小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數學教案 >

初中八年級數學上冊備課教案

時間: 金成 數學教案

作為一名教職工,就難以避免地要準備教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。快來參考教案是怎么寫的吧!下面小編帶來初中八年級數學上冊備課教案5篇,希望大家喜歡。

初中八年級數學上冊備課教案

初中八年級數學上冊備課教案篇1

知識技能

1、了解兩個圖形成軸對稱性的性質,了解軸對稱圖形的性質。

2、探究線段垂直平分線的性質。

過程方法

1、經歷探索軸對稱圖形性質的過程,進一步體驗軸對稱的特點,發展空間觀察。

2、探索線段垂直平分線的性質,培養學生認真探究、積極思考的能力。

情感態度價值觀通過對軸對稱圖形性質的探索,促使學生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發學生學習的主動性和積極性,并使學生具有一些初步研究問題的能力。

教學重點

1、軸對稱的性質。

2、線段垂直平分線的性質。

教學難點體驗軸對稱的特征。

教學方法和手段多媒體教學

過程教學內容

引入中垂線概念

引出圖形對稱的性質第一張幻燈片

上節課我們共同探討了軸對稱圖形,知道現實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續來研究軸對稱的性質。

幻燈片二

1、圖中的對稱點有哪些?

2、點A和A的連線與直線MN有什么樣的關系?

理由?:△ABC與△ABC關于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經過線段AA、BB和CC的中點。

我們把經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

定義:經過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

初中八年級數學上冊備課教案篇2

一、教學目標

1、理解一個數平方根和算術平方根的意義;

2、理解根號的意義,會用根號表示一個數的平方根和算術平方根;

3、通過本節的訓練,提高學生的邏輯思維能力;

4、通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統一的辯證關系,激發學生探索數學奧秘的興趣。

二、教學重點和難點

教學重點:平方根和算術平方根的概念及求法。

教學難點:平方根與算術平方根聯系與區別。

三、教學方法

講練結合

四、教學手段

幻燈片

五、教學過程

(一)提問

1、已知一正方形面積為50平方米,那么它的邊長應為多少?

2、已知一個數的平方等于1000,那么這個數是多少?

3、一只容積為0.125立方米的正方體容器,它的棱長應為多少?

這些問題的共同特點是:已知乘方的結果,求底數的值,如何解決這些問題呢?這就是本節內容所要學習的。下面作一個小練習:

學生在完成此練習時,最容易出現的錯誤是丟掉負數解,在教學時應注意糾正。

由練習引出平方根的概念。

(二)平方根概念

如果一個數的平方等于a,那么這個數就叫做a的平方根(二次方根)。

用數學語言表達即為:若x2=a,則x叫做a的平方根。

由練習知:±3是9的平方根;

±0.5是0.25的平方根;

0的平方根是0;

±0.09是0。0081的平方根。

由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:

( )2=—4

學生思考后,得到結論此題無答案。反問學生為什么?因為正數、0、負數的平方為非負數。由此我們可以得到結論,負數是沒有平方根的。下面總結一下平方根的性質(可由學生總結,教師整理)。

(三)平方根性質

1、一個正數有兩個平方根,它們互為相反數。

2、0有一個平方根,它是0本身。

3、負數沒有平方根。

(四)開平方

求一個數a的平方根的運算,叫做開平方的運算。

由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據這種關系,我們可以通過平方運算來求一個數的平方根。與其他運算法則不同之處在于只能對非負數進行運算,而且正數的運算結果是兩個。

(五)平方根的表示方法

一個正數a的正的平方根,用符號“ ”表示,a叫做被開方數,2叫做根指數,正數a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數為2時,通常將這個2省略不寫,所以正數a的平方根也可記作“ ”讀作“正、負根號a”。

練習:1、用正確的符號表示下列各數的平方根:

①26 ②247 ③0.2 ④3 ⑤

解:①26 的平方根是

②247的平方根是

③0.2的平方根是

④3的平方根是

⑤ 的平方根是

由學生說出上式的讀法。

例1。下列各數的平方根:

(1)81; (2) ; (3) ; (4)0.49

解:(1)∵(±9)2=81,

∴81的平方根為±9。即:

(2)

的平方根是 ,即

(3)

的平方根是 ,即

(4)∵(±0。7)2=0.49,

∴0.49的平方根為±0.7。

小結:讓學生熟悉平方根的概念,掌握一個正數的平方根有兩個。

六、總結

本節課主要學習了平方根的概念、性質,以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。

七、作業

教材P.127練習1、2、3、4。

八、板書設計

平方根

(一)概念

(二)性質

(三)開平方

(四)表示方法

探究活動

求平方根近似值的一種方法

求一個正數的平方根的近似值,通常是查表。這里研究一種筆算求法。

例1。求 的值。

解 ∵92102,

兩邊平方并整理得

∵x1為純小數。

18x1≈16,解得x1≈0.9,

便可依次得到精確度

為0.01,0.001,……的近似值,如:

兩邊平方,舍去x2得19.8x2≈—1.01

初中八年級數學上冊備課教案篇3

教學目標

1、知識與技能目標

學會觀察圖形,勇于探索圖形間的關系,培養學生的空間觀念。

2、過程與方法

(1)經歷一般規律的探索過程,發展學生的抽象思維能力。

(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想。

3、情感態度與價值觀

(1)通過有趣的問題提高學習數學的興趣。

(2)在解決實際問題的過程中,體驗數學學習的實用性。

教學重點:

探索、發現事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。

教學難點:

利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題。

教學準備:

多媒體

教學過程:

第一環節:創設情境,引入新課(3分鐘,學生觀察、猜想)

情景:

如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

第二環節:合作探究(15分鐘,學生分組合作探究)

學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法:建立數學模型,構圖,計算。

學生匯總了四種方案:

(1) (2) (3)(4)

學生很容易算出:情形(1)中A→B的路線長為:AA’+d,情形(2)中A→B的路線長為:AA’+πd/2所以情形(1)的路線比情形(2)要短。

學生在情形(3)和(4)的比較中出現困難,但還是有學生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據兩點之間線段最短可判斷(4)最短。

如圖:

(1)中A→B的路線長為:AA’+d;

(2)中A→B的路線長為:AA’+A’B>AB;

(3)中A→B的路線長為:AO+OB>AB;

(4)中A→B的路線長為:AB。

得出結論:利用展開圖中兩點之間,線段最短解決問題。在這個環節中,可讓學生沿母線剪開圓柱體,具體觀察。接下來后提問:怎樣計算AB?

在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則。

第三環節:做一做(7分鐘,學生合作探究)

教材23頁

李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

(1)你能替他想辦法完成任務嗎?

(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

(3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

第四環節:鞏固練習(10分鐘,學生獨立完成)

1、甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發,他以6/h的速度向正東行走,1小時后乙出發,他以5/h的速度向正北行走。上午10:00, 甲、乙兩人相距多遠?

2、如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離。

3、有一個高為1、5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長?

第五環節 課堂小結(3分鐘,師生問答)

內容:

1、如何利用勾股定理及逆定理解決最短路程問題?

第六 環節:布置作業(2分鐘,學生分別記錄)

內容:

作業:1。課本習題1.5第1,2,3題。

要求:A組(學優生):1、2、3

B組(中等生):1、2

C組(后三分之一生):1

板書設計:

教學反思:

初中八年級數學上冊備課教案篇4

分式方程

教學目標

1.經歷分式方程的概念,能將實際問題中的等量關系用分式方程 表示,體會分式方程的模型作用.

2.經歷實際問題-分式方程方程模型的過程,發展學生分析問題、解決問題的能力,滲透數學的轉化思想人體,培養學生的應用意識。

3.在活動中培養學生樂于探究、合作學習的習慣,培養學 生努力尋找 解決問題的進取心,體會數學的應用價值.

教學重點:

將實際問題中的等量 關系用分式方程表示

教學難點:

找實際問題中的等量關系

教學過程:

情境導入:

有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產量。你能找出這一問題中的所有等量關系嗎?(分組交流)

如果設第一塊試驗田 每公頃的產量為 kg,那么第二塊試驗田每公頃的產量是________kg。

根據題意,可得方程___________________

二、講授新課

從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

這 一問題中有哪些等量關系?

如果設客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

根據題意,可得方程_ _____________________。

學生分組探討、交流,列出方程.

三.做一做:

為了幫助遭受自然災害的地區重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數比第一次多20人,而且兩次人均捐款額恰好相等。如果設第一次捐款人數為 人,那么 滿足怎樣的方程?

四.議一議:

上面所得到的方程有什么共同特點?

分母中含有未知數的方程叫做分式方程

分式方程與整式方程有什么區別?

五、 隨堂練習

(1)據聯合國《20_年全球投資 報告》指出,中國20_年吸收外國投資額 達530億美元,比上一年增加了13%。設20_年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

(2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

(3)根據分式方程 編一道應用題,然后同組交流,看誰編得好

六、學 習小結

本節課你學到了哪些知識?有什么感想?

七.作業布置

初中八年級數學上冊備課教案篇5

課題:一元二次方程實數根錯例剖析課

【教學目的】 精選學生在解一元二次方程有關問題時出現的典型錯例加以剖析,幫助學生找出產生錯誤的原因和糾正錯誤的方法,使學生在解題時少犯錯誤,從而培養學生思維的批判性和深刻性。

【課前練習】

1、關于x的方程ax2+bx+c=0,當a_____時,方程為一元一次方程;當 a_____時,方程為一元二次方程。

2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當△_______時,方程有兩個相等的實數根,當△_______時,方程有兩個不相等的實數根,當△________時,方程沒有實數根。

【典型例題】

例1 下列方程中兩實數根之和為2的方程是()

(A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

錯答: B

正解: C

錯因剖析:由根與系數的關系得x1+x2=2,極易誤選B,又考慮到方程有實數根,故由△可知,方程B無實數根,方程C合適。

例2 若關于x的方程x2+2(k+2)x+k2=0 兩個實數根之和大于-4,則k的取值范圍是( )

(A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

錯解 :B

正解:D

錯因剖析:漏掉了方程有實數根的前提是△≥0

例3(20_廣西中考題) 已知關于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。

錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

錯因剖析:漏掉了二次項系數1-2k≠0這個前提。事實上,當1-2k=0即k= 時,原方程變為一次方程,不可能有兩個實根。

正解: -1≤k<2且k≠

例4 (20_山東太原中考題) 已知x1,x2是關于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數根,當x12+x22=15時,求m的值。

錯解:由根與系數的關系得

x1+x2= -(2m+1), x1x2=m2+1,

∵x12+x22=(x1+x2)2-2 x1x2

=[-(2m+1)]2-2(m2+1)

=2 m2+4 m-1

又∵ x12+x22=15

∴ 2 m2+4 m-1=15

∴ m1 = -4 m2 = 2

錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1= -19<0,方程無實數根,不符合題意。

正解:m = 2

例5 若關于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數根,求m的取值范圍。

錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20

∵ △≥0

∴ 16 m+20≥0,

∴ m≥ -5/4

又 ∵ m2-1≠0,

∴ m≠±1

∴ m的取值范圍是m≠±1且m≥ -

錯因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關于未知數x的方程,而未限定方程的次數,所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當m2-1=0時,即m=±1時,方程變為一元一次方程,仍有實數根。

正解:m的取值范圍是m≥-

例6 已知二次方程x2+3 x+a=0有整數根,a是非負數,求方程的整數根。

錯解:∵方程有整數根,

∴△=9-4a>0,則a<2.25

又∵a是非負數,∴a=1或a=2

令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

∴方程的整數根是x1= -1, x2= -2

錯因剖析:概念模糊。非負整數應包括零和正整數。上面答案僅是一部分,當a=0時,還可以求出方程的另兩個整數根,x3=0, x4= -3

正解:方程的整數根是x1= -1, x2= -2 , x3=0, x4= -3

【練習】

練習1、(01濟南中考題)已知關于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數根x1、x2。

(1)求k的取值范圍;

(2)是否存在實數k,使方程的兩實數根互為相反數?如果存在,求出k的值;如果不存在,請說明理由。

解:(1)根據題意,得△=(2k-1)2-4 k2>0 解得k<

∴當k< 時,方程有兩個不相等的實數根。

(2)存在。

如果方程的兩實數根x1、x2互為相反數,則x1+ x2=- =0,得k= 。經檢驗k= 是方程- 的解。

∴當k= 時,方程的兩實數根x1、x2互為相反數。

讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。

解:上面解法錯在如下兩個方面:

(1)漏掉k≠0,正確答案為:當k< 時且k≠0時,方程有兩個不相等的實數根。

(2)k= 。不滿足△>0,正確答案為:不存在實數k,使方程的兩實數根互為相反數

練習2(02廣州市)當a取什么值時,關于未知數x的方程ax2+4x-1=0只有正實數根 ?

解:(1)當a=0時,方程為4x-1=0,∴x=

(2)當a≠0時,∵△=16+4a≥0 ∴a≥ -4

∴當a≥ -4且a≠0時,方程有實數根。

又因為方程只有正實數根,設為x1,x2,則:

x1+x2=- >0 ;

x1. x2=- >0 解得 :a<0

綜上所述,當a=0、a≥ -4、a<0時,即當-4≤a≤0時,原方程只有正實數根。

【小結】

以上數例,說明我們在求解有關二次方程的問題時,往往急于尋求結論而忽視了實數根的存在與“△”之間的關系。

1、運用根的判別式時,若二次項系數為字母,要注意字母不為零的條件。

2、運用根與系數關系時,△≥0是前提條件。

3、條件多面時(如例5、例6)考慮要周全。

【布置作業】

1、當m為何值時,關于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?

2、已知,關于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數根。

求證:關于x的方程

(m-5)x2-2(m+2)x + m=0一定有一個或兩個實數根。

考題匯編

1、(20_年廣東省中考題)設x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數的關系,求(x1-x2)2的值。

2、(20_年廣東省中考題)已知關于x的方程x2-2x+m-1=0

(1)若方程的一個根為1,求m的值。

(2)m=5時,原方程是否有實數根,如果有,求出它的實數根;如果沒有,請說明理由。

3、(20_年廣東省中考題)已知關于x的方程x2+2(m-2)x+ m2=0有兩個實數根,且兩根的平方和比兩根的積大33,求m的值。

4、(20_年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。

22983 主站蜘蛛池模板: 采暖炉_取暖炉_生物质颗粒锅炉_颗粒壁炉_厂家加盟批发_烟台蓝澳采暖设备有限公司 | 铝板冲孔网,不锈钢冲孔网,圆孔冲孔网板,鳄鱼嘴-鱼眼防滑板,盾构走道板-江拓数控冲孔网厂-河北江拓丝网有限公司 | 飞利浦LED体育场灯具-吸顶式油站灯-飞利浦LED罩棚灯-佛山嘉耀照明有限公司 | ICP备案查询_APP备案查询_小程序备案查询 - 备案巴巴 | 精密五金加工厂-CNC数控车床加工_冲压件|蜗杆|螺杆加工「新锦泰」 | 蒜肠网-动漫,二次元,COSPLAY,漫展以及收藏型模型,手办,玩具的新媒体.(原变形金刚变迷TF圈) | 智慧消防-消防物联网系统云平台 智能化的检漏仪_气密性测试仪_流量测试仪_流阻阻力测试仪_呼吸管快速检漏仪_连接器防水测试仪_车载镜头测试仪_奥图自动化科技 | 浴室柜-浴室镜厂家-YINAISI · 意大利设计师品牌 | 咿耐斯 |-浙江台州市丰源卫浴有限公司 | 智能电表|预付费ic卡水电表|nb智能无线远传载波电表-福建百悦信息科技有限公司 | 天津热油泵_管道泵_天津高温热油泵-天津市金丰泰机械泵业有限公司【官方网站】 | 石磨面粉机|石磨面粉机械|石磨面粉机组|石磨面粉成套设备-河南成立粮油机械有限公司 | 雷蒙磨,雷蒙磨粉机,雷蒙磨机 - 巩义市大峪沟高峰机械厂 | 烟台条码打印机_烟台条码扫描器_烟台碳带_烟台数据采集终端_烟台斑马打印机-金鹏电子-金鹏电子 | PC阳光板-PC耐力板-阳光板雨棚-耐力板雨棚,厂家定制[优尼科板材] | 水压力传感器_数字压力传感器|佛山一众传感仪器有限公司|首页 | 衬氟止回阀_衬氟闸阀_衬氟三通球阀_衬四氟阀门_衬氟阀门厂-浙江利尔多阀门有限公司 | 专业音响设备_舞台音响设备_会议音响工程-首选深圳一禾科技 | 微量水分测定仪_厂家_卡尔费休微量水分测定仪-淄博库仑 | 伶俐嫂培训学校_月嫂培训班在哪里报名学费是多少_月嫂免费政府培训中心推荐 | 锂离子电池厂家-山东中信迪生电源| 开云(中国)Kaiyun·官方网站 - 登录入口| 东莞注册公司-代办营业执照-东莞公司注册代理记账-极刻财税 | 起好名字_取个好名字_好名网免费取好名在线打分 | 杭州ROHS检测仪-XRF测试仪价格-百科| hdpe土工膜-防渗膜-复合土工膜-长丝土工布价格-厂家直销「恒阳新材料」-山东恒阳新材料有限公司 ETFE膜结构_PTFE膜结构_空间钢结构_膜结构_张拉膜_浙江萬豪空间结构集团有限公司 | 非标压力容器_碳钢储罐_不锈钢_搪玻璃反应釜厂家-山东首丰智能环保装备有限公司 | 顺辉瓷砖-大国品牌-中国顺辉| 中国产业发展研究网 - 提供行业研究报告 可行性研究报告 投资咨询 市场调研服务 | 河南新乡德诚生产厂家主营震动筛,振动筛设备,筛机,塑料震动筛选机 | 包装盒厂家_纸盒印刷_礼品盒定制-济南恒印包装有限公司 | 珠宝展柜-玻璃精品展柜-首饰珠宝展示柜定制-鸿钛展柜厂家 | 包装盒厂家_纸盒印刷_礼品盒定制-济南恒印包装有限公司 | 江苏全风,高压风机,全风环保风机,全风环形高压风机,防爆高压风机厂家-江苏全风环保科技有限公司(官网) | 山东信蓝建设有限公司官网 | FFU_空气初效|中效|高效过滤器_空调过滤网-广州梓净净化设备有限公司 | 浙江红酒库-冰雕库-气调库-茶叶库安装-医药疫苗冷库-食品物流恒温恒湿车间-杭州领顺实业有限公司 | 恒压供水控制柜|无负压|一体化泵站控制柜|PLC远程调试|MCGS触摸屏|自动控制方案-联致自控设备 | 冷藏车厂家|冷藏车价格|小型冷藏车|散装饲料车厂家|程力专用汽车股份有限公司销售十二分公司 | 钢衬玻璃厂家,钢衬玻璃管道 -山东东兴扬防腐设备有限公司 | 科普仪器菏泽市教育教学仪器总厂 | 不锈钢/气体/液体玻璃转子流量计(防腐,选型,规格)-常州天晟热工仪表有限公司【官网】 |