八年級數(shù)學教案(2023)
八年級數(shù)學教案都有哪些?現(xiàn)代高能物理達到量子物理后,有很多實驗根本做不了。離數(shù)學人們想在家里做的事情不遠了,所以數(shù)學擁有令人難以置信的物理力量,下面是小編為大家?guī)淼陌四昙墧?shù)學教案(2023)七篇,希望大家能夠喜歡!
八年級數(shù)學教案(2023)(精選篇1)
一、教學目標
1.了解二次根式的意義;
2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;
3. 掌握二次根式的性質 和 ,并能靈活應用;
4.通過二次根式的計算培養(yǎng)學生的邏輯思維能力;
5. 通過二次根式性質 和 的介紹滲透對稱性、規(guī)律性的數(shù)學美.
二、教學重點和難點
重點:(1)二次根的意義;(2)二次根式中字母的取值范圍.
難點:確定二次根式中字母的取值范圍.
三、教學方法
啟發(fā)式、講練結合.
四、教學過程
(一)復習提問
1.什么叫平方根、算術平方根?
2.說出下列各式的意義,并計算
(二)引入新課
新課:二次根式
定義: 式子 叫做二次根式.
對于 請同學們討論論應注意的問題,引導學生總結:
(1)式子 只有在條件a≥0時才叫二次根式, 是二次根式嗎? 呢?
若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分.
(2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次
根式指的是某種式子的“外在形態(tài)”.請學生舉出幾個二次根式的例子,并說明為什么是二次根式.下面例題根據(jù)二次根式定義,由學生分析、回答.
例1 當a為實數(shù)時,下列各式中哪些是二次根式?
例2 x是怎樣的實數(shù)時,式子 在實數(shù)范圍有意義?
解:略.
說明:這個問題實質上是在x是什么數(shù)時,x-3是非負數(shù),式子 有意義.
例3 當字母取何值時,下列各式為二次根式:
(1) (2) (3) (4)
分析:由二次根式的定義 ,被開方數(shù)必須是非負數(shù),把問題轉化為解不等式.
解:(1)∵a、b為任意實數(shù)時,都有a2+b2≥0,∴當a、b為任意實數(shù)時, 是二次根式.
(2)-3x≥0,x≤0,即x≤0時, 是二次根式.
(3) ,且x≠0,∴x>0,當x>0時, 是二次根式.
(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.當x>2時, 是二次根式.
例4 下列各式是二次根式,求式子中的字母所滿足的條件:
分析:這個例題根據(jù)二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,.即: 只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零.
解:(1)由2a+3≥0,得 .
(2)由 ,得3a-1>0,解得 .
(3)由于x取任何實數(shù)時都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式. 所以所求字母x的取值范圍是全體實數(shù).
(4)由-b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0.
八年級數(shù)學教案(2023)(精選篇2)
《矩形》教案
教學目標:
知識與技能目標:
1.掌握矩形的概念、性質和判別條件。
2.提高對矩形的性質和判別在實際生活中的應用能力。
過程與方法目標:
1.經歷探索矩形的有關性質和判別條件的過程,在直觀操作活動和簡單的說理過程中發(fā)展學生的合情推理能力,主觀探索習慣,逐步掌握說理的基本方法。
2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉化歸思想。
情感與態(tài)度目標:
1.在操作活動過程中,加深對矩形的的認識,并以此激發(fā)學生的探索精神。
2.通過對矩形的探索學習,體會它的內在美和應用美。
教學重點:矩形的性質和常用判別方法的理解和掌握。
教學難點:矩形的性質和常用判別方法的綜合應用。
教學方法:分析啟發(fā)法
教具準備:像框,平行四邊形框架教具,多媒體課件。
教學過程設計:
一、情境導入:
演示平行四邊形活動框架,引入課題。
二、講授新課:
1.歸納矩形的定義:
問題:從上面的演示過程可以發(fā)現(xiàn):平行四邊形具備什么條件時,就成了矩形?(學生思考、回答。)
結論:有一個內角是直角的平行四邊形是矩形。
2.探究矩形的性質:
(1)問題:像框除了“有一個內角是直角”外,還具有哪些一般平行四邊形不具備的性質?(學生思考、回答.)
結論:矩形的四個角都是直角。
(2)探索矩形對角線的性質:
讓學生進行如下操作后,思考以下問題:(幻燈片展示)
在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.
①隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?
②當∠α是銳角時,兩條對角線的長度有什么關系?當∠α是鈍角時呢?
③當∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關系?
(學生操作,思考、交流、歸納。)
結論:矩形的兩條對角線相等.
(3)議一議:(展示問題,引導學生討論解決)
①矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.
②直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關性質解釋這結論嗎?
(4)歸納矩形的性質:(引導學生歸納,并體會矩形的“對稱美”)
矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.
例解:(性質的運用,滲透矩形對角線的“化歸”功能)
如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4
厘米,求BD與AD的長。
(引導學生分析、解答)
探索矩形的判別條件:(由修理桌子引出)
(5)想一想:(學生討論、交流、共同學習)
對角線相等的平行四邊形是怎樣的四邊形?為什么?
結論:對角線相等的平行四邊形是矩形.
(理由可由師生共同分析,然后用幻燈片展示完整過程.)
(6)歸納矩形的判別方法:(引導學生歸納)
有一個內角是直角的平行四邊形是矩形.
對角線相等的平行四邊形是矩形.
三、課堂練習:(出示P98隨堂練習題,學生思考、解答。)
四、新課小結:
通過本節(jié)課的學習,你有什么收獲?
(師生共同從知識與思想方法兩方面小結。)
五、作業(yè)設計:P99習題4.6第1、2、3題。
板書設計:
1.矩形
矩形的定義:
矩形的性質:
前面知識的小系統(tǒng)圖示:
2.矩形的判別條件:
例1
課后反思:在平行四邊形及菱形的教學后。學生已經學會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質。一些相關矩形的計算也學會應用轉化為直角三角形的方法來解決。總的看來這節(jié)課學生掌握的還不錯。當然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。
八年級數(shù)學教案(2023)(精選篇3)
《梯形》教案
教學目標:
情意目標:培養(yǎng)學生團結協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。
教學重點、難點
重點:等腰梯形性質的探索;
難點:梯形中輔助線的添加。
教學課件:PowerPoint演示文稿
教學方法:啟發(fā)法、
學習方法:討論法、合作法、練習法
教學過程:
(一)導入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的.分類:(投影)
(二)等腰梯形性質的探究
【探究性質一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質:等腰梯形的兩條對角線相等。
【探究性質三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質:同以底上的兩個內角相等,對角線相等
(三)質疑反思、小結
讓學生回顧本課教學內容,并提出尚存問題;
學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
八年級數(shù)學教案(2023)(精選篇4)
一、教材分析
以《初中數(shù)學新課程標準》為依據(jù),立足課本,本學期介紹二次根式、勾股定理、平行四邊形、一次函數(shù)和數(shù)據(jù)的分析五章內容。本冊書的5章內容涉及《數(shù)學課程標準》中“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計與概率”“實踐與綜合應用”四個領域的內容。其中對于“實踐與綜合應用”領域的內容,本冊書安排了課題學習,并在每一章的最后安排了2~3個數(shù)學活動,通過這些課題學習和數(shù)學活動落實“實踐與綜合應用”的要求。這5章大體上采用相近內容相對集中的方式安排,第十六章、十九章基本屬于“數(shù)與代數(shù)”領域,第十七章、十八章基本屬于“空間與圖形”領域,最后一章是“統(tǒng)計與概率”領域,這樣安排有助于加強知識間的縱向聯(lián)系。在各章具體內容的編寫中,又特別注意加強各領域之間的橫向聯(lián)系。
二、學情分析
1.進一步加強基礎知識的數(shù)學教學,培養(yǎng)學習好習慣
每次數(shù)學考試,基礎知識的考察占大比重。但即使是平時比較好的同學,也經常在基礎題上失分。所以,在以后的教學中,要夯實基礎,做到每個學生都把握好基礎題不失分。培養(yǎng)好的解題習慣,勤于思考,多學善問。
2.增強學生的數(shù)感
在數(shù)學教學中,培養(yǎng)學生對數(shù)字的敏感能力。比如,在化簡二次根式時,就極大地運用了數(shù)感,無形中提高了做題的速度。其次,數(shù)感的培養(yǎng),有利于學生對自己所做題目的感性檢驗,增加學生做題的正確率,有助于提高學生的審題能力,做到選擇題“快,準,好”。
3. 培養(yǎng)學生的初步的邏輯推理和抽象思考等基本的數(shù)學能力
部分學生缺乏空間想象能力,而這一能力對學習數(shù)學是十分重要的,對今后高中學好空間幾何起著舉足輕重的作用。另外,數(shù)學就是一門邏輯性極強的科學,應著力培養(yǎng)學生的數(shù)學邏輯性,有助于學生做好證明題和大體步驟的完整解答。
三、教材目標及要求:
1、二次根式的重點是二次根式的性質及運算,難點是二次根式的化簡及運算。
2、勾股定理:會用勾股定理和逆定理解決實際問題。
3、平行四邊形的重點是平行四邊形的定義、性質和判定,難點是平行四邊形與各種特殊平行四邊形之間的聯(lián)系和區(qū)別以及中心對稱。
4、一次函數(shù)主要學習一次函數(shù)及其三種表達方式,包括正比例函數(shù)、一次函數(shù)的概念、圖象、性質和應用。學會用函數(shù)的觀點認識一元一次方程、一元一次不等式及二元一次方程組。本章重點內容是正比例函數(shù)、一次函數(shù)的概念、圖象和性質。教學難點是培養(yǎng)學生初步形成數(shù)形結合的思維模式。
5、數(shù)據(jù)的分析
四、教學常規(guī)落實
嚴格遵守學校的各項規(guī)章制度,不遲到早退,積極參加各項活動及學習,團結協(xié)作。精心備課,備教材備學生,密切生活實際和學生實際,整合教學資源,運用好多媒體教學,利用一切可以利用的有利因素,為教學服務。上好每一節(jié)課,根據(jù)學生實際合理利用教學資源,上好每一節(jié)課。布置作業(yè)做到有的放矢,有針對性,有層次性。認真批改作業(yè)。同時對學生的作業(yè)批改及時、有效,分析并記錄學生的作業(yè)情況,將他們在作業(yè)過程出現(xiàn)的問題作出及時反饋,針對作業(yè)中的問題確定個別輔導的學生,并對他們進行及時的指導。 積極做好學困生轉化工作。對學習過程中有困難的學生,及時給予幫助,幫助他們找到應對措施,幫助他們渡過難關。
五、深入業(yè)務學習
認真學習業(yè)務理論,并做好一周一次的業(yè)務筆記,提高自己的理論水平,豐富自己的業(yè)務知識;積極參加一切課題研究活動,敢想敢干,敢于創(chuàng)新,不怕失敗。在學習策略上及時指導學生,培養(yǎng)思維,方法技巧,提升能力。及時對教學活動作出反思,每周寫出一至兩個教學反思,真正體會自己的優(yōu)缺點,做到有的放矢,進一步提高自己。充分備好每個教案,做到備學生,備教材。發(fā)揮多媒體教學優(yōu)勢,積極利用和制作課件,提高自己電化教學能力。
六、教學措施:
1、認真學習教育教學理論,結合落實課標理念。將學講練和諧的課堂教學模式滲透于教學。讓學生通過觀察、思考、探究、討論、歸納,主動地進行學習。改進教學方法,充分利用多媒體,實物等創(chuàng)設情景進行教學,力求課堂教學的多樣化、生活化和開放化,師生互動、生生互動,構建高效課堂。運用新課程標準的理念指導教學,積極更新教育理念,關心愛護學生,公平對待學生。
2、培養(yǎng)學生興趣和良好習慣。興趣是的老師,激發(fā)學生的興趣,給學生適時介紹數(shù)學家,數(shù)學史,數(shù)學趣題,補充數(shù)學相應課外思考題,擴充資源,通過各種途徑培養(yǎng)學生的興趣。教育關鍵就是培養(yǎng)習慣,良好的學習習慣有助于學生穩(wěn)步提高學習成績,發(fā)展學生的非智力因素,促進學習興趣與良好習慣培養(yǎng)。
3、創(chuàng)設和諧教學氛圍。引導學生積極參與知識的構建,營造民主、和諧、平等、自主、探究、合作、交流、分享發(fā)現(xiàn)快樂的高效的學習課堂,讓學生體會學習的快樂,享受學習。
4、關注學生情感態(tài)度、學習方法、目標實施。引導學生積極歸納解題規(guī)律,引導學生一題多解,通過變式訓練,培養(yǎng)學生透過現(xiàn)象看本質,提高學生舉一反三的能力。充分利用現(xiàn)實世界中的實物原型進行教學,展示豐富多彩的幾何世界;注重概念間的聯(lián)系,在對比中加深理解,重視幾何語言的培養(yǎng)和訓練。提高學生素質,培養(yǎng)學生的發(fā)散創(chuàng)新思維,提高學習效率,做到事半功倍。
5、做好課題研究。促進學生自主、合作,探究學習,把學生帶入研究學習中,學會探究,合作,自主學習,拓展學生的知識面,培養(yǎng)興趣,提高能力。開展豐富多彩的課外活動,課外調查,操作實踐,以優(yōu)帶差,培養(yǎng)學生探究合作能力,師生共同提高。
6、實行分層教學。關注各類學生,作業(yè)分類分層布置,因人而異,課堂上照顧好各類學生。發(fā)揮優(yōu)生的幫扶作用,打牢基礎知識,提升每一個學生的能力。
八年級數(shù)學教案(2023)(精選篇5)
11.1 與三角形有關的線段
11.1.1 三角形的邊
1.理解三角形的概念,認識三角形的頂點、邊、角,會數(shù)三角形的個數(shù).(重點)
2.能利用三角形的三邊關系判斷三條線段能否構成三角形.(重點)
3.三角形在實際生活中的應用.(難點)
一、情境導入
出示金字塔、戰(zhàn)機、大橋等圖片,讓學生感受生活中的三角形,體會生活中處處有數(shù)學.
教師利用多媒體演示三角形的形成過程,讓學生觀察.
問:你能不能給三角形下一個完整的定義?
二、合作探究
探究點一:三角形的概念
圖中的銳角三角形有( )
A.2個
B.3個
C.4個
D.5個
解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數(shù)有2+1=3(個).故選B.
方法總結:數(shù)三角形的個數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的一點組成n(n-1)2個三角形.
探究點二:三角形的三邊關系
【類型一】 判定三條線段能否組成三角形
以下列各組線段為邊,能組成三角形的是( )
A.2c,3c,5c
B.5c,6c,10c
C.1c,1c,3c
D.3c,4c,9c
解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1<3,不能組成三角形,故此選項錯誤;選項D中3+4<9,不能組成三角形,故此選項錯誤.故選B.
方法總結:判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.
【類型二】 判斷三角形邊的取值范圍
一個三角形的三邊長分別為4,7,_,那么_的取值范圍是( )
A.3<_<11 p="" b.4<_<7
C.-3<_3
解析:∵三角形的三邊長分別為4,7,_,∴7-4<_<7+4,即3<_<11.故選a.< p="">
方法總結:判斷三角形邊的取值范圍要同時運用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結合不等式的知識進行解決.
【類型三】 等腰三角形的三邊關系
已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.
解析:先根據(jù)等腰三角形兩腰相等的性質可得出第三邊長的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構成三角形,從而求解.
解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構成三角形,應舍去;4+9>9,故4,9,9能構成三角形,∴它的周長是4+9+9=22.
方法總結:在求三角形的邊長時,要注意利用三角形的三邊關系驗證所求出的邊長能否組成三角形.
【類型四】 三角形三邊關系與絕對值的綜合
若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.
解析:根據(jù)三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負,然后去絕對值符號進行計算即可.
解:根據(jù)三角形的三邊關系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法總結:絕對值的化簡首先要判斷絕對值符號里面的式子的正負,然后根據(jù)絕對值的性質將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關系,判斷絕對值符號里面式子的正負,然后進行化簡.
三、板書設計
三角形的邊
1.三角形的概念:
由不在同一直線上的三條線段首尾順次相接所組成的圖形.
2.三角形的三邊關系:
兩邊之和大于第三邊,兩邊之差小于第三邊.
本節(jié)課讓學生經歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學生探究的欲望,圍繞這個問題讓學生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關系,重點研究“能圍成三角形的三條邊之間到底有什么關系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結論.這樣教學符合學生的認知特點,既提高了學生學習的興趣,又增強了學生的動手能力.
八年級數(shù)學教案(2023)(精選篇6)
一、全章要點
1、勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)
2、勾股定理的逆定理 如果三角形的三邊長:a、b、c,則有關系a2+b2=c2,那么這個三角形是直角三角形。
3、勾股定理的證明 常見方法如下:
方法一: , ,化簡可證.
方法二:
四個直角三角形的面積與小正方形面積的和等于大正方形的面積.
四個直角三角形的面積與小正方形面積的和為
大正方形面積為 所以
方法三: , ,化簡得證
4、勾股數(shù) 記住常見的勾股數(shù)可以提高解題速度,如 ; ; ; ;8,15,17;9,40,41等
二、經典訓練
(一)選擇題:
1. 下列說法正確的是( )
A.若 a、b、c是△ABC的三邊,則a2+b2=c2;
B.若 a、b、c是Rt△ABC的三邊,則a2+b2=c2;
C.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2;
D.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2.
2. △ABC的三條邊長分別是 、 、 ,則下列各式成立的是( )
A. B. C. D.
3.直角三角形中一直角邊的長為9,另兩邊為連續(xù)自然數(shù),則直角三角形的周長為( )
A.121 B.120 C.90 D.不能確定
4.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( )
A.42 B.32 C.42 或 32 D.37 或 33
(二)填空題:
5.斜邊的邊長為 ,一條直角邊長為 的直角三角形的面積是 .
6.假如有一個三角形是直角三角形,那么三邊 、 、 之間應滿足 ,其中 邊是直角所對的邊;如果一個三角形的三邊 、 、 滿足 ,那么這個三角形是 三角形,其中 邊是 邊, 邊所對的角是 .
7.一個三角形三邊之比是 ,則按角分類它是 三角形.
8. 若三角形的三個內角的比是 ,最短邊長為 ,最長邊長為 ,則這個三角形三個角度數(shù)分別是 ,另外一邊的平方是 .
9.如圖,已知 中, , , ,以直角邊 為直徑作半圓,則這個半圓的面積是 .
10. 一長方形的一邊長為 ,面積為 ,那么它的一條對角線長是 .
三、綜合發(fā)展:
11.如圖,一個高 、寬 的大門,需要在對角線的頂點間加固一個木條,求木條的長.
12.一個三角形三條邊的長分別為 , , ,這個三角形最長邊上的高是多少?
13.如圖,小李準備建一個蔬菜大棚,棚寬4m,高3m,長20m,棚的斜面用塑料薄膜遮蓋,不計墻的厚度,請計算陽光透過的最大面積.
14.如圖,有一只小鳥在一棵高13m的大樹樹梢上捉蟲子,它的伙伴在離該樹12m,高8m的一棵小樹樹梢上發(fā)出友好的叫聲,它立刻以2m/s的速度飛向小樹樹梢,那么這只小鳥至少幾秒才可能到達小樹和伙伴在一起?
15.如圖,長方體的長為15,寬為10,高為20,點 離點 的距離為5,一只螞蟻如果要沿著長方體的表面從點 爬到點 ,需要爬行的最短距離是多少?
16.中華人民共和國道路交通管理條例規(guī)定:小汽車在城街路上行駛速度不得超過 km/h.如圖,,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方 m處,過了2s后,測得小汽車與車速檢測儀間距離為 m,這輛小汽車超速了嗎?
八年級數(shù)學教案(2023)(精選篇7)
第三十四學時:14.2.1平方差公式
一、學習目標:
1.經歷探索平方差公式的過程。
2.會推導平方差公式,并能運用公式進行簡單的運算。
二、重點難點
重點:平方差公式的推導和應用;
難點:理解平方差公式的結構特征,靈活應用平方差公式。
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)20__×1999(2)998×1002
導入新課:計算下列多項式的積.
(1)(_+1)(_—1);
(2)(m+2)(m—2)
(3)(2_+1)(2_—1);
(4)(_+5y)(_—5y)。
結論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
即:(a+b)(a—b)=a2—b2
四、精講精練
例1:運用平方差公式計算:
(1)(3_+2)(3_—2);
(2)(b+2a)(2a—b);
(3)(—_+2y)(—_—2y)。
例2:計算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習
計算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
五、小結
(a+b)(a—b)=a2—b2