小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數學教案 >

高中數學教案最新模板

時間: 新華 數學教案

教案通過明確教學目標、確定教學內容和方法,為教師提供了系統、全面的教學指導。下面給大家整理一些高中數學教案最新模板,方便大家學習怎么寫高中數學教案最新模板。

高中數學教案最新模板篇1

一、教學目標

1.知識與能力目標

①使學生理解數列極限的概念和描述性定義。

②使學生會判斷一些簡單數列的極限,了解數列極限的“e-N"定義,能利用逐步分析的方法證明一些數列的極限。

③通過觀察運動和變化的過程,歸納總結數列與其極限的特定關系,提高學生的數學概括能力和抽象思維能力。

2.過程與方法目標

培養學生的極限的思想方法和獨立學習的能力。

3.情感、態度、價值觀目標

使學生初步認識有限與無限、近似與精確、量變與質變的辯證關系,培養學生的辯證唯物主義觀點。

二、教學重點和難點

教學重點:數列極限的概念和定義。

教學難點:數列極限的“ε―N”定義的理解。

三、教學對象分析

這節課是數列極限的第一節課,足學生學習極限的入門課,對于學生來說是一個全新的內容,學生的思維正處于由經驗型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內容求球的表面積和體積時對極限思想已有接觸,而學生在以往的數學學習中主要接觸的是關于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導他們作出描述性定義“當n無限增大時,數列{an}中的項an無限趨近于常數A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數列的極限。但要使他們在一節課內掌握“ε-N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數列的極限。使學生理解極限的基本概念,認識什么叫做數列的極限以及數列極限的定義即可。

四、教學策略及教法設計

本課是采用啟發式講授教學法,通過多媒體課件演示及學生討論的方法進行教學。通過學生比較熟悉的一個實際問題入手,引起學生的注意,激發學生的學習興趣。然后通過具體的兩個比較簡單的數列,運用多媒體課件演示向學生展示了數列中的各項隨著項數的增大,無限地趨向于某個常數的過程,讓學生在觀察的基礎上討論總結出這兩個數列的特征,從而得出數列極限的一個描述性定義。再在教師的引導下分析數列極限的各種不同情況。從而對數列極限有了直觀上的認識,接著讓學生根據數列中各項的情況判斷一些簡單的數列的極限。從而達到深化定義的效果。最后進行練習鞏固,通過這樣的一個完整的教學過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學生逐步地了解極限這個新的概念,為下節課的極限的運算及應用做準備,為以后學習高等數學知識打下基礎。在整個教學過程中注意突出重點,突破難點,達到教學目標的要求。

五、教學過程

1.創設情境

課件展示創設情境動畫。

今天我們將要學習一個很重要的新的知識。

情境

1、我國古代數學家劉徽于公元263年創立“割圓術”,“割之彌細,所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。

情境

2、我國古代哲學家莊周所著的《莊子?天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之???如此下去,無限次地切,每次都切一半,問是否會切完?

大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠不會變成零。從而引出極限的概念。

2.定義探究

展示定義探索(一)動畫演示。

問題1:請觀察以下無窮數列,當n無限增大時,a,I的變化趨勢有什么特點?

(1)1/2,2/3,3/4,?n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n??

問題2:觀察課件演示,請分析以上兩個數列隨項數n的增大項有那些特點?

師生一起歸納總結出以下結論:數列(1)項數n無限增大時,項無限趨近于1;數列(2)項數n無限增大時,項無限趨近于1。

那么就把1叫數列(1)的極限,1叫數列(2)的極限。這兩個數列只是形式不同,它們都是隨項數n的無限增大,項無限趨近于某一確定常數,這個常數叫做這個數列的極限。

那么,什么叫數列的極限呢?對于無窮數列an,如果當n無限增大時,an無限趨向于某一個常數A,則稱A是數列an的極限。

提出問題3:怎樣用數學語言來定量描述呢?怎樣用數學語言來描述上述數列的變化趨勢?

展示定義探索(二)動畫演示,師生共同總結發現在數軸上兩點間距離越小,項與1越趨近,因此可以借助兩點間距離無限小的方式來描述項無限趨近常數。無論預先指定多么小的正數e,如取e=O-1,總能在數列中找到一項am,使得an項后面的所有項與1的差的絕對值都小于ε,若取£=0。0001,則第6項后面的所有項與1的差的絕對值都小于ε,即1是數列(1)的極限。最后,師生共同總結出數列的極限定義中應包含哪量(用這些量來描述數列1的極限)。

數列的極限為:對于任意的ε>0,如果總存在自然數N,當n>N時,不等式|an-A|n的極限。

定義探索動畫(一):

課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值,并且動畫演示數列的變化過程。如圖1所示是課件運行時的一個畫面。

定義探索動畫(二)課件可以實現任意輸入一個n值,可以計算出相應的數列第n項的值和Ian一1I的值,并且動畫演示出第an項和1之間的距離。如圖2所示是課件運行時的一個畫面。

3.知識應用

這里舉了3道例題,與學生一塊思考,一起分析作答。

例1.已知數列:

1,-1/2,1/3,-1/4,1/5??,(-1)n+11/n,??

(1)計算an-0(2)第幾項后面的所有項與0的差的絕對值都小于0.017都小于任意指定的正數。

(3)確定這個數列的極限。

例2.已知數列:

已知數列:3/2,9/4,15/8??,2+(-1/2)n,??。

猜測這個數列有無極限,如果有,應該是什么數?并求出從第幾項開始,各項與這個極限的差都小于0.1,從第幾項開始,各項與這個極限的差都小于0.017

例3.求常數數列一7,一7,一7,一7,??的極限。

5.知識小結

這節課我們研究了數列極限的概念,對數列極限有了初步的認識。數列極限研究的是無限變化的趨勢,而通過對數列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質變之間的辯證關系在這里得到了充分的體現。

課后練習:

(1)判斷下列數列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。

(2)課本練習1,2。

6.探究性問題

設計研究性學習的思考題。

提出問題:

芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠也無法超過在他前面慢慢爬行的烏龜,因為當阿基里斯到達烏龜的起跑點時,烏龜已經走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當阿基里斯追到O.1公里的地方,烏龜又向前跑了0.01公里。當阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里??這樣一直追下去,阿基里斯能追上烏龜嗎?

這里是研究性學習內容,以學生感興趣的悖論作為課后作業,鞏固本節所學內容,進一步提高了學生學習數列的極限的興趣。同時也為學生創設了課下交流與討論的情境,逐步培養學生相互合作、交流和討論的習慣,使學生感受到了數學來源于生活,又服務于生活的實質,逐步養成用數學的知識去解決生活中遇到的實際問題的習慣。

高中數學教案最新模板篇2

一、單元教學內容

(1)算法的基本概念

(2)算法的基本結構:順序、條件、循環結構

(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句

二、單元教學內容分析

算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力。

三、單元教學課時安排:

1、算法的基本概念3課時

2、程序框圖與算法的基本結構5課時

3、算法的基本語句2課時

四、單元教學目標分析

1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。

3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。

4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

五、單元教學重點與難點分析

1、重點

(1)理解算法的含義

(2)掌握算法的基本結構

(3)會用算法語句解決簡單的實際問題

2、難點

(1)程序框圖

(2)變量與賦值

(3)循環結構

(4)算法設計

六、單元總體教學方法

本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

七、單元展開方式與特點

1、展開方式

自然語言→程序框圖→算法語句

2、特點

(1)螺旋上升分層遞進

(2)整合滲透前呼后應

(3)三線合一橫向貫通

(4)彈性處理多樣選擇

八、單元教學過程分析

1、算法基本概念教學過程分析

對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

2、算法的流程圖教學過程分析

對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。

3、基本算法語句教學過程分析

經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

九、單元評價設想

1、重視對學生數學學習過程的評價

關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。

2、正確評價學生的數學基礎知識和基本技能

關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

高中數學教案最新模板篇3

教學分析

本節課的研究是對初中不等式學習的延續和拓展,也是實數理論的進一步發展.在本節課的學習過程中,將讓學生回憶實數的基本理論,并能用實數的基本理論來比較兩個代數式的大小.

通過本節課的學習, 讓學生從一系列的具體問題情境中,感受到在現實世界和日常生活中存在著大量的不等關系,并充分認識不等關系的存在與應用.對不等關系的相關素材,用數學觀點進行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關系表示出來.在本節課的學習過程中還安排了一些簡單的、學生易于處理的問題,其用意在于讓學生注意對數學知識和方法的應用,同時也能激發學生的學習興趣,并由衷地產生用數學工具研究不等關系的愿望.根據本節課的教學內容,應用再現、回憶得出實數的基本理論,并能用實數的基本理論來比較兩個代數式的大小.

在本節教學中,教師可讓學生閱讀書中實例,充分利用數軸這一簡單的數形結合工具,直接用實數與數軸上 點的一一對應關系,從數與形兩方面建立實數的順序關系.要在溫故知新的基礎上提高學生對不等式的認識.

三維目標

1.在學生了解不等式產生的實際背景下,利用數軸回憶實數的基本理論,理解實數的大小關系,理解實數大小與數軸上對應點位置間的關系.

2.會用作差法判斷實數與代數式的大小,會用配方法判斷二次式的大小和范圍.

3.通過溫故知新,提高學生對不等式的認識,激發學生的學習興趣,體會數學的奧秘與數學的結構美.

重點難點

教學重點:比較實數與代數式的大小關系,判斷二次式的大小和范圍.

教學難點:準確比較兩個代數式的大小.

課時安排

1課時

教學過程

導入新課

思路1.(章頭圖導入)通過多媒體展示衛星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學生帶入“橫看成嶺側成峰,遠近高低各不同”的大自然和浩瀚的宇宙中,使學生在具體情境中感受到不等關系在現實世界和日常生活中是大量存在的,由此產生用數學研究不等關系的強烈愿望,自然地引入新課.

思路2.(情境導入)列舉出學生身體的高矮、身體的輕重、距離學校路程的遠近、百米賽跑的時間、數學成績的多少等現實生活中學生身邊熟悉的事例,描述出某種客觀事物在數量上存在的不等關系.這些不等關系怎樣在數學上表示出來呢?讓學生自由地展開聯想,教師組織不等關系的相關素材,讓學 生用數學的觀點進行觀察、歸納,使學生在具體情境中感受到不等關系與相等關系一樣,在現實世界和日常生活中大量存在著.這樣學生會由衷地產生用數學工具研究不等關系的愿望,從而進入進一步的探究學習,由此引入新課.

推進新課

新知探究

提出問題

?1?回憶初中學過的不等式,讓學生說出“不等關系”與“不等式”的異同.怎樣利用不等式研究及表示不等關系?

?2?在現實世界和日常生活中,既有相等關系,又存在著大量的不等關系.你能舉出一些實際例子嗎?

?3?數軸上的任意兩 點與對應的兩實數具有怎樣的關系?

?4?任意兩個實數具有怎樣的關系?用邏輯用語怎樣表達這個關系?

活動:教師引導學生回憶初中學過的不等式概念,使學生明確“不等關系”與“不等式”的異同.不等關系強調的是關系,可用符號“>”“<”“≠”“≥”“≤”表示,而不等式則是表示兩者的不等關系,可用“a>b”“a

教師與學生一起舉出我們日常生活中不等關系的例子,可讓學生充分合作討論,使學生感受到現實世界中存在著大量的不等關系.在學生了解了一些不等式產生的實際背景的前提下,進一步學習不等式的有關內容.

實例1:某天的天氣預報報道,氣溫32 ℃,最低氣溫26 ℃.

實例2:對于數軸上任意不同的兩點A、B,若點A在點B的左邊,則xA

實例3:若一個數是非負數,則這個數大于或等于零.

實例4:兩點之間線段最短.

實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.

實例6:限速40 km/h的路標指示司機在前方路段行駛時,應使汽車的速度v不超過40 km/h.

實例7:某品牌酸奶的質量檢查規定,酸奶中脂肪的含量f應不少于2.5%,蛋白質的含量p應不少于2.3%.

教師進一步點撥:能夠發現身 邊的數學當然很好,這說明同學們已經走進了數學這門學科,但作為我們研究數學的人來說,能用數學的眼光、數學的觀點進行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數學的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關系呢?學生很容易想到,用不等式或不等式組來表示這些不等關系.那么不等式就是用不等號將兩個代數式連結起來所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.

教師引導學生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負數,則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交換被減數與減數的位置也可以.

實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應點撥學生注意酸奶中的脂肪含量與蛋白質含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.

對以上問題,教師讓學生輪流回答,再用投影儀給出課本上的兩個結論.

討論結果:

(1)(2)略;(3)數軸上任意兩點中,右邊點對應的實數比左邊點對應的實數大.

(4)對于任意兩個實數a和b,在a=b,a>b,a應用示例

例1(教材本節例1和例2)

活動:通過兩例讓學生熟悉兩個代數式的大小比較的基本方法:作差,配方法.

點評:本節兩例的求解,是借助因式分解和應用配方法完成的,這兩種方法是代數式變形時經常使用的方法,應讓學生熟練掌握.

變式訓練

1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關系是(  )

A.f(x)>g(x)       B.f(x)=g(x)

C.f(x)

答案:A

解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.

解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.

例2比較下列各組數的大小(a≠b).

(1)a+b2與21a+1b(a>0,b>0);

(2)a4-b4與4a3(a-b).

活動:比較兩個實數的大小,常根據實數的運算性質與大小順序的關系,歸結為判斷它們的差的符號來確定.本例可由學生獨立完成,但要點撥學生在最后的符號判斷說理中,要理由充分,不可忽略這點.

解:(1)a+b2-21a+1b=a+b2-2aba+b=?a+b?2-4ab2?a+b?=?a-b?22?a+b?.

∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴?a-b?22?a+b?>0,即a+b2>21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(當且僅當a=b=0時取等號),

又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

∴a4-b4<4a3(a-b).

點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變為“積”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.

變式訓練

已知x>y,且y≠0,比較xy與1的大小.

活動:要比較任意兩個數或式的大小關系,只需確定它們的差與0的大小關系.

解:xy-1=x-yy.

∵x>y,∴x-y>0.

當y<0時,x-yy<0,即xy-1<0. ∴xy<1;

當y>0時,x-yy>0,即xy-1>0.∴xy>1.

點評:當字母y取不同范圍的值時,差xy-1的正負情況不同,所以需對y分類討論.

例3建筑設計規定,民用住宅的窗戶面積必須小于地板面積.但按采光標準,窗戶面積與地板面積的比值應不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積, 住宅的采光條件是變好了,還是變壞了?請說明理由.

活動:解題關鍵首先是把文 字語言轉換成數學語言,然后比較前后比值的大小,采用作差法.

解:設住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據問題的要求a

由于a+mb+m-ab=m?b-a?b?b+m?>0,于是a+mb+m>ab.又ab≥10%,

因此a+mb+m>ab≥10%.

所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.

點評:一般地,設a、b為正實數,且a

變式訓練

已知a1,a2,…為各項都大于零的等比數列,公比q≠1,則(  )

A.a1+a8>a4+a5        B.a1+a8

C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各項都大于零,∴q>0,即1+q>0.

又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

課堂小結

1.教師與學生共同完成本節課的小結,從實數的基本性質的回顧,到兩個實數大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓練,讓學生去繁就簡,聯系舊知,將本節課所學納入已有的知識體系中.

2.教師畫龍點睛,點撥利用實數的基本性質對兩個實數大小比較時易錯的地方.鼓勵學有余力的學生對節末的思考與討論在課后作進一步的探究.

作業

習題3—1A組3;習題3—1B組2.

設計感想

1.本節設計關注了教學方法 的優化.經驗告訴我們:課堂上應根據具體情況,選擇、設計最能體現教學規律的教學 過程,不宜長期使用一種固定的教學方法,或原封不動地照搬一種實驗模式.各種教學方法中,沒有一種能很好地適應一切教學活動.也就是說,世上沒有萬能的教學方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.

2.本節設計注重了難度控制.不等式內容應用面廣,可以說與其他所有內容都有交匯,歷 來是高考的重點與熱點.作為本章開始,可以適當開闊一些,算作拋磚引玉,讓學生有個自由探究聯想的平臺,但不宜過多向外拓展,以免對學生產生負面影響.

3.本節設計關注了學生思維能力的訓練.訓練學生的思維能力,提升思維的品質,是數學教師直面的重要課題,也是中學數學教育的主線.采用一題多解有助于思維的發散性及靈活性,克服思維的僵化.變式訓練教學又可以拓展學生思維視野的廣度,解題后的點撥反思有助于學生思維批判性品質的提升.

高中數學教案最新模板篇4

一、指導思想

1、培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力.使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力.

2、根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神.

3、使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀.

二、目的要求

1.深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系和網絡結構,細致領會教材改革的精髓,把握通性通法,逐步明確教材對教學形式、內容和教學目標的影響.

2.因材施教,以學生為學習的主體,構建新的認知體系,營造有利于學生學習的氛圍.

3.加強課堂教學研究,科學設計教學方法,扎實有效的提高課堂教學效果,全面提高數學教學質量.

三、具體措施

1.不孤立記憶和認識各個知識點,而要將其放到相應的體系結構中,在比較、辨析的過程中尋求其內在聯系,達到理解層次,注意知識塊的復習,構建知識網路.注重基礎知識和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運用;力求有意識的分析理解能力;尤其是數學語言的表達形式,推力論證要思路清晰、整體完整.

2.學會分析,首先是閱讀理解,側重于解題前對信息的捕捉和思路的探索;其次是解題回顧,側重于經驗及教訓的總結,重視常見題型及通法通解.

3.以“錯”糾錯,查缺補漏,反思錯誤,嚴格訓練,規范解題,養成:想明白,寫清楚,算準確的習慣,注意思路的清晰性、思維的嚴謹性、敘述的條理性、結果的準確性,注重書寫過程,舉一反三,及時歸納,觸類旁通,加強數學思想和數學方法的應用.

4.協調好講、練、評、輔之間的關系,追求數學復習的效果,注重實效,努力提高復習教學的效率和效益;精心設計教學,做到精講精練,不加重學生的負擔,避免“題海戰” ,精心準備,講評到為,做到講評試卷或例題時:講清考察了那些知識點,怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關鍵步驟在那里,哪些是典型錯誤,是知識和是邏輯,是方法、是心理上、策略上的錯誤,針對學生的錯誤調整復習策略,使復習更加有重點、針對性,加快教學節奏,提高教學效率.

5.周密計劃合理安排,現數學學科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學,使學生在解題探究中提高能力.

6.多從“貼近教材、貼近學生、貼近實際”角度,選擇典型的數學聯系生活、生產、環境和科技方面的問題,對學生進行有計劃、針對性強的訓練,多給學生鍛煉各種能力的機會,從而達到提升學生數學綜合能力之目的.不脫離基礎知識來講學生的能力,基礎扎實的學生不一定能力 強.教學中,不斷地將基礎知識運用于數學問題的解決中,努力提高學生的學科綜合能力.

新的學期是新的起點,新的希望。通過這份高二數學上學期教學工作計劃,我相信自己在本學期一定能夠將兩個班的數學成績帶上去,我相信,我能行。

高中數學教案最新模板篇5

上個學期,根據需要,學校安排我上高二數學文科,在這一學期里我從各方面嚴格要求自己,在教學上虛心向老教師請教,結合本校和班級學生的實際狀況,針對性的開展教學工作,使工作有計劃,有組織,有步驟。經過了一學期,我對教學工作有了如下感想:

一、認真備課,做到既備學生又備教材與備教法。

上學期我根據教材資料及學生的實際狀況設計課程教學,擬定教學方法,并對教學過程中遇到的問題盡可能的預先思考到,認真寫好教案。每一課都做到“有備而去”,每堂課都在課前做好充分的準備,課后及時對該課作出小結,并認真整理每一章節的知識要點,幫忙學生進行歸納總結。

二、增強上課技能,提高教學質量。

增強上課技能,提高教學質量是我們每一名新教師不斷努力的目標。因為應對的是文科生,基礎普遍比較差,所以我主要是立足于基礎,讓學生學得簡單,學得愉快。注意精講精練,在課堂上講得盡量少些,而讓學生自己動口動手動腦盡量多些;同時在每一堂課上都充分思考每一個層次的學生學習需求和理解潛力,讓各個層次的學生都得到提高。

三、虛心向其他老師學習,在教學上做到有疑必問。

在每個章節的學習上都用心征求其他有經驗老師的意見,學習他們的方法。同時多聽老教師的課,做到邊聽邊學,給自己不斷充電,彌補自己在教學上的不足,征求他們的意見,改善教學工作。

四、認真批改作業、布置作業有針對性,有層次性。

作業是學生對所學知識鞏固的過程。為了做到布置作業有針對性,有層次性,我常常多方面的搜集資料,對各種輔導資料進行篩選,力求每一次練習都能讓學生起到的效果。同時對學生的作業批改及時、認真,并分析學生的作業狀況,將他們在作業過程出現的問題及時評講,并針對反映出的狀況及時改善自己的教學方法,做到有的放矢。

然而,在肯定成績、總結經驗的同時,我清楚地認識到我所獲得的教學經驗還是膚淺的,在教學中存在的問題也不容忽視,也有一些困惑有待解決今后我將努力工作,用心向老老師學習以提高自己的教學水平。

以上幾點便是我的一點心得,期望能發揚優點,克服不足,總結經驗教訓,為今后的教育教學工作積累經驗,以便盡快地提高自己的水平。

高中數學教案最新模板篇6

高中數學數列知識點

數列的函數理解:

①數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集N_或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。③函數不一定有解析式,同樣數列也并非都有通項公式。

通項公式:數列的第N項an與項的序數n之間的關系可以用一個公式an=f(n)來表示,這個公式就叫做這個數列的通項公式(注:通項公式不)。

數列通項公式的特點:

(1)有些數列的通項公式可以有不同形式,即不。

(2)有些數列沒有通項公式(如:素數由小到大排成一列2,3,5,7,11,...)。

遞推公式:如果數列{an}的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數列的遞推公式。

數列遞推公式特點:

(1)有些數列的遞推公式可以有不同形式,即不。

(2)有些數列沒有遞推公式。

有遞推公式不一定有通項公式。

注:數列中的項必須是數,它可以是實數,也可以是復數。

等差數列通項公式

an=a1+(n-1)d

n=1時a1=S1

n≥2時an=Sn-Sn-1

an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

等差中項

由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

有關系:A=(a+b)÷2

前n項和

倒序相加法推導前n項和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

∴Sn=n(a1+an)÷2

等差數列的前n項和等于首末兩項的和與項數乘積的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

等差數列性質

一、任意兩項am,an的關系為:

an=am+(n-m)d

它可以看作等差數列廣義的通項公式。

二、從等差數列的定義、通項公式,前n項和公式還可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq

四、對任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。

怎么樣提高數學成績

首先想要提升數學成績,成為數學學霸的前提是要對數學有良好的學習興趣。其次要學會課前預習,方便自己能夠更加深入的吃透課堂上的知識點。然后還要學會總結復習,總結自己課堂上的問題,復習課堂上的重要知識點,從而提高自己的數學成績。

提升數學成績還要擁有一個錯題本,和數學資料。認真對待自己的學習工具,多做練習題,找出自己的薄弱環節和自己常犯的題型,記在錯題本上,常練習,常鞏固。在自己的數學資料中摸索出適合自己的解題技巧,反復練習加以運用,一定會提升你的數學成績。

學會聽課,在課堂上勇于提問。數學最重要的部分都是在課本上,所以必須要掌握好課堂的45分鐘。把握好數學課本,為自己打下一個好基礎,這樣才能更有效的提升你的數學成績。學會做課堂筆記,把每節課的重要知識點記下來,以便接下來的復習。

學好數學的方法技巧整理

預習的方法

上課之前一定要抽時間進行預習,有時預習比做作業更重要,因為通過預習我們可以初步掌握課程的大致內容,聽課就能夠把握好重點,針對性比較強,還會帶著問題去聽課,聽課效率就會比較高,上課聽明白了,完成作業也會更好更快,最終會形成良性循環。

聽懂課的習慣

注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最后的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉變為“會聽”。

不斷練習

不斷練習是指多做數學練習題。希望學好數學,多做練習是必不可少的。做練習的原因有以下三點:第一,熟練和鞏固學到的數學知識;二,引導同學靈活運用所學知識點以及獨立思考獨立做題的水平;第三,融會貫通。通過做題將所學的所有知識點結合起來,加深同學對數學體系化的理解。

高中數學教案最新模板篇7

教學主題:

主要涉及到簡單排列組合問題,相同元素和不同元素排列組合問題。

捆綁法插空法特殊元素法特殊位置法定序法分組分配

教學內容及分析:

排列組合問題是高中數學知識的一個重要組成部分,在高考中也是必考內容,難度一般在中等偏上,只要掌握的排列組合的幾種典型方法,就能快速理解題型題意,快速找到突破口,對癥下藥,事半功倍,關鍵是要把握住什么題型用什么方法,通過題型對比分析相同點和不同點,區分易錯的,難點。另外,排列組合在適應新高考有著天然出題優勢,因為排列組合更貼近顯示生活,可以把我們課本上的抽象概念和數學公式和實際生活聯系起來,數學知識走進生活,知識來與是但高于生活,最后回歸于生活,才是我們學習知識,專研學問的立足點。本文就對數學中概率統計中的一小點內容——排列組合,做一個簡單的對比分析。

教學對象及特點:

排列組合在高中數學選修2—3。人教版教材,高二的學生在日常生活中,有很多需要用排列組合來解決的知識。作為二年級的學生,已有了一定的生活經驗及解決問題的能力。因此,在設計中,我通過創設一個完整的、有趣的生活情境來進行教學,力求使學生在經歷日常生活最簡單的事例中體驗到重要的數學思想方法,從而也感受到數學思想也是依托于生活,來源于生活,是有生命活力的。

教學目標:

基于對教材的理解,我把本節課的教學重點定為:在經歷簡單事物排列與組合規律的過程中體會排列與組合的數學思想。教學難點定為:培養學生全面有序的思考問題的意識。通過觀察、猜測、比較、實驗等活動,培養學生學習初步的觀察、分析能力和有序、全面地思考問題的意識。培養學生大膽猜想、積極思維的學習方法,使學生感受學習數學的快樂,進一步激發學生學習數學的興趣。

教學過程:

一、排列問題

例1:有4個男生,5個女生站隊,在下列條件下,有多少種情況?

(1)9個人全部站成一排;

(2)9個人站成兩排,前排站4人,后排站5人;

(3)9個人全部站一排,全部女生站在一起;(捆綁法)

(4)9個人全部站一排,全部男生都不相鄰;(插空法)

(5)9個人全部站一排,甲乙相鄰,丙丁不相鄰;

(6)9個人全部站一排,甲不在兩端;(特殊元素法,特殊位置法)

(7)9個人全部站一排,甲不在最左邊,乙不在最右邊;

(8)9個人全部站一排,甲在乙的左邊,可以不相鄰;(定序)

(9)9個人全部站一排,甲在乙的前面,乙在丙的前面,可以不相鄰;

(10)9個人全部站一排,甲在乙和丙的中間,可以不相鄰;

二、組合問題

例2:有25件產品,其中5件次品,從中任取3件,在下列條件下,有多少種情況?

(1)次品甲在內;

(2)次品甲不在內;

(3)恰有1件次品;

(4)至少1件次品;

(5)至少2件次品;

三、分組分配問題(不同元素)

例3:有6名學生分配到三個班級,在下列條件下,有多少種情況?

(1)隨機分配;

(2)每個班表達對一名學生的爭取意愿,6名學生實力相當;

(3)分配到三個班的人數分別為1、2、3人;

(4)分配到三個班的人數分別為1、1、4人;

(5)分配到三個班的人數分別為2、2、2人;

四、分組分配問題(相同元素)

例4:9個相同的乒乓球分給3個不同的人,在下列條件下,有多少種情況?

(1)3個人分別分到2個乒乓球,3個乒乓球,4個乒乓球;

(2)3個人分別分到2個乒乓球,2個乒乓球,5個乒乓球;

(3)3個人平均分,每人得到3個乒乓球;

(4)3個人每人至少分到1個乒乓球;

(5)3個人每個人至少分到2個乒乓球;

(6)3個人隨機分配這9個乒乓球;

五、分組分配問題(部分元素相同)

例5:有形狀大小相同,顏色不全相同的乒乓球,其中紅色乒乓球,黃色乒乓球,黑色乒乓球分別有5個,從中取出四個乒乓球排一排,在下列條件下,有多少種情況?

(1)取3個紅色乒乓球,1個黃色乒乓球;

(2)取2個紅色乒乓球,2個黃色乒乓球;

(3)取2個紅色乒乓球,1個黑色乒乓球,1個黃色乒乓球;

(4)取出的4個乒乓球中剛好3個乒乓球顏色相同;

(5)取出的4個乒乓球中剛好2個乒乓球顏色相同,其他兩個乒乓球顏色也相同;

取出的4個乒乓球中剛好2個乒乓球顏色相同,其他兩個乒乓球顏色不同;

所選技術以及技術使用的目的:選取的技術是PPT演示文稿,電子文檔,交互式電子白板,目的是能和學生共享資源,實時授課,不用邊抄題目邊講課,節約時間,集中精力。便于分享交流保存,復習資料可以打印存檔,電子檔紙質檔都可以,提高學習教學的效率。

高中數學教案最新模板篇8

一、教學目標

掌握用向量方法建立兩角差的余弦公式.通過簡單運用,使學生初步理解公式的結構及其功能,為建立其它和(差)公式打好基礎.

二、教學重、難點

1.教學重點:通過探索得到兩角差的余弦公式;

2.教學難點:探索過程的組織和適當引導,這里不僅有學習積極性的問題,還有探索過程必用的基礎知識是否已經具備的問題,運用已學知識和方法的能力問題,等等.

三、學法與教學用具

1.學法:啟發式教學

2.教學用具:多媒體

四、教學設想:

(一)導入:我們在初中時就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?

根據我們在第一章所學的&39;知識可知我們的猜想是錯誤的!下面我們就一起探討兩角差的余弦公式

(二)探討過程:

在第一章三角函數的學習當中我們知道,在設角的終邊與單位圓的交點為,等于角與單位圓交點的橫坐標,也可以用角的余弦線來表示,大家思考:怎樣構造角和角?(注意:要與它們的正弦線、余弦線聯系起來.)

展示多媒體動畫課件,通過正、余弦線及它們之間的幾何關系探索與__之間的關系,由此得到,認識兩角差余弦公式的結構.

思考:我們在第二章學習用向量的知識解決相關的幾何問題,兩角差余弦公式我們能否用向量的知識來證明?

提示:

1、結合圖形,明確應該選擇哪幾個向量,它們是怎樣表示的?

2、怎樣利用向量的數量積的概念的計算公式得到探索結果?

展示多媒體課件

比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處.

思考:再利用兩角差的余弦公式得出

(三)例題講解

例1、利用和、差角余弦公式求、的值.

解:分析:把、構造成兩個特殊角的和、差.

點評:把一個具體角構造成兩個角的和、差形式,有很多種構造方法,例如:,要學會靈活運用.

例2、已知,是第三象限角,求的值.

解:因為,由此得

又因為是第三象限角,所以

所以

點評:注意角、的象限,也就是符號問題.

(四)小結:本節我們學習了兩角差的余弦公式,首先要認識公式結構的特征,了解公式的推導過程,熟知由此衍變的兩角和的余弦公式.在解題過程中注意角、的象限,也就是符號問題,學會靈活運用.

高中數學教案最新模板篇9

一、教學內容

本節主要內容為:經歷探索30°、45°、60°角的三角函數值的過程,能夠進行含有30°、45°、60°角的三角函數值的計算。

二、教學目標

1、經歷探索30°、45°、60°角的三角函數值的過程,能夠進行有關推理,進一步體會三角函數的意義。

2、能夠進行含有30°、45°、60°角的三角函數值的計算。

3、能夠根據30°、45°、60°角的三角函數值,說出相應的銳角的大小。

三、過程與方法

通過進行有關推理,探索30°、45°、60°角的三角函數值。在具體教學過程中,教師可在教材的基礎上適當拓展,使得內容更為豐富.教師可以運用和學生共同探究式的教學方法,學生可以采取自主探討式的學習方法.

四、教學重點和難點

重點:進行含有30°、45°、60°角的三角函數值的計算

難點:記住30°、45°、60°角的三角函數值

五、教學準備

教師準備

預先準備教材、教參以及多媒體課件

學生準備

教材、同步練習冊、作業本、草稿紙、作圖工具等

六、教學步驟

教學流程設計

教師指導學生活動

1.新章節開場白.1.進入學習狀態.

2.進行教學.2.配合學習.

3.總結和指導學生練習.3記錄相關內容,完成練習.

教學過程設計

1、從學生原有的認知結構提出問題

2、師生共同研究形成概念

3、隨堂練習

4、小結

5、作業

板書設計

1、敘述三角函數的意義

2、30°、45°、60°角的三角函數值

3、例題

七、課后反思

本節課基本上能夠突出重點、弱化難點,在時間上也能掌控得比較合理,學生也比較積極投入學習中,但是學生好像并不是掌握得很好,在今后的教學中應該再加強關于這方面的學習。

高中數學教案最新模板篇10

一、教學內容分析

二面角是我們日常生活中經常見到的一個圖形,它是在學生學過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進一步完善了空間角的概念.掌握好本節課的知識,對學生系統地理解直線和平面的知識、空間想象能力的培養,乃至創新能力的培養都具有十分重要的意義.

二、教學目標設計

理解二面角及其平面角的概念;能確認圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關問題.

三、教學重點及難點

二面角的平面角的概念的形成以及二面角的平面角的作法.

四、教學流程設計

五、教學過程設計

一、 新課引入

1.復習和回顧平面角的有關知識.

平面中的角

定義 從一個頂點出發的兩條射線所組成的圖形,叫做角圖形

結構 射線—點—射線

表示法 ∠AOB,∠O等

2.復習和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征.(空間角轉化為平面角)

3.觀察:陡峭與否,跟山坡面與水平面所成的角大小有關,而山坡面與水平面所成的角就是兩個平面所成的角.在實際生活當中,能夠轉化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關.)從而,引出“二面角”的定義及相關內容.

二、學習新課

(一)二面角的定義

平面中的角 二面角

定義 從一個頂點出發的兩條射線所組成的圖形,叫做角 課本P17

圖形

結構 射線—點—射線 半平面—直線—半平面

表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

(二)二面角的圖示

1.畫出直立式、平臥式二面角各一個,并分別給予表示.

2.在正方體中認識二面角.

(三)二面角的平面角

平面幾何中的“角”可以看作是一條射線繞其端點旋轉而成,它有一個旋轉量,它的大小可以度量,類似地,"二面角"也可以看作是一個半平面以其棱為軸旋轉而成,它也有一個旋轉量,那么,二面角的大小應該怎樣度量?

1.二面角的平面角的定義(課本P17).

2.∠AOB的大小與點O在棱上的位置無關.

[說明]①平面與平面的位置關系,只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,有必要來研究二面角的度量問題.

②與兩條異面直線所成的角、直線和平面所成的角做類比,用“平面角”去度量.

③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內;角的兩邊分別與棱垂直.

3.二面角的平面角的范圍:

(四)例題分析

例1 一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個 的二面角,求此時B、C兩點間的距離.

[說明] ①檢查學生對二面角的平面角的定義的掌握情況.

②翻折前后應注意哪些量的位置和數量發生了變化, 哪些沒變?

例2 如圖,已知邊長為a的等邊三角形 所在平面外有一點P,使PA=PB=PC=a,求二面角 的大小.

[說明] ①求二面角的步驟:作—證—算—答.

②引導學生掌握解題可操作性的通法(定義法和線面垂直法).

例3 已知正方體 ,求二面角 的大小.(課本P18例1)

[說明] 使學生進一步熟悉作二面角的平面角的方法.

(五)問題拓展

例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數)是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?

[說明]使學生明白數學既來源于實際又服務于實際.

三、鞏固練習

1.在棱長為1的正方體 中,求二面角 的大小.

2. 若二面角 的大小為 ,P在平面 上,點P到 的距離為h,求點P到棱l的距離.

四、課堂小結

1.二面角的定義

2.二面角的平面角的定義及其范圍

3.二面角的平面角的常用作圖方法

4.求二面角的大小(作—證—算—答)

五、作業布置

1.課本P18練習14.4(1)

2.在 二面角的一個面內有一個點,它到另一個面的距離是10,求它到棱的距離.

3.把邊長為a的正方形ABCD以BD為軸折疊,使二面角A-BD-C成 的二面角,求A、C兩點的距離.

六、教學設計說明

本節課的設計不是簡單地將概念直接傳受給學生,而是考慮到知識的形成過程,設法從學生的數學現實出發,調動學生積極參與探索、發現、問題解決全過程.“二面角”及“二面角的平面角”這兩大概念的引出均運用了類比的手段和方法.教學過程中通過教師的層層鋪墊,學生的主動探究,使學生經歷概念的形成、發展和應用過程,有意識地加強了知識形成過程的教學.

高中數學教案最新模板篇11

一.課標要求:

1.分類加法計數原理、分步乘法計數原理

通過實例,總結出分類加法計數原理、分步乘法計數原理;能根據具體問題的特征,選擇分類加法計數原理或分步乘法計數原理解決一些簡單的實際問題;

2.排列與組合

通過實例,理解排列、組合的概念;能利用計數原理推導排列數公式、組合數公式,并能解決簡單的實際問題;

3.二項式定理

能用計數原理證明二項式定理;會用二項式定理解決與二項展開式有關的簡單問題。

二.命題走向

本部分內容主要包括分類計數原理、分步計數原理、排列與組合、二項式定理三部分;考查內容:(1)兩個原理;(2)排列、組合的概念,排列數和組合數公式,排列和組合的應用;(3)二項式定理,二項展開式的通項公式,二項式系數及二項式系數和。

排列、組合不僅是高中數學的重點內容,而且在實際中有廣泛的應用,因此新高考會有題目涉及;二項式定理是高中數學的重點內容,也是高考每年必考內容,新高考會繼續考察。

考察形式:單獨的考題會以選擇題、填空題的形式出現,屬于中低難度的題目,排列組合有時與概率結合出現在解答題中難度較小,屬于高考題中的中低檔題目。

三.要點精講

1.排列、組合、二項式知識相互關系表

2.兩個基本原理

(1)分類計數原理中的分類;

(2)分步計數原理中的分步;

正確地分類與分步是學好這一章的關鍵。

3.排列

(1)排列定義,排列數

(2)排列數公式:系==n·(n-1)…(n-m+1);

(3)全排列列:=n!;

(4)記住下列幾個階乘數:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;

4.組合

(1)組合的定義,排列與組合的區別;

(2)組合數公式:Cnm==;

(3)組合數的性質

①Cnm=Cnn-m;②;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;

5.二項式定理

(1)二項式展開公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;

(2)通項公式:二項式展開式中第k+1項的通項公式是:Tk+1=Cnkan-kbk;

6.二項式的應用

(1)求某些多項式系數的和;

(2)證明一些簡單的組合恒等式;

(3)證明整除性。

①求數的末位;

②數的整除性及求系數

;③簡單多項式的整除問題;

(4)近似計算。當x充分小時,我們常用下列公式估計近似值:

①(1+x)n≈1+nx

;②(1+x)n≈1+nx+x2;

(5)證明不等式。

四.典例解析

題型1:計數原理

例1.完成下列選擇題與填空題

(1)有三個不同的信箱,今有四封不同的信欲投其中,則不同的投法有種。

A.81B.64C.24D.4

(2)四名學生爭奪三項冠軍,獲得冠軍的可能的種數是()

A.81B.64C.24D.4

(3)有四位學生參加三項不同的競賽,

①每位學生必須參加一項競賽,則有不同的參賽方法有;

②每項競賽只許有一位學生參加,則有不同的參賽方法有;

③每位學生最多參加一項競賽,每項競賽只許有一位學生參加,則不同的參賽方法有。

例2.(06江蘇卷)今有2個紅球、3個黃球、4個白球,同色球不加以區分,將這9個球排成一列有種不同的方法(用數字作答)。

點評:分步計數原理與分類計數原理是排列組合中解決問題的重要手段,也是基礎方法,在高中數學中,只有這兩個原理,尤其是分類計數原理與分類討論有很多相通之處,當遇到比較復雜的問題時,用分類的方法可以有效的將之化簡,達到求解的目的。

題型2:排列問題

例3.(1)(20__四川理卷13)

展開式中的系數為?_______________。

【點評】:此題重點考察二項展開式中指定項的系數,以及組合思想;

(2).20__湖南省長沙云帆實驗學校理科限時訓練

若n展開式中含項的系數與含項的系數之比為-5,則n等于()

A.4B.6C.8D.10

點評:合理的應用排列的公式處理實際問題,首先應該進入排列問題的情景,想清楚我處理時應該如何去做。

例4.(1)用數字0,1,2,3,4組成沒有重復數字的五位數,則其中數字1,2相鄰的偶數有個(用數字作答);

(2)電視臺連續播放6個廣告,其中含4個不同的商業廣告和2個不同的公益廣告,要求首尾必須播放公益廣告,則共有種不同的播放方式(結果用數值表示).

點評:排列問題不可能解決所有問題,對于較復雜的問題都是以排列公式為輔助。

題型三:組合問題

例5.荊州市20__屆高中畢業班質量檢測(Ⅱ)

(1)將4個相同的白球和5個相同的黑球全部放入3個不同的盒子中,每個盒子既要有白球,又要有黑球,且每個盒子中都不能同時只放入2個白球和2個黑球,則所有不同的放法種數為(C)A.3B.6C.12D.18

(2)將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數不小于該盒子的編號,則不同的放球方法有()

A.10種B.20種C.36種D.52種

點評:計數原理是解決較為復雜的排列組合問題的基礎,應用計數原理結合

例6.(1)某校從8名教師中選派4名教師同時去4個邊遠地區支教(每地1人),其中甲和乙不同去,則不同的選派方案共有種;

(2)5名志愿者分到3所學校支教,每個學校至少去一名志愿者,則不同的分派方法共有()

(A)150種(B)180種(C)200種(D)280種

點評:排列組合的交叉使用可以處理一些復雜問題,諸如分組問題等;

題型4:排列、組合的綜合問題

例7.平面上給定10個點,任意三點不共線,由這10個點確定的`直線中,無三條直線交于同一點(除原10點外),無兩條直線互相平行。求:(1)這些直線所交成的點的個數(除原10點外)。(2)這些直線交成多少個三角形。

點評:用排列、組合解決有關幾何計算問題,除了應用排列、組合的各種方法與對策之外,還要考慮實際幾何意義。

例8.已知直線ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數。

點評:本題是1999年全國高中數學聯賽中的一填空題,據抽樣分析正確率只有0.37。錯誤原因沒有對c=0與c≠0正確分類;沒有考慮c=0中出現重復的直線。

題型5:二項式定理

例9.(1)(20__湖北卷)

在的展開式中,的冪的指數是整數的項共有

A.3項B.4項C.5項D.6項

(2)的展開式中含x的正整數指數冪的項數是

(A)0(B)2(C)4(D)6

點評:多項式乘法的進位規則。在求系數過程中,盡量先化簡,降底數的運算級別,盡量化成加減運算,在運算過程可以適當注意令值法的運用,例如求常數項,可令.在二項式的展開式中,要注意項的系數和二項式系數的區別。

例10.(20__湖南文13)

記的展開式中第m項的系數為,若,則=____5______.

題型6:二項式定理的應用

例11.(1)求4×6n+5n+1被20除后的余數;

(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余數是多少?

(3)根據下列要求的精確度,求1.025的近似值。①精確到0.01;②精確到0.001。

點評:(1)用二項式定理來處理余數問題或整除問題時,通常把底數適當地拆成兩項之和或之差再按二項式定理展開推得所求結論;

(2)用二項式定理來求近似值,可以根據不同精確度來確定應該取到展開式的第幾項。

五.思維總結

解排列組合應用題的基本規律

1.分類計數原理與分步計數原理使用方法有兩種:①單獨使用;②聯合使用。

2.將具體問題抽象為排列問題或組合問題,是解排列組合應用題的關鍵一步。

3.對于帶限制條件的排列問題,通常從以下三種途徑考慮:

(1)元素分析法:先考慮特殊元素要求,再考慮其他元素;

(2)位置分析法:先考慮特殊位置的要求,再考慮其他位置;

(3)整體排除法:先算出不帶限制條件的排列數,再減去不滿足限制條件的排列數。

4.對解組合問題,應注意以下三點:

(1)對“組合數”恰當的分類計算,是解組合題的常用方法;

(2)是用“直接法”還是“間接法”解組合題,其原則是“正難則反”;

(3)設計“分組方案”是解組合題的關鍵所在。

高中數學教案最新模板篇12

【高考要求】:三角函數的有關概念(B).

【教學目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.

理解任意角三角函數(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數線表示任意角的正弦、余弦、正切.

【教學重難點】:終邊相同的角的意義和任意角三角函數(正弦、余弦、正切)的定義.

【知識復習與自學質疑】

一、問題.

1、角的概念是什么?角按旋轉方向分為哪幾類?

2、在平面直角坐標系內角分為哪幾類?與終邊相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數有什么樣的關系?

4、弧度制下圓的弧長公式和扇形的面積公式是什么?

5、任意角的三角函數的定義是什么?在各象限的符號怎么確定?

6、你能在單位圓中畫出正弦、余弦和正切線嗎?

7、同角三角函數有哪些基本關系式?

二、練習.

1.給出下列命題:

(1)小于的角是銳角;(2)若是第一象限的角,則必為第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;

(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

(6)角2與角的終邊不可能相同;

(7)若角與角有相同的終邊,則角(的終邊必在軸的非負半軸上。其中正確的命題的序號是

2.設P點是角終邊上一點,且滿足則的值是

3.一個扇形弧AOB的面積是1,它的周長為4,則該扇形的中心角=弦AB長=

4.若則角的終邊在象限。

5.在直角坐標系中,若角與角的終邊互為反向延長線,則角與角之間的關系是

6.若是第三象限的角,則-,的終邊落在何處?

【交流展示、互動探究與精講點撥】

例1.如圖,分別是角的終邊.

(1)求終邊落在陰影部分(含邊界)的所有角的集合;

(2)求終邊落在陰影部分、且在上所有角的集合;

(3)求始邊在OM位置,終邊在ON位置的所有角的集合.

例2.(1)已知角的終邊在直線上,求的值;

(2)已知角的終邊上有一點A,求的值。

例3.若,則在第象限.

例4.若一扇形的周長為20,則當扇形的圓心角等于多少弧度時,這個扇形的面積最大?最大面積是多少?

【矯正反饋】

1、若銳角的終邊上一點的坐標為,則角的弧度數為.

2、若,又是第二,第三象限角,則的取值范圍是.

3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數是弧度或角度,該扇形的面積是.

4、已知點P在第三象限,則角終邊在第象限.

5、設角的終邊過點P,則的值為.

6、已知角的終邊上一點P且,求和的值.

【遷移應用】

1、經過3小時35分鐘,分針轉過的角的弧度是.時針轉過的角的弧度數是.

2、若點P在第一象限,則在內的取值范圍是.

3、若點P從(1,0)出發,沿單位圓逆時針方向運動弧長到達Q點,則Q點坐標為.

4、如果為小于360的正角,且角的7倍數的角的終邊與這個角的終邊重合,求角的值.

99840 主站蜘蛛池模板: 雨水收集系统厂家-雨水收集利用-模块雨水收集池-徐州博智环保科技有限公司 | 防水套管厂家_刚性防水套管_柔性防水套管_不锈钢防水套管-郑州中泰管道 | 双效节能浓缩器-热回流提取浓缩机组-温州市利宏机械 | 山东PE给水管厂家,山东双壁波纹管,山东钢带增强波纹管,山东PE穿线管,山东PE农田灌溉管,山东MPP电力保护套管-山东德诺塑业有限公司 | 罗氏牛血清白蛋白,罗氏己糖激酶-上海嵘崴达实业有限公司 | 非标压力容器_碳钢储罐_不锈钢_搪玻璃反应釜厂家-山东首丰智能环保装备有限公司 | 蒸压釜_蒸养釜_蒸压釜厂家-山东鑫泰鑫智能装备有限公司 | 耐酸泵,耐酸泵厂家-淄博华舜耐腐蚀真空泵 | 杭州中策电线|中策电缆|中策电线|杭州中策电缆|杭州中策电缆永通集团有限公司 | 中央空调维修、中央空调保养、螺杆压缩机维修-苏州东菱空调 | 私人别墅家庭影院系统_家庭影院音响_家庭影院装修设计公司-邦牛影音 | 小型气象站_车载气象站_便携气象站-山东风途物联网 | 东莞喷砂机-喷砂机-喷砂机配件-喷砂器材-喷砂加工-东莞市协帆喷砂机械设备有限公司 | 电镀标牌_电铸标牌_金属标贴_不锈钢标牌厂家_深圳市宝利丰精密科技有限公司 | 热回收盐水机组-反应釜冷水机组-高低温冷水机组-北京蓝海神骏科技有限公司 | 酒糟烘干机-豆渣烘干机-薯渣烘干机-糟渣烘干设备厂家-焦作市真节能环保设备科技有限公司 | 基本型顶空进样器-全自动热脱附解吸仪价格-AutoHS全模式-成都科林分析技术有限公司 | 空气净化器租赁,空气净化器出租,全国直租_奥司汀净化器租赁 | 通风天窗,通风气楼,屋顶通风天窗,屋顶通风天窗公司 | 样品瓶(色谱样品瓶)百科-浙江哈迈科技有限公司 | 北京三友信电子科技有限公司-ETC高速自动栏杆机|ETC机柜|激光车辆轮廓测量仪|嵌入式车道控制器 | 广东恩亿梯电源有限公司【官网】_UPS不间断电源|EPS应急电源|模块化机房|电动汽车充电桩_UPS电源厂家(恩亿梯UPS电源,UPS不间断电源,不间断电源UPS) | PE拉伸缠绕膜,拉伸缠绕膜厂家,纳米缠绕膜-山东凯祥包装 | Copeland/谷轮压缩机,谷轮半封闭压缩机,谷轮涡旋压缩机,型号规格,技术参数,尺寸图片,价格经销商 CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | 水质传感器_水质监测站_雨量监测站_水文监测站-山东水境传感科技有限公司 | 手持气象站_便携式气象站_农业气象站_负氧离子监测站-山东万象环境 | 桁架机器人_桁架机械手_上下料机械手_数控车床机械手-苏州清智科技装备制造有限公司 | 雨燕360体育免费直播_雨燕360免费NBA直播_NBA篮球高清直播无插件-雨燕360体育直播 | 特材真空腔体_哈氏合金/镍基合金/纯镍腔体-无锡国德机械制造有限公司 | 健康管理师报名入口,2025年健康管理师考试时间信息网-网站首页 塑料造粒机「厂家直销」-莱州鑫瑞迪机械有限公司 | PCB接线端子_栅板式端子_线路板连接器_端子排生产厂家-置恒电气 喷码机,激光喷码打码机,鸡蛋打码机,手持打码机,自动喷码机,一物一码防伪溯源-恒欣瑞达有限公司 假肢-假肢价格-假肢厂家-河南假肢-郑州市力康假肢矫形器有限公司 | 上海质量认证办理中心 | 彩超机-黑白B超机-便携兽用B超机-多普勒彩超机价格「大为彩超」厂家 | 富森高压水枪-柴油驱动-养殖场高压清洗机-山东龙腾环保科技有限公司 | pbootcms网站模板|织梦模板|网站源码|jquery建站特效-html5模板网 | 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库 | 真空粉体取样阀,电动楔式闸阀,电动针型阀-耐苛尔(上海)自动化仪表有限公司 | 飞歌臭氧发生器厂家_水处理臭氧发生器_十大臭氧消毒机品牌 | 质检报告_CE认证_FCC认证_SRRC认证_PSE认证_第三方检测机构-深圳市环测威检测技术有限公司 | 电抗器-能曼电气-电抗器专业制造商| 自动部分收集器,进口无油隔膜真空泵,SPME固相微萃取头-上海楚定分析仪器有限公司 |