小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

最新高中數學教案怎么寫

時間: 新華 數學教案

教案可以幫助教師提高教學質量,以便更好地提升學生的學習成績。優秀的最新高中數學教案怎么寫應該是怎樣的?快來學習最新高中數學教案怎么寫的撰寫技巧,跟著小編一起來參考!

最新高中數學教案怎么寫篇1

教學目標

1、明確等差數列的定義。

2、掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題

3、培養學生觀察、歸納能力。

教學重點

1、等差數列的概念;

2、等差數列的通項公式

教學難點

等差數列“等差”特點的理解、把握和應用

教具準備

投影片1張

教學過程

(I)復習回顧

師:上兩節課我們共同學習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數列有什么共同的特點?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:積極思考,找上述數列共同特點。

對于數列①(1≤n≤6);(2≤n≤6)

對于數列②-2n(n≥1)(n≥2)

對于數列③(n≥1)(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。

師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。

一、定義:

等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。

如:上述3個數列都是等差數列,它們的公差依次是1,-2。

二、等差數列的通項公式

師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列的首項是,公差是d,則據其定義可得:

若將這n-1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。

如數列①(1≤n≤6)

數列②:(n≥1)

數列③:(n≥1)

由上述關系還可得:即:則:=如:

三、例題講解

例1:(1)求等差數列8,5,2…的第20項

(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。

(Ⅲ)課堂練習

生:(口答)課本P118練習3

(書面練習)課本P117練習1

師:組織學生自評練習(同桌討論)

(Ⅳ)課時小結

師:本節主要內容為:

①等差數列定義。

即(n≥2)

②等差數列通項公式(n≥1)

推導出公式:

(V)課后作業

一、課本P118習題3.21,2

二、1、預習內容:課本P116例2P117例4

2、預習提綱:

①如何應用等差數列的定義及通項公式解決一些相關問題?

②等差數列有哪些性質?

最新高中數學教案怎么寫篇2

人教版高中數學必修5教案

(一)課標要求

本章的中心內容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應用上。通過本章學習,學生應當達到以下學習目標:

(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的生活實際問題。

(二)編寫意圖與特色

1.數學思想方法的重要性

數學思想方法的教學是中學數學教學中的重要組成部分,有利于學生加深數學知識的理解和掌握。

本章重視與內容密切相關的數學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導。本章的兩個主要數學結論是正弦定理和余弦定理,它們都是關于三角形的邊角關系的結論。在初中,學生已經學習了相關邊角關系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,那么這兩個三角形全”等。

教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題。”設置這些問題,都是為了加強數學思想方法的教學。

2.注意加強前后知識的聯系

加強與前后各章教學內容的聯系,注意復習和應用已學內容,并為后續章節教學內容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數學知識的學習和鞏固。

本章內容處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯系。教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的`問題。”這樣,從聯系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結構。

《課程標準》和教科書把“解三角形”這部分內容安排在數學五的第一部分內容,

位置相對靠后,在此內容之前學生已經學習了三角函數、平面向量、直線和圓的方程等與本章知識聯系密切的內容,這使這部分內容的處理有了比較多的工具,某些內容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發揮了向量方法在解決問題中的威力。

在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的關系?”,并進而指出,“從余弦定理以及余弦函數的性質可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

3.重視加強意識和數學實踐能力

學數學的最終目的是應用數學,而如今比較突出的兩個問題是,學生應用數學的意識不強,創造能力較弱。學生往往不能把實際問題抽象成數學問題,不能把所學的數學知識應用到實際問題中去,對所學數學知識的實際背景了解不多,雖然學生機械地模仿一些常見數學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發現問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發,引入數學課題,最后把數學知識應用于實際問題。

最新高中數學教案怎么寫篇3

教學目標

1.了解函數的單調性和奇偶性的概念,掌握有關證明和判斷的基本方法.

(1)了解并區分增函數,減函數,單調性,單調區間,奇函數,偶函數等概念.

(2)能從數和形兩個角度認識單調性和奇偶性.

(3)能借助圖象判斷一些函數的單調性,能利用定義證明某些函數的單調性;能用定義判斷某些函數的奇偶性,并能利用奇偶性簡化一些函數圖象的繪制過程.

2.通過函數單調性的證明,提高學生在代數方面的推理論證能力;通過函數奇偶性概念的形成過程,培養學生的觀察,歸納,抽象的能力,同時滲透數形結合,從特殊到一般的數學思想.

3.通過對函數單調性和奇偶性的理論研究,增學生對數學美的體驗,培養樂于求索的精神,形成科學,嚴謹的研究態度.

教學建議

一、知識結構

(1)函數單調性的概念。包括增函數、減函數的定義,單調區間的概念函數的單調性的判定方法,函數單調性與函數圖像的關系.

(2)函數奇偶性的概念。包括奇函數、偶函數的定義,函數奇偶性的判定方法,奇函數、偶函數的圖像.

二、重點難點分析

(1)本節教學的重點是函數的單調性,奇偶性概念的形成與認識.教學的難點是領悟函數單調性, 奇偶性的本質,掌握單調性的證明.

(2)函數的單調性這一性質學生在初中所學函數中曾經了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現在要求把它上升到理論的高度,用準確的數學語言去刻畫它.這種由形到數的翻譯,從直觀到抽象的轉變對高一的學生來說是比較困難的,因此要在概念的形成上重點下功夫.單調性的證明是學生在函數內容中首次接觸到的代數論證內容,學生在代數論證推理方面的能力是比較弱的,許多學生甚至還搞不清什么是代數證明,也沒有意識到它的重要性,所以單調性的證明自然就是教學中的難點.

三、教法建議

(1)函數單調性概念引入時,可以先從學生熟悉的一次函數,,二次函數.反比例函數圖象出發,回憶圖象的增減性,從這點感性認識出發,通過問題逐步向抽象的定義靠攏.如可以設計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數值的關系的角度來解釋,引導學生發現自變量與函數值的的變化規律,再把這種規律用數學語言表示出來.在這個過程中對一些關鍵的詞語(某個區間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結合起來.

(2)函數單調性證明的步驟是嚴格規定的,要讓學生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應有不同的變換目標為選題的標準,以便幫助學生總結規律.

函數的奇偶性概念引入時,可設計一個課件,以的圖象為例讓自變量互為相反數觀察對應的函數值的變化規律先從具體數值開始逐漸讓在數軸上動起來觀察任意性再讓學生把看到的用數學表達式寫出來.經歷了這樣的過程再得到等式就比較容易體會它代表的是無數多個等式是個恒等式.關于定義域關于原點對稱的問題也可借助課件將函數圖象進行多次改動幫助學生發現定義域的對稱性同時還可以借助圖象(如)說明定義域關于原點對稱只是函數具備奇偶性的必要條件而不是充分條件.

最新高中數學教案怎么寫篇4

一.教學目標:

1.知識與技能:認識正弦、余弦定理,了解三角形中的邊與角的關系。

2.過程與方法:通過具體的探究活動,了解正弦、余弦定理的內容,并從具體的實例掌握正弦、余弦定理的應用。

3.情感態度與價值觀:通過對實例的探究,體會到三角形的和諧美,學會穩定性的重要。

二.教學重、難點:

重點:

正弦、余弦定理應用以及公式的變形

難點:

運用正、余弦定理解決有關斜三角形問題。

知識梳理

1.正弦定理和余弦定理

在△ABC中,若角A,B,C所對的邊分別是a,b,c,則

(1)S=2ah(h表示邊a上的高)

(2)S=2bcsinA=2sinC=2acsinB

(3)S=2r(a+b+c)(r為△ABC內切圓半徑)

問題1:在△ABC中,a=3,b2,A=60°求c及BC問題2在△ABC中,c=6A=30°B=120°求ab及C

問題3在△ABC中,a=5,c=4,cosA=16,則b=

通過對上述三個較簡單問題的解答指導學生總結正余弦定理的應用;正弦定理可以解決

(1)已知兩角和任一邊,求其他兩邊和一角;

(2)已知兩邊和其中一邊的對角,求另一邊和其他兩角

余弦定理可以解決

(1)已知三邊,求三個角;

(2)已知兩邊和它們的夾角,求第三邊和其他兩角

我們不難發現利用正余弦定理可以解決三角形中“知三求三”知三中必須要有一邊

應用舉例

【例1】(1)(2013·湖南卷)在銳角△ABC中,角A,B所對的邊長分別為a,b.若2asinB3b,則角A等于()

A.3B.4C.6

(2)(20__·杭州模擬)在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,c=2,B=45°,則sinC=______.

解析(1)在△ABC中,由正弦定理及已知得2sinA·sinB=3sinB,∵B為△ABC的內角,∴sinB≠0.3

∴sinA=2又∵△ABC為銳角三角形,

∴A∈02,∴A=3

(2)由余弦定理,得b2=a2+c2-2accosB=1+32-2×2=25,即b=5.c·sinB

所以sinCb4

答案(1)A(2)5

【訓練1】(1)在△ABC中,a=3,c=2,A=60°,則C=

A.30°B.45°C.45°或135°D.60°

(2)在△ABC中,內角A,B,C的對邊分別是a,b,c,若a2-b2=3bc,sinC=3sinB,則A=

A.30°B.60°C.120°D.150°

解析(1)由正弦定理,得sin60°sinC,解得:sinC=2,又c<a,所以C<60°,所以C=45°

(2)∵sinC=23sinB,由正弦定理,得c=23b,b2+c2-a2-3bc+c2-3bc+3bc3∴cosA=2bc==2bc2bc2,又A為三角形的內角,∴A=30°.

答案(1)B(2)A

規律方法

已知兩角和一邊,該三角形是確定的,其解是唯一的;

已知兩邊和一邊的對角,該三角形具有不唯一性,通常根據三角函數值的有界性和大邊對大角定理進行判斷。

【例2】(20__·臨沂一模)在△ABC中,a,b,c分別為內角A,B,C的對邊,且2asinA=(2b-c)sinB+(2c-b)sinC.(1)求角A的大小;

(2)若sinB+sinC=3,試判斷△ABC的形狀。

解(1)由2asinA=(2b-c)sinB+(2c-b)sinC,

得2a2=(2b-c)b+(2c-b)c,

即bc=b2+c2-a2,b2+c2-a21

∴cosA=2bc=2,

∴A=60°.

(2)∵A+B+C=180°,

∴B+C=180°-60°=120°

由sinB+sinC=3,

得sinB+sin(120°-B)=3,

∴sinB+sin120°cosB-cos120°sinB=3.33

∴2sinB+2B=3,

即sin(B+30°)=1.∵0°<b<120°,<p="">

∴30°<b+30°<150°.<p="">

∴B+30°=90°,B=60°.

∴A=B=C=60°,

△ABC為等邊三角形.

規律方法

解決判斷三角形的形狀問題,一般將條件化為只含角的三角函數的關系式,然后利用三角恒等變換得出內角之間的關系式;

或將條件化為只含有邊的關系式,然后利用常見的化簡變形得出三邊的關系。另外,在變形過程中要注意A,B,C的范圍對三角函數值的影響。

課堂小結

1.在解三角形的問題中,三角形內角和定理起著重要作用,在解題時要注意根據這個定理確定角的范圍及三角函數值的符號,防止出現增解或漏解。

2.正、余弦定理在應用時,應注意靈活性,尤其是其變形應用時可相互轉化.如a2=b2+c2-2bccosA可以轉化為sin2A=sin2B+sin2C-2sinBsinCcosA,利用這些變形可進行等式的化簡與證明。

最新高中數學教案怎么寫篇5

一、教學目標

1.知識與技能

(1)掌握畫三視圖的基本技能

(2)豐富學生的空間想象力

2.過程與方法

主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態度與價值觀

(1)提高學生空間想象力

(2)體會三視圖的作用

二、教學重點、難點

重點:畫出簡單組合體的三視圖

難點:識別三視圖所表示的空間幾何體

三、學法與教學用具

1.學法:觀察、動手實踐、討論、類比

2.教學用具:實物模型、三角板

四、教學思路

(一)創設情景,揭開課題

“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

在初中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

(二)實踐動手作圖

1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;

2.教師引導學生用類比方法畫出簡單組合體的三視圖

(1)畫出球放在長方體上的三視圖

(2)畫出礦泉水瓶(實物放在桌面上)的三視圖

學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。

作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。

3.三視圖與幾何體之間的相互轉化。

(1)投影出示圖片(課本P10,圖1.2-3)

請同學們思考圖中的三視圖表示的幾何體是什么?

(2)你能畫出圓臺的三視圖嗎?

(3)三視圖對于認識空間幾何體有何作用?你有何體會?

教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發表對上述問題的看法。

4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。

(三)鞏固練習

課本P12練習1、2

P18習題1.2A組1

(四)歸納整理

請學生回顧發表如何作好空間幾何體的三視圖

(五)課外練習

1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。

2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

最新高中數學教案怎么寫篇6

一、課前檢測

1.在數列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求數列{bn}的前n項的和.

解:由已知得:an=1n+1(1+2+3++n)=n2,

bn=2n2n+12=8(1n-1n+1)數列{bn}的前n項和為

Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.

2.已知在各項不為零的數列中,。

(1)求數列的通項;

(2)若數列滿足,數列的前項的和為,求

解:(1)依題意,,故可將整理得:

所以即

,上式也成立,所以

(2)

二、知識梳理

(一)前n項和公式Sn的定義:Sn=a1+a2+an。

(二)數列求和的方法(共8種)

5.錯位相減法:適用于差比數列(如果等差,等比,那么叫做差比數列)即把每一項都乘以的公比,向后錯一項,再對應同次項相減,轉化為等比數列求和。

如:等比數列的前n項和就是用此法推導的.

解讀:

6.累加(乘)法

解讀:

7.并項求和法:一個數列的前n項和中,可兩兩結合求解,則稱之為并項求和.

形如an=(-1)nf(n)類型,可采用兩項合并求。

解讀:

8.其它方法:歸納、猜想、證明;周期數列的求和等等。

解讀:

三、典型例題分析

題型1錯位相減法

例1求數列前n項的和.

解:由題可知{}的通項是等差數列{2n}的通項與等比數列{}的通項之積

設①

②(設制錯位)

①-②得(錯位相減)

變式訓練1(20__昌平模擬)設數列{an}滿足a1+3a2+32a3++3n-1an=n3,nN__.

(1)求數列{an}的通項公式;

(2)設bn=nan,求數列{bn}的&39;前n項和Sn.

解:(1)∵a1+3a2+32a3++3n-1an=n3,①

當n2時,a1+3a2+32a3++3n-2an-1=n-13.②

①-②得3n-1an=13,an=13n.

在①中,令n=1,得a1=13,適合an=13n,an=13n.

(2)∵bn=nan,bn=n3n.

Sn=3+232+333++n3n,③

3Sn=32+233+334++n3n+1.④

④-③得2Sn=n3n+1-(3+32+33++3n),

即2Sn=n3n+1-3(1-3n)1-3,Sn=(2n-1)3n+14+34.

小結與拓展:

題型2并項求和法

例2求=1002-992+982-972++22-12

解:=1002-992+982-972++22-12=(100+99)+(98+97)++(2+1)=5050.

變式訓練2數列{(-1)nn}的前20__項的和S2010為(D)

A.-20__B.-1005C.20__D.1005

解:S2010=-1+2-3+4-5++2008-2009+2010

=(2-1)+(4-3)+(6-5)++(2010-2009)=1005.

小結與拓展:

題型3累加(乘)法及其它方法:歸納、猜想、證明;周期數列的求和等等

例3(1)求之和.

(2)已知各項均為正數的數列{an}的前n項的乘積等于Tn=(nN__),

,則數列{bn}的前n項和Sn中最大的一項是(D)

A.S6B.S5C.S4D.S3

解:(1)由于(找通項及特征)

=(分組求和)==

=

(2)D.

變式訓練3(1)(20__福州八中)已知數列則,。答案:100.5000。

(2)數列中,,且,則前20__項的和等于(A)

A.1005B.20__C.1D.0

小結與拓展:

四、歸納與總結(以學生為主,師生共同完成)

以上一個8種方法雖然各有其特點,但總的原則是要善于改變原數列的形式結構,使

其能進行消項處理或能使用等差數列或等比數列的求和公式以及其它已知的基本求和公式來解決,只要很好地把握這一規律,就能使數列求和化難為易,迎刃而解。

最新高中數學教案怎么寫篇7

教學目標

(1)使學生正確理解組合的意義,正確區分排列、組合問題;

(2)使學生掌握組合數的計算公式;

(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;

教學重點難點

重點是組合的定義、組合數及組合數的公式;

難點是解組合的應用題.

教學過程設計

(-)導入新課

(教師活動)提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學生活動)討論并回答.

答案提示:(1)排列;(2)組合.

[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數,屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關系,要求出不同的組數,屬于組合問題.這節課著重研究組合問題.

設計意圖:組合與排列所研究的問題幾乎是平行的.上面設計的問題目的是從排列知識中發現并提出新的問題.

(二)新課講授

[提出問題 創設情境]

(教師活動)指導學生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個組合是什么?

3.一個組合與一個排列有何區別?

(學生活動)閱讀回答.

(教師活動)對照課文,逐一評析.

設計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環境.

【歸納概括 建立新知】

(教師活動)承接上述問題的回答,展示下面知識.

[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

組合數:從 個不同元素中取出 個元素的所有組合的個數,稱之,用符號 表示,如從6個元素中取出2個元素的組合數為 .

[評述]區分一個排列與一個組合的關鍵是:該問題是否與順序有關,當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學生活動)傾聽、思索、記錄.

(教師活動)提出思考問題.

[投影] 與 的關系如何?

(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數 ,可分為以下兩步:

第1步,先求出從這 個不同元素中取出 個元素的組合數為 ;

第2步,求每一個組合中 個元素的全排列數為 .根據分步計數原理,得到

[字幕]公式1:

公式2:

(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

設計意圖:本著以認識概念為起點,以問題為主線,以培養能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.

【例題示范 探求方法】

(教師活動)打出字幕,給出示范,指導訓練.

[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.

例2 計算:(1) ;(2) .

(學生活動)板演、示范.

(教師活動)講評并指出用兩種方法計算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學生活動)思考分析.

解 首先,根據組合的定義,有

其次,由原不等式轉化為

解得 ②

綜合①、②,得 ,即

[點評]這是組合數公式的應用,關鍵是公式的選擇.

設計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應用,從而培養學生的綜合分析能力.

【反饋練習 學會應用】

(教師活動)給出練習,學生解答,教師點評.

[課堂練習]課本P99練習第2,5,6題.

[補充練習]

[字幕]1.計算:

2.已知 ,求 .

(學生活動)板演、解答.

設計意圖:課堂教學體現以學生為本,讓全體學生參與訓練,深刻揭示排列數公式的結構、特征及應用.

(三)小結

(師生活動)共同小結.

本節主要內容有

1.組合概念.

2.組合數計算的兩個公式.

(四)布置作業

1.課本作業:習題10 3第1(1)、(4),3題.

2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?

3.研究性題:

在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

(五)課后點評

在學習了排列知識的基礎上,本節課引進了組合概念,并推導出組合數公式,同時調控進行訓練,從而培養學生分析問題、解決問題的能力.

最新高中數學教案怎么寫篇8

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;

(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。

教學建議

一、知識結構

二、重點難點分析

本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題.難點是導出排列數的公式和解有關排列的應用題.突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中.

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列.因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同.排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數.排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數.從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數.

公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好 的推導.

排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力.

在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用.

在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.

三、教法建議

①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數.例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號 表示排列數.

②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”.

從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.

在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別.

在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列.

要特別注意,不加特殊說明,本章不研究重復排列問題.

③關于排列數公式的推導的教學.公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導 , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的.

導出公式 后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是 ,共m個因數相乘.”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘.

公式 是在引出全排列數公式 后,將排列數公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規定 ,如同 時 一樣,是一種規定,因此,不能按階乘數的原意作解釋.

④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.

⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實.隨著學生解題熟練程度的提高,可以逐步降低這種要求.

最新高中數學教案怎么寫篇9

教學目標:①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1

板書:

解:Ⅰ)當0∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,∵5.1<5.9 ∴loga5.1

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

例 2 ⑴求函數y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要使函數有意義。若函數中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數中有對數的形式,則真數大于零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。

板書:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

再根據對數函數的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解為:1

例 3 求下列函數的值域和單調區間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。

下面請同學們來解⑴。

生:此函數可看作是由y= log0.5u, u= x- x2復合而成。

板書:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)

注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則函數都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區別?

生:⑴的底數是常值,⑵的底數是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數函數的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

⑵已知函數y=loga(x2-2x),(a>0,a≠1)

①求它的單調區間;②當0

⑶已知函數y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性;  ③討論它的單調性。

⑷已知函數y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當x為何值時,函數值大于1;③討論它的單調性。

5.課堂教學設計說明

這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。

最新高中數學教案怎么寫篇10

一、單元教學內容

(1)算法的基本概念

(2)算法的基本結構:順序、條件、循環結構

(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句

二、單元教學內容分析

算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力。

三、單元教學課時安排:

1、算法的基本概念3課時

2、程序框圖與算法的基本結構5課時

3、算法的基本語句2課時

四、單元教學目標分析

1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。

3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。

4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

五、單元教學重點與難點分析

1、重點

(1)理解算法的含義

(2)掌握算法的基本結構

(3)會用算法語句解決簡單的實際問題

2、難點

(1)程序框圖

(2)變量與賦值

(3)循環結構

(4)算法設計

六、單元總體教學方法

本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

七、單元展開方式與特點

1、展開方式

自然語言→程序框圖→算法語句

2、特點

(1)螺旋上升分層遞進

(2)整合滲透前呼后應

(3)三線合一橫向貫通

(4)彈性處理多樣選擇

八、單元教學過程分析

1、算法基本概念教學過程分析

對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

2、算法的流程圖教學過程分析

對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。

3、基本算法語句教學過程分析

經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

九、單元評價設想

1、重視對學生數學學習過程的評價

關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。

2、正確評價學生的數學基礎知識和基本技能

關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

最新高中數學教案怎么寫篇11

●知識梳理

函數的綜合應用主要體現在以下幾方面:

1.函數內容本身的相互綜合,如函數概念、性質、圖象等方面知識的綜合.

2.函數與其他數學知識點的綜合,如方程、不等式、數列、解析幾何等方面的內容與函數的綜合.這是高考主要考查的內容.

3.函數與實際應用問題的綜合.

●點擊雙基

1.已知函數f(x)=lg(2x-b)(b為常數),若x[1,+)時,f(x)0恒成立,則

A.b1B.b1C.b1D.b=1

解析:當x[1,+)時,f(x)0,從而2x-b1,即b2x-1.而x[1,+)時,2x-1單調增加,

b2-1=1.

答案:A

2.若f(x)是R上的減函數,且f(x)的圖象經過點A(0,3)和B(3,-1),則不等式f(x+1)-12的解集是___________________.

解析:由f(x+1)-12得-2

又f(x)是R上的減函數,且f(x)的圖象過點A(0,3),B(3,-1),

f(3)

答案:(-1,2)

●典例剖析

【例1】取第一象限內的點P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差數列,1,y1,y2,2依次成等比數列,則點P1、P2與射線l:y=x(x0)的關系為

A.點P1、P2都在l的上方B.點P1、P2都在l上

C.點P1在l的下方,P2在l的上方D.點P1、P2都在l的下方

剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1

P1、P2都在l的下方.

答案:D

【例2】已知f(x)是R上的偶函數,且f(2)=0,g(x)是R上的奇函數,且對于xR,都有g(x)=f(x-1),求f(20__)的值.

解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),

故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=

g(x-3)=f(x-4),也即f(x+4)=f(x),xR.

f(x)為周期函數,其周期T=4.

f(20__)=f(4500+2)=f(2)=0.

評述:應靈活掌握和運用函數的奇偶性、周期性等性質.

【例3】函數f(x)=(m0),x1、x2R,當x1+x2=1時,f(x1)+f(x2)=.

(1)求m的值;

(2)數列{an},已知an=f(0)+f()+f()++f()+f(1),求an.

解:(1)由f(x1)+f(x2)=,得+=,

4+4+2m=[4+m(4+4)+m2].

∵x1+x2=1,(2-m)(4+4)=(m-2)2.

4+4=2-m或2-m=0.

∵4+42=2=4,

而m0時2-m2,4+42-m.

m=2.

(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).

2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.

an=.

深化拓展

用函數的思想處理方程、不等式、數列等問題是一重要的思想方法.

【例4】函數f(x)的定義域為R,且對任意x、yR,有f(x+y)=f(x)+f(y),且當x0時,f(x)0,f(1)=-2.

(1)證明f(x)是奇函數;

(2)證明f(x)在R上是減函數;

(3)求f(x)在區間[-3,3]上的最大值和最小值.

(1)證明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.從而有f(x)+f(-x)=0.

f(-x)=-f(x).f(x)是奇函數.

(2)證明:任取x1、x2R,且x10.f(x2-x1)0.

-f(x2-x1)0,即f(x1)f(x2),從而f(x)在R上是減函數.

(3)解:由于f(x)在R上是減函數,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.從而最大值是6,最小值是-6.

深化拓展

對于任意實數x、y,定義運算x__y=ax+by+cxy,其中a、b、c是常數,等式右邊的運算是通常的加法和乘法運算.現已知1__2=3,2__3=4,并且有一個非零實數m,使得對于任意實數x,都有x__m=x,試求m的值.

提示:由1__2=3,2__3=4,得

b=2+2c,a=-1-6c.

又由x__m=ax+bm+cmx=x對于任意實數x恒成立,

b=0=2+2c.

c=-1.(-1-6c)+cm=1.

-1+6-m=1.m=4.

答案:4.

●闖關訓練

夯實基礎

1.已知y=f(x)在定義域[1,3]上為單調減函數,值域為[4,7],若它存在反函數,則反函數在其定義域上

A.單調遞減且最大值為7B.單調遞增且最大值為7

C.單調遞減且最大值為3D.單調遞增且最大值為3

解析:互為反函數的兩個函數在各自定義區間上有相同的增減性,f-1(x)的值域是[1,3].

答案:C

2.關于x的方程x2-4x+3-a=0有三個不相等的實數根,則實數a的值是___________________.

解析:作函數y=x2-4x+3的圖象,如下圖.

由圖象知直線y=1與y=x2-4x+3的圖象有三個交點,即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三個不相等的實數根,因此a=1.

答案:1

3.若存在常數p0,使得函數f(x)滿足f(px)=f(px-)(xR),則f(x)的一個正周期為__________.

解析:由f(px)=f(px-),

令px=u,f(u)=f(u-)=f[(u+)-],T=或的整數倍.

答案:(或的整數倍)

4.已知關于x的方程sin2x-2sinx-a=0有實數解,求a的取值范圍.

解:a=sin2x-2sinx=(sinx-1)2-1.

∵-11,0(sinx-1)24.

a的范圍是[-1,3].

5.記函數f(x)=的定義域為A,g(x)=lg[(x-a-1)(2a-x)](a1)的定義域為B.

(1)求A;

(2)若BA,求實數a的取值范圍.

解:(1)由2-0,得0,

x-1或x1,即A=(-,-1)[1,+).

(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.

∵a1,a+12a.B=(2a,a+1).

∵BA,2a1或a+1-1,即a或a-2.

而a1,1或a-2.

故當BA時,實數a的取值范圍是(-,-2][,1).

培養能力

6.(理)已知二次函數f(x)=x2+bx+c(b0,cR).

若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.

解:設符合條件的f(x)存在,

∵函數圖象的對稱軸是x=-,

又b0,-0.

①當-0,即01時,

函數x=-有最小值-1,則

或(舍去).

②當-1-,即12時,則

(舍去)或(舍去).

③當--1,即b2時,函數在[-1,0]上單調遞增,則解得

綜上所述,符合條件的函數有兩個,

f(x)=x2-1或f(x)=x2+2x.

(文)已知二次函數f(x)=x2+(b+1)x+c(b0,cR).

若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.

解:∵函數圖象的對稱軸是

x=-,又b0,--.

設符合條件的f(x)存在,

①當--1時,即b1時,函數f(x)在[-1,0]上單調遞增,則

②當-1-,即01時,則

(舍去).

綜上所述,符合條件的函數為f(x)=x2+2x.

7.已知函數f(x)=x+的定義域為(0,+),且f(2)=2+.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.

(1)求a的值.

(2)問:PMPN是否為定值?若是,則求出該定值;若不是,請說明理由.

(3)設O為坐標原點,求四邊形OMPN面積的最小值.

解:(1)∵f(2)=2+=2+,a=.

(2)設點P的坐標為(x0,y0),則有y0=x0+,x00,由點到直線的距離公式可知,PM==,PN=x0,有PMPN=1,即PMPN為定值,這個值為1.

(3)由題意可設M(t,t),可知N(0,y0).

∵PM與直線y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).

又y0=x0+,t=x0+.

S△OPM=+,S△OPN=x02+.

S四邊形OMPN=S△OPM+S△OPN=(x02+)+1+.

當且僅當x0=1時,等號成立.

此時四邊形OMPN的面積有最小值1+.

探究創新

8.有一塊邊長為4的正方形鋼板,現對其進行切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計).有人應用數學知識作了如下設計:如圖(a),在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高為小正方形邊長,如圖(b).

(1)請你求出這種切割、焊接而成的長方體的最大容積V1;

(2)由于上述設計存在缺陷(材料有所浪費),請你重新設計切、焊方法,使材料浪費減少,而且所得長方體容器的容積V2V1.

解:(1)設切去正方形邊長為x,則焊接成的長方體的底面邊長為4-2x,高為x,

V1=(4-2x)2x=4(x3-4x2+4x)(0

V1=4(3x2-8x+4).

令V1=0,得x1=,x2=2(舍去).

而V1=12(x-)(x-2),

又當x時,V10;當

當x=時,V1取最大值.

(2)重新設計方案如下:

如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;如圖③,將圖②焊成長方體容器.

新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積V2=321=6,顯然V2V1.

故第二種方案符合要求.

●思悟小結

1.函數知識可深可淺,復習時應掌握好分寸,如二次函數問題應高度重視,其他如分類討論、探索性問題屬熱點內容,應適當加強.

2.數形結合思想貫穿于函數研究的各個領域的全部過程中,掌握了這一點,將會體會到函數問題既千姿百態,又有章可循.

●教師下載中心

教學點睛

數形結合和數形轉化是解決本章問題的重要思想方法,應要求學生熟練掌握用函數的圖象及方程的曲線去處理函數、方程、不等式等問題.

拓展題例

【例1】設f(x)是定義在[-1,1]上的奇函數,且對任意a、b[-1,1],當a+b0時,都有0.

(1)若ab,比較f(a)與f(b)的大小;

(2)解不等式f(x-)

(3)記P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范圍.

解:設-1x1

0.

∵x1-x20,f(x1)+f(-x2)0.

f(x1)-f(-x2).

又f(x)是奇函數,f(-x2)=-f(x2).

f(x1)

f(x)是增函數.

(1)∵ab,f(a)f(b).

(2)由f(x-)

-.

不等式的解集為{x-}.

(3)由-11,得-1+c1+c,

P={x-1+c1+c}.

由-11,得-1+c21+c2,

Q={x-1+c21+c2}.

∵PQ=,

1+c-1+c2或-1+c1+c2,

解得c2或c-1.

【例2】已知函數f(x)的圖象與函數h(x)=x++2的圖象關于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)x+ax,且g(x)在區間(0,2]上為減函數,求實數a的取值范圍.

(理)若g(x)=f(x)+,且g(x)在區間(0,2]上為減函數,求實數a的取值范圍.

解:(1)設f(x)圖象上任一點坐標為(x,y),點(x,y)關于點A(0,1)的對稱點(-x,2-y)在h(x)的圖象上.

2-y=-x++2.

y=x+,即f(x)=x+.

(2)(文)g(x)=(x+)x+ax,

即g(x)=x2+ax+1.

g(x)在(0,2]上遞減-2,

a-4.

(理)g(x)=x+.

∵g(x)=1-,g(x)在(0,2]上遞減,

1-0在x(0,2]時恒成立,

即ax2-1在x(0,2]時恒成立.

∵x(0,2]時,(x2-1)max=3,

a3.

【例3】在4月份(共30天),有一新款服裝投放某專賣店銷售,日銷售量(單位:件)f(n)關于時間n(130,nN__)的函數關系如下圖所示,其中函數f(n)圖象中的點位于斜率為5和-3的兩條直線上,兩直線的交點的橫坐標為m,且第m天日銷售量最大.

(1)求f(n)的表達式,及前m天的銷售總數;

(2)按規律,當該專賣店銷售總數超過400件時,社會上流行該服裝,而日銷售量連續下降并低于30件時,該服裝的流行會消失.試問該服裝在社會上流行的天數是否會超過10天?并說明理由.

解:(1)由圖形知,當1m且nN__時,f(n)=5n-3.

由f(m)=57,得m=12.

f(n)=

前12天的銷售總量為

5(1+2+3++12)-312=354件.

(2)第13天的銷售量為f(13)=-313+93=54件,而354+54400,

從第14天開始銷售總量超過400件,即開始流行.

設第n天的日銷售量開始低于30件(1221.

從第22天開始日銷售量低于30件,

即流行時間為14號至21號.

該服裝流行時間不超過10天.

101540 主站蜘蛛池模板: 柔软云母板-硬质-水位计云母片组件-首页-武汉长丰云母绝缘材料有限公司 | 丽陂特官网_手机信号屏蔽器_Wifi信号干扰器厂家_学校考场工厂会议室屏蔽仪 | AGV无人叉车_激光叉车AGV_仓储AGV小车_AGV无人搬运车-南昌IKV机器人有限公司[官网] | 德国BOSCH电磁阀-德国HERION电磁阀-JOUCOMATIC电磁阀|乾拓百科 | 小程序开发公司-小程序制作-微信小程序开发-小程序定制-咏熠软件 | AGV无人叉车_激光叉车AGV_仓储AGV小车_AGV无人搬运车-南昌IKV机器人有限公司[官网] | 视觉检测设备_自动化检测设备_CCD视觉检测机_外观缺陷检测-瑞智光电 | 地埋式垃圾站厂家【佳星环保】小区压缩垃圾中转站转运站 | 钢托盘,钢制托盘,立库钢托盘,金属托盘制造商_南京飞天金属制品实业有限公司 | 台式恒温摇床价格_大容量恒温摇床厂家-上海量壹科学仪器有限公司 | 广州食堂承包_广州团餐配送_广州堂食餐饮服务公司 - 旺记餐饮 | 欧洲MV日韩MV国产_人妻无码一区二区三区免费_少妇被 到高潮喷出白浆av_精品少妇自慰到喷水AV网站 | 全屋整木定制-橱柜,家具定制-四川峨眉山龙马木业有限公司 | 水性绝缘漆_凡立水_绝缘漆树脂_环保绝缘漆-深圳维特利环保材料有限公司 | 聚合氯化铝厂家-聚合氯化铝铁价格-河南洁康环保科技 | 汽车润滑油厂家-机油/润滑油代理-高性能机油-领驰慧润滑科技(河北)有限公司 | 食安观察网| 高考志愿规划师_高考规划师_高考培训师_高报师_升学规划师_高考志愿规划师培训认证机构「向阳生涯」 | 艾乐贝拉细胞研究中心 | 国家组织工程种子细胞库华南分库 | 玻纤土工格栅_钢塑格栅_PP焊接_单双向塑料土工格栅_复合防裂布厂家_山东大庚工程材料科技有限公司 | 济南轻型钢结构/济南铁艺护栏/济南铁艺大门-济南燕翔铁艺制品有限公司 | 淘气堡_室内儿童乐园_户外无动力儿童游乐设备-高乐迪(北京) | 上海刑事律师|刑事辩护律师|专业刑事犯罪辩护律师免费咨询-[尤辰荣]金牌上海刑事律师团队 | 天品互联-北京APP开发公司-小程序开发制作-软件开发 | 新型游乐设备,360大摆锤游乐设备「诚信厂家」-山东方鑫游乐设备 新能源汽车电池软连接,铜铝复合膜柔性连接,电力母排-容发智能科技(无锡)有限公司 | 酶联免疫分析仪-多管旋涡混合仪|混合器-莱普特科学仪器(北京)有限公司 | MVE振动电机_MVE震动电机_MVE卧式振打电机-河南新乡德诚生产厂家 | 安规_综合测试仪,电器安全性能综合测试仪,低压母线槽安规综合测试仪-青岛合众电子有限公司 | 电机铸铝配件_汽车压铸铝合金件_发动机压铸件_青岛颖圣赫机械有限公司 | 脉冲布袋除尘器_除尘布袋-泊头市净化除尘设备生产厂家 | 无轨电动平车_轨道平车_蓄电池电动平车★尽在新乡百特智能转运设备有限公司 | 泡沫消防车_水罐消防车_湖北江南专用特种汽车有限公司 | 3dmax渲染-效果图渲染-影视动画渲染-北京快渲科技有限公司 | 贴片电容-贴片电阻-二三极管-国巨|三星|风华贴片电容代理商-深圳伟哲电子 | 超声波电磁流量计-液位计-孔板流量计-料位计-江苏信仪自动化仪表有限公司 | 医院专用门厂家报价-医用病房门尺寸大全-抗菌木门品牌推荐 | SRRC认证_电磁兼容_EMC测试整改_FCC认证_SDOC认证-深圳市环测威检测技术有限公司 | 订做不锈钢_不锈钢定做加工厂_不锈钢非标定制-重庆侨峰金属加工厂 | Safety light curtain|Belt Sway Switches|Pull Rope Switch|ultrasonic flaw detector-Shandong Zhuoxin Machinery Co., Ltd | 全钢实验台,实验室工作台厂家-无锡市辰之航装饰材料有限公司 | 宝宝药浴-产后药浴-药浴加盟-艾裕-专注母婴调养泡浴 |