五年級上冊數學書教案
五年級數學老師應該在課堂中提高學生的學習興趣,異常要注重知識與現實的社會現象和生活緊密結合。五年級數學教案對數學教師的工作具有積極的影響,能夠幫助他們提升教學質量。你是否在找正準備撰寫“五年級上冊數學書教案”,下面小編收集了相關的素材,供大家寫文參考!
五年級上冊數學書教案篇1
教學目標
1.理解和掌握約分的方法.
2.掌握最簡分數的概念.
教學重點
掌握約分的方法.
教學難點
訓練學生很快看出分子、分母的公約數,并能夠準確判斷約分的結果是不是互質數.
教學步驟
一、鋪墊孕伏.
1.根據分數的基本性質填空
2.求下面各組數的最大公因數:
二、探究新知.
(一)教學1.最簡分數
分子和分母只有公因數1,像這樣,分子和分母只有公因數1的分數叫做最簡分數。(分子和分母是互質數的分數叫做最簡分數)
做一做1.下面的分數哪些是最簡分數?
2.把上下兩行相等的兩個分數用線連起來。
(二)教學2.
分組討論:結合分數的基本性質,怎樣24/30化簡?
(1)分母30、分子24有公約數2,先用公約數2去除分子、分母
(板書: )
(2)15和12還有公約數3
(板書: )
教師明確:分子和分母是互質數就不能再化簡了,這種過程叫約分.
引導學生總結歸納出約分的意義.
板書:把一個分數化成和它相等,但分子和分母都比較小的分數,叫做約分。
反饋練習.
(1)、把下面各分數化為最簡分數。
(2)、下面哪些分數沒有化成最簡分數?請把它們化成最簡分數。
(3)把桃子放入相應的籃子里
三、全課小結.
通過今天的學習,談談你學到了哪些新知識?
四、隨堂練習.
1.回答.
(1)判斷下面哪些分數是最簡分數,并說出為什么?
(2)觀察下面每個分數的分子和分母,哪些有公約數2?哪些有公約數5?哪些有公
約數3?
2.下面哪些分數沒有約成最簡分數?
五、布置作業.
把下面各分數約分.
五年級上冊數學書教案篇2
教學設想:本節課的教學,單位“1”和分數單位這兩個概念非常重要,應從直觀到抽象,由個別到一般,用利操作、討論、交流等形式展開小組學習,適當展開概念的形成過程,幫助學生在過程中獲得者得感悟,自己構建這些概念的意義。
教學目標:
1、在學生原有分數知識基礎上,使學生知道分數的產生,理解分數的意義,知道分子、分母和分數單位的含義。
2、經歷認識分數意義的過程,培養學生的抽象、概括能力。
3、利用操作、討論、交流等形式展開小組學習,培養學生的合作探究能力,培養質疑和驗證科學知識的能力。
教學重點:明確分數和分數單位的意義,理解單位“1”的含義。
教學難點:對單位“1”的理解。
教具和學具:卷尺、四張長方形白紙、四條一米長的繩子、若干個小立方體和一捆繪畫筆。
教學過程:
一、創設情景,溫故引新。
1、師:我們已經初步認識了分數。(板書:分數)誰來說幾個分數?(板書:如1/4)你知道分數各部分的名稱嗎?(板書):師:那你們知道分數是怎樣產生的嗎?
二、教學分數的產生。
2、能根據成語說出下面的分數嗎?
一分為二()七上八下()百里挑一()十拿九穩()
1、請一個學生用米尺測量黑板的長,說一說,用“米”做單位,看看測量的結果能不能用整數表示。那剩下的不足一米怎么記?
2、在古代,人們就已經遇到了這樣的問題。(師用一根打了結的繩子演示古人測量的情況)。課件呈現情境圖,介紹分數的起源和發展歷史。
3、總結:在測量、分物的時候,可能得不到整數的結果,需要用一種新的數表示——分數表示。所以分數是人類為了適用實際需要而產生的。
4、在我們的日常生活中,為了平均分配一些東西,也常常會遇到不能用整數表示的情況。比如兩個小朋友平分一個橘子、一塊月餅、一塊餅干等,每人分到的能用整數表示嗎?用什么分數表示?
三、教學分數的意義。
師:下面老師要先考考大家,你能舉例說明1/4的含義嗎?(投影出示題目,學生口答)
出示一個1/4的正方形的陰影部分。
師:陰影部分可以用什么分數表示?它表示什么意思?
2、師:下列圖中的陰影部分能用1/4表示嗎?為什么?
如生說可以,則問:你為什么覺得可以用1/4表示呢?生說理由。
(強調一定要平均分)(板書:平均分)
3、動手操作,探索新知。
(1)操作。
師:現在我給每一個小組都提供了四種材料,一張長方形紙、一條一米長的繩子、6個小立方體,4根繪畫筆。下面請每組根據這四種一樣的材料,通過折一折、畫一畫、分一分等方法,創造出幾個不同的分數。
學生動手操作,教師巡視。
(2)交流
師:誰愿意上來說一說,你得到了哪些分數?這個分數是怎樣得到的?
小組交流。
(3)認識單位“1”。
師:利用這四種材料,同學們創造出了好多分數。剛才在表示這些分數時,我們都是把哪些東西來平均分的?
生:一張長方形紙、一米長的繩子、6個小立方體、4根繪畫筆平均分。
師:象把一張長方形紙平均分,我們可以稱之為把一個物體平均分
(課件顯示:一個物體)
把一米長的繩子平均分,我們可以稱之為把一個計量單位平均分。(課件顯示:一個計量單位)
把6個小方塊、4根繪畫筆平均分,我們又可以稱之為把一些物體平均分。(課件顯示:一些物體)
師小結:一個物體、一些物體等都可以看做一個整體,把這個整體平均分成若干份,這樣的一份或幾份都可以用分數來表示。(課件顯示)
師:(投影出示):我們可以把這3只象看作一個整體嗎?
我們可以把這6顆草莓看作一個整體嗎?這4只老虎呢?
我們還可以把哪些物體也看成一個整體呢?(學生舉例。)
師:象這樣的一個物體、一個計量單位、一個整體,我們可以用自然數“1”來表示,通常把它叫做單位“1”,(課件顯示)強調說明:①單位“1”不僅可以指一個物體、一個計量單位,也可以是很多物體組成的一個整體。如:一個蘋果、一枝鉛筆、一個計量單位、一堆煤、一倉庫糧食等等,把什么平均分,就應把什么看做單位“1”。②單位“1”和自然數“1”的區別:自然數1是一個數,只表示一個具體事物。如:一個人、一本書、一間房子……它是自然數的計數單位。而單位“1”不僅可以表示某一個具體事物,還可以表示一堆、一群……它表示被平均分的整體。
概括分數的意義:把單位“1”平均分成若干份,表示這樣的一份或幾份的數,叫做分數。
(4)理解分子分母的意義。
師:通過剛才的學習,大家知道了分數的意義,請同學們想一下,這個“若干份”是分數中的什么?(分母,表示平均分的份數)“這樣的一份或幾份”是分數中的什么?(分子,表示取的份數)
(5)師:接下來我想出幾道題來考考大家,你們愿不愿意接受挑戰?
①把這個文具盒里的所有鉛筆平均分給2個同學,每個同學得到這盒鉛筆的幾分之幾?
生:1/2
②師:為什么可以用1/2來表示?
③師:如果把這盒鉛筆平均分給5個同學,每個同學得到這盒鉛筆的幾分之幾呢?
如果把這盒鉛筆平均分給10個同學,每個同學得到這盒鉛筆的幾分之幾呢?
如果把這盒鉛筆平均分給50個同學,每個同學得到這盒鉛筆的幾分之幾呢?2個同學得到這盒鉛筆的幾分之幾?
如果把這盒鉛筆平均分給100個同學,每個同學得到這盒鉛筆的幾分之幾呢?10個同學得到這盒鉛筆的幾分之幾呢?
④師:現在這個文具盒里有6支鉛筆,把它平均分給2個同學,每個同學得到的鉛筆能用1/2表示嗎?是幾支鉛筆?
⑤如果我再增加2支鉛筆,把8支鉛筆平均分給2個同學,每個同學得到的鉛筆還能用1/2表示嗎?是幾支鉛筆?為什么同樣是1/2,鉛筆的支數不一樣?
師:因為一個整體表示的具體數量不同,所以同樣是1/2,鉛筆的支數不一樣。
四、教學分數單位。
師:整靈敏有計數單位個、十、百、千、萬……分數是否也有計數單位呢?它的計數單位又是怎樣規定的?
顯示:把單位“1”平均分成若干份,表示其中一份的數叫做分數單位。
師:也就是說分數單位是由一個分數的分母決定的,分母是幾,它的分數單位就是幾分之一。(師舉例說明后,并說出幾個分數讓學生回答,后再讓學生自己舉例說明)
加強練習,深化概念。
練習:
1、35表示把()平均分成()份,表示這樣的()份,它的分母是(),表示();分子是(),表示()。
2、67的分數單位是(),有()個這樣的分數單位。
3、說出每個分數的意義。
(1)五(1)班的三好生人數占全班的29。
(2)一節課的時間是23小時。
4、課本練習十一第9題。
5、判斷(對的打“√”,錯的要“×”)。
(1)一堆蘋果分成4份,每份占這堆蘋果的14()
(2)把5米長的繩子平均分成7段,每段占全長的57()
(3)14個19是914()
(4)自然數1和單位“1”相同。()
五、小結。
今天這節課我們學習了?你有哪些收獲?
五年級上冊數學書教案篇3
【教學目標】
1.使學生通過觀察、猜想、驗證、理解并掌握3的倍數的特征。
2.引導學生學會判斷一個數能否被3整除。
3.培養學生分析、判斷、概括的能力。
【重點難點】
理解并掌握3的倍數的特征。
【復習導入】
1.學生口述2的倍數的特征,5的倍數的特征。
2.練習:下面哪些數是2的倍數?哪些數是5的倍數?
324 153 345 2460 986 756
教師:看來同學們對于2、5的倍數已經掌握了,那么3的倍數的特征是不是也只看個位就行了?這節課,我們就一起來研究3的倍數的特征。
板書課題:3的倍數的特征。
【新課講授】
1.猜一猜:3的倍數有什么特征?
2.算一算:先找出10個3的倍數。
3×1=3 3×2=6 3×3=9
3×4=12 3×5=15 3×6=18
3×7=21 3×8=24 3×9=27
3×10=30……
觀察:3的倍數的個位數字有什么特征?能不能只看個位就能判斷呢?(不能)
提問:如果老師把這些3的倍數的個位數字和十位數字進行調換,它還是3的倍數嗎?(讓學生動手驗證)
12→21 15→51 18→81 24→42 27→72
教師:我們發現調換位置后還是3的倍數,那3的倍數有什么奧妙呢?
(以四人為一小組、分組討論,然后匯報)
匯報:如果把3的倍數的各位上的數相加,它們的和是3的倍數。
3.驗證:下面各數,哪些數是3的倍數呢?
210 54 216 129 9231 9876
小結:從上面可知,一個數各位上的數字之和如果是3的倍數,那么這個數就是3的倍數。(板書)
4.比一比(一組筆算,另一組用規律計算)。
判斷下面的數是不是3的倍數。
3402 5003 1272 2967
5.“做一做”,指導學生完成教材第10頁“做一做”。
(1)下列數中3的倍數有 。
14 35 45 100 332 876 74 88
①要求學生說出是怎樣判斷的。
②3的倍數有什么特征?
(2)提示:①首先要考慮誰的特征?(既是2又是5的倍數,個位數字一定是0)
②接著再考慮什么?(最小三位數是100)
③最后考慮又是3的倍數。(120)
【課堂作業】
完成教材第11~12頁練習三的第4、6、7、8、9、10、11題。
【課堂小結】
同學們,通過今天的學習活動,你有什么收獲和感想?
【課后作業】
完成練習冊中本課時練習。
3的倍數的特征
一個數各位上的數字之和是3的倍數,那么這個數就是3的倍數。
教學3的倍數的特征時,教師要注意學生的自主探索過程,通過猜一猜、算一算、想一想、驗一驗、比一比等教學環節,循序漸進地讓學生參與到學習中來,但教師在想一想這個環節中要進行適當點撥、引導,這樣效果更明顯。