七年級數學的滬科版教案
七年級的數學跟小學的內容和學習方法都不一樣,學習的學習只是在掌握了公式,模板以后就能取得好成績,但初中數學學習卻滲透了函數的思想,開始涉及到邏輯思維的思想。今天小編在這給大家整理了一些七年級數學的滬科版教案,我們一起來看看吧!
七年級數學的滬科版教案1
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:探索和掌握平行公理及其推論.
學習難點:對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
(二)平行公理及推論
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:(一)選擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
七年級數學的滬科版教案2
教學目的:
(一)知識點目標:
1.了解正數和負數在實際生活中的應用。
2.深刻理解正數和負數是反映客觀世界中具有相反意義的理。
3.進一步理解0的特殊意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量。
2.熟練地用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:能用正、負數表示具有相反意義的量。
教學難點:進一步理解負數、數0表示的量的意義。
教學方法:小組合作、師生互動。
教學過程:
創設問題情境,引入新課:分小組派代表,注意數學語言規范。
1.認真想一想,你能用學過的知識解決下列問題嗎?
某零件的直徑在圖紙上注明是 ,單位是毫米,這樣標注表示零件直徑的標準尺寸是 毫米,加工要求直徑可以是 毫米,最小可以是 毫米。
2.下列說法中正確的( )
A、帶有“一”的數是負數; B、0℃表示沒有溫度;
C、0既可以看作是正數,也可以看作是負數。
D、0既不是正數,也不是負數。
[師]這節課我們就來繼續認識正、負數及它們在生活中的實際意義,特別是數0。
講授新課:
例1. 仔細找一找,找了具有相反意義的量:
甲隊勝5場;零下6度;向南走50米;運進糧食40噸;乙隊負4場;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一個月內,小明的體重增加2千克,小華體重減少1千克,小強體重無變化,寫出他們這個月的體重增長值;
(2)2001年下列國家的商品進出口總額比上年的變化情況是:
美國減少6.4%,德國增長1.3%,法國減少2.4%,
英國減少3.5%,意大利增長0.2%,中國增長7.5%。
寫出這些國家2001年商品進出口總額的增長率。
例3. 下列各數中,哪些是正數,哪些是負數?哪些是正整數,哪些是負整數?哪些是正分數(小數),哪些是負分數(小數)?
例4. 小紅從阿地出發向東走了3千米,記作+3千米,接著她又向西走3千米,那么小紅距阿地多少千米?
復習鞏固:練習:課本P6 練習
課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1 的第3、6、7、8題。
活動與探究:海邊的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潛水艇在海平面下30米處,現以海邊堤岸為基準,將其記為0米,那么附近建筑物及潛水艇的高度各應如何表示?
課后反思:————
七年級數學的滬科版教案3
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
七年級數學的滬科版教案4
學習目標
1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內錯角、同旁內角.
2. 通過比較、觀察、掌握同位角、內錯角、同旁內角的特征,能正確識別圖形中的同位角、內錯角和同旁內角.
重點難點
同位角、內錯角、同旁內角的特征
教學過程
一·導入
1.指出右圖中所有的鄰補角和對頂角?
2. 圖中的∠1與∠5,∠3與∠5,∠3與∠6 是鄰補角或對頂角嗎?
若都不是,請自學課本P6內容后回答它們各是什么關系的角?
二·問題導學
1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。
2. 如圖⑶是"直線 , 被直線 所截"形成的圖形
(1)∠1與∠5這對角在兩被截線AB,CD的 ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。
(2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內錯角。
(3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內角。
3.找出圖⑶中所有的同位角、內錯角、同旁內角
4.討論與交流:
(1)"同位角、內錯角、同旁內角"與"鄰補角、對頂角"在識別方法上有什么區別?
(2)歸納總結同位角、內錯角、同旁內角的特征:
同位角:"F" 字型,"同旁同側"
"三線八角" 內錯角:"Z" 字型,"之間兩側"
同旁內角:"U" 字型,"之間同側"
三·典題訓練
例1. 如圖⑵中∠1與∠2,∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?
小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內錯角;
兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內角;
自我檢測
⒈如圖⑷,下列說法不正確的是( )
A、∠1與∠2是同位角 B、∠2與∠3是同位角
C、∠1與∠3是同位角 D、∠1與∠4不是同位角
⒉如圖⑸,直線AB、CD被直線EF所截,∠A和 是同位角,∠A和 是內錯角,∠A和 是同旁內角.
⒊如圖⑹, 直線DE截AB, AC, 構成八個角:
① 指出圖中所有的同位角、內錯角、同旁內角.
②∠A與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?
⒋如圖⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出當BC、DE被AB所截時,∠3的同位角、內錯角和同旁內角.
②試說明∠1=∠2=∠3的理由.(提示:三角形內角和是1800)
相交線與平行線練習
課型:復習課: 備課人:徐新齊 審核人:霍紅超
一.基礎知識填空
1、如圖,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如圖,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如圖,∵∠D=∠DCF(已知)
∴_____//______( )
6、如圖,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2題) (第5、6題) (第7題) (第9題)
7、如圖,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
二.基礎過關題:
1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE 。
證明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代換 )
∴BD∥CE( )。
2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B + ∠F =180°。
證明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF,∠EHD,試說明GM ∥HN.