導、啟發學生研究問題,井點評解題過程.
(學生活動)分析,研究問題.
[字幕]例題3已知a,b是正數,且,求證
[分析]依題目特點,作差后重新組項,采用因式分解來變形.
證明:(見課本)
[點評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個因式的積的形式,在確定符號中,表達過程較復雜,如何書寫證明過程,例3給出了一個好的示范.
[點評]解這道題在判斷符號時用了分類討論,分類討論是重要的數學思想方法.要理解為什么分類,怎樣分類.分類時要不重不漏.
[字幕]例5甲、乙兩人同時同地沿同一條路線走到同一地點.甲有一半時間以速度m行走,另一半時間以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果,問甲、乙兩人誰先到達指定地點.
[分析]設從出發地點至指定地點的路程為,甲、乙兩人走完這段路程用的時間分別為,要回答題目中的問題,只要比較、的大小就可以了.
解:(見課本)
[點評]此題是一個實際問題,學習了如何利用比較法證明不等式的思想方法解決有關實際問題.要培養自己學數學,用數學的良好品質.
設計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號的方法.培養學生應用知識解決實際問題的能力.
【課堂練習】
(教師活動)教師打出字幕練習,要求學生獨立思考,完成練習;請甲、乙兩位學生板演;巡視學生的解題情況,對正確的給予肯定,對偏差及時糾正;點評練習中存在的問題.
(學生活動)在筆記本上完成練習,甲、乙兩位同學板演.
[字幕]練習:
1、設,比較與的大小.
2、已知,求證
設計意圖:掌握比較法證明不等式及思想方法的應用.靈活掌握因式分解法對差式的變形和分類討論確定符號.反饋信息,調節課堂教學.
【分析歸納、小結解法】
(教師活動)分析歸納例題的解題過程,小結對差式變形、確定符號的常用方法和利用不等式解決實際問題的解題步驟.
(學生活動)與教師一道小結,并記錄在筆記本上.
1、比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個式子大小的一種重要方法.
2、對差式變形的常用方法有:配方法,通分法,因式分解法等.
3、會用分類討論的方法確定差式的符號.
4、利用不等式解決實際問題的解題步驟:
①類比列方程解應用題的步驟.
②分析題意,設未知數,找出數量關系(函數關系,相等關系或不等關系),
③列出函數關系、等式或不等式,
④求解,作答.
設計意圖:培養學生分析歸納問題的能力,掌握用比較法證明不等式的知識體系.
(三)小結
(教師活動)教師小結本節課所學的知識及數學思想與方法.
(學生活動)與教師一道小結,并記錄筆記.
本節課學習了對差式變形的一種常用方法因式分解法;對符號確定的分類討論法;應用比較法的思想解決實際問題.
通過學習比較法證明不等式,要明確比較法證明不等式的理論依據,理解轉化,使問題簡化是比較法證明不等式中所蘊含的重要數學思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學習中繼續積累方法,培養用數學知識解決實際問題的`能力.
設計意圖:培養學生對所學的知識進行概括歸納的能力,鞏固所學的知識,領會化歸、類比、分類討論的重要數學思想方法.
(四)布置作業
1、課本作業:P177、8。
2、思考題:已知,求證
3、研究性題:對于同樣的距離,船在流水中來回行駛一次的時間和船在靜水中來回行駛一次的時間是否相等?(假設船在流水中的速度和部在靜水中的速度保持不變)
設計意圖:思考題讓學生了解商值比較法,掌握分類討論的思想.研究性題是使學生理論聯系實際,用數學解決實際問題,提高應用數學的能力.
(五)課后點評
1、教學評價、反饋調節措施的構想:本節課采用啟發引導,講練結合的授課方式,發揮教師主導作用,體現學生主體地位,通過啟發誘導學生深入思考問題,解決問題,反饋學習信息,調節教學活動.
2、教學措施的設計:由于對差式變形,確定符號是掌握比較法證明不等式的關鍵,本節課在上節課的基礎上繼續學習差式變形的方法和符號的確定,例3和例4分別使學生掌握因式分解變形和分類討論確定符號,例5使學生對所學的知識會應用.例題設計目的在于突出重點,突破難點,學會應用
怎么寫高中數學教案篇10
一.教學目標:
1.知識與技能:認識正弦、余弦定理,了解三角形中的邊與角的關系。
2.過程與方法:通過具體的探究活動,了解正弦、余弦定理的內容,并從具體的實例掌握正弦、余弦定理的應用。
3.情感態度與價值觀:通過對實例的探究,體會到三角形的和諧美,學會穩定性的重要。
二.教學重、難點:
重點:
正弦、余弦定理應用以及公式的變形
難點:
運用正、余弦定理解決有關斜三角形問題。
知識梳理
1.正弦定理和余弦定理
在△ABC中,若角A,B,C所對的邊分別是a,b,c,則
(1)S=2ah(h表示邊a上的高)
(2)S=2bcsinA=2sinC=2acsinB
(3)S=2r(a+b+c)(r為△ABC內切圓半徑)
問題1:在△ABC中,a=3,b2,A=60°求c及BC問題2在△ABC中,c=6A=30°B=120°求ab及C
問題3在△ABC中,a=5,c=4,cosA=16,則b=
通過對上述三個較簡單問題的解答指導學生總結正余弦定理的應用;正弦定理可以解決
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊和其他兩角
余弦定理可以解決
(1)已知三邊,求三個角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角
我們不難發現利用正余弦定理可以解決三角形中“知三求三”知三中必須要有一邊
應用舉例
【例1】(1)(2013·湖南卷)在銳角△ABC中,角A,B所對的邊長分別為a,b.若2asinB3b,則角A等于()
A.3B.4C.6
(2)(20__·杭州模擬)在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,c=2,B=45°,則sinC=______.
解析(1)在△ABC中,由正弦定理及已知得2sinA·sinB=3sinB,∵B為△ABC的內角,∴sinB≠0.3
∴sinA=2又∵△ABC為銳角三角形,
∴A∈02,∴A=3
(2)由余弦定理,得b2=a2+c2-2accosB=1+32-2×2=25,即b=5.c·sinB
所以sinCb4
答案(1)A(2)5
【訓練1】(1)在△ABC中,a=3,c=2,A=60°,則C=
A.30°B.45°C.45°或135°D.60°
(2)在△ABC中,內角A,B,C的對邊分別是a,b,c,若a2-b2=3bc,sinC=3sinB,則A=
A.30°B.60°C.120°D.150°
解析(1)由正弦定理,得sin60°sinC,解得:sinC=2,又c<a,所以C<60°,所以C=45°
(2)∵sinC=23sinB,由正弦定理,得c=23b,b2+c2-a2-3bc+c2-3bc+3bc3∴cosA=2bc==2bc2bc2,又A為三角形的內角,∴A=30°.
答案(1)B(2)A
規律方法
已知兩角和一邊,該三角形是確定的,其解是唯一的;
已知兩邊和一邊的對角,該三角形具有不唯一性,通常根據三角函數值的有界性和大邊對大角定理進行判斷。
【例2】(20__·臨沂一模)在△ABC中,a,b,c分別為內角A,B,C的對邊,且2asinA=(2b-c)sinB+(2c-b)sinC.(1)求角A的大小;
(2)若sinB+sinC=3,試判斷△ABC的形狀。
解(1)由2asinA=(2b-c)sinB+(2c-b)sinC,
得2a2=(2b-c)b+(2c-b)c,
即bc=b2+c2-a2,b2+c2-a21
∴cosA=2bc=2,
∴A=60°.
(2)∵A+B+C=180°,
∴B+C=180°-60°=120°
由sinB+sinC=3,
得sinB+sin(120°-B)=3,
∴sinB+sin120°cosB-cos120°sinB=3.33
∴2sinB+2B=3,
即sin(B+30°)=1.∵0°<b<120°,<p="">
∴30°<b+30°<150°.<p="">
∴B+30°=90°,B=60°.
∴A=B=C=60°,
△ABC為等邊三角形.
規律方法
解決判斷三角形的形狀問題,一般將條件化為只含角的三角函數的關系式,然后利用三角恒等變換得出內角之間的關系式;
或將條件化為只含有邊的關系式,然后利用常見的化簡變形得出三邊的關系。另外,在變形過程中要注意A,B,C的范圍對三角函數值的影響。
課堂小結
1.在解三角形的問題中,三角形內角和定理起著重要作用,在解題時要注意根據這個定理確定角的范圍及三角函數值的符號,防止出現增解或漏解。
2.正、余弦定理在應用時,應注意靈活性,尤其是其變形應用時可相互轉化.如a2=b2+c2-2bccosA可以轉化為sin2A=sin2B+sin2C-2sinBsinCcosA,利用這些變形可進行等式的化簡與證明。