七年級數學教案人教版
數學教學要尊重學生個體差異,注重培養學生自主學習的意識,激發學生學習興趣。數學是我們每一個人都必須掌握的技能,作為七年級數學老師你會寫七年級數學教案?你是否在找正準備撰寫“七年級數學教案人教版”,下面小編收集了相關的素材,供大家寫文參考!
七年級數學教案人教版篇1
教學目的
通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數的值。
重點、難點
1.重點:方程的兩種變形。
2.難點:由具體實例抽象出方程的兩種變形。
教學過程
一、引入
上一節課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節課,我們將學習如何將方程變形。
二、新授
讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。
測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態時,顯然兩邊的質量相等。
如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯想到方程的變形嗎?
讓同學們觀察圖(1)的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。
問:圖(1)右邊的天平內的砝碼是怎樣由左邊天平變化而來的?它所表示的方程如何由方程x+2=5變形得到的?
學生回答后,教師歸納:方程兩邊都減去同一個數,方程的解不變。
問:若把方程兩邊都加上同一個數,方程的解有沒有變?如果把方程兩邊都加上(或減去)同一個整式呢?
讓同學們看圖(2)。左天平兩盤內的砝碼的質量關系可用方程表示為3x=2x+2,右邊的天平內的砝碼是怎樣由左邊天平變化而來的?
把天平兩邊都拿去2個大砝碼,相當于把方程3x=2x+2兩邊都減去2x,得到的方程的解變化了嗎?如果把方程兩邊都加上2x呢?
由圖(1)、(2)可歸結為;
方程兩邊都加上或都減去同一個數或同一個整式,方程的解不變。
讓學生觀察(3),由學生自己得出方程的第二個變形。
即方程兩邊都乘以或除以同一個不為零的數,方程的解不變:
通過對方程進行適當的變形.可以求得方程的解。
例1.解下列方程
(1)x-5=7 (2)4x=3x-4
(1)解兩邊都加上5,x,x=7+5 即 x=12
(2)兩邊都減去3x,x=3x-4-3x 即 x=-4
請同學們分別將x=7+5與原方程x-5=7;x=3x-4-3,與原方程4x=3x-4比較,你發現了這些方程的變形。有什么共同特點?
這就是說把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。
注意:“移項’’是指將方程的某一項從等號的左邊移到右邊或從右邊移到左邊,移項時要先變號后移項。
例2.解下列方程
(1)-5x=2 (2) x=
這里的變形通常稱為“將未知數的系數化為1”。
以上兩個例題都是對方程進行適當的變形,得到x=a的形式。
練習:
課本第6頁練習1、2、3。
練習中的第3題,即第2頁中的方程①先讓學生討論、交流。
鼓勵學生采用不同的方法,要他們說出每一步變形的根據,由他們自己得出采用哪種方法簡便,體會方程的不同解法中所經歷的轉化思想,讓學生自己體驗成功的感覺。
三、鞏固練習
教科書第7頁,練習
四、小結
本節課我們通過天平實驗,得出方程的兩種變形:
1.把方程兩邊都加上或減去同一個數或整式方程的解不變。
2.把方程兩邊都乘以或除以(不等零)的同一個數,方程的解不變。第①種變形又叫移項,移項別忘了要先變號,注意移項與在方程的一邊交換兩項的位置有本質的區別。
五、作業
教科書第7—8頁習題6.2.1第1、2、3。
七年級數學教案人教版篇2
【學習目標】
1.讓學生經歷有理數大小比較法則的獲得過程,幫助學生積累教學活動經驗.
2.掌握有理數大小的比較法則,會用法則進行有理數大小的比較.
【學習重點】
利用數軸比較兩個有理數的大小,利用絕對值比較兩個負數的大小.
【學習難點】
兩個負數大小的比較.
行為提示:創景設疑,幫助學生知道本節課學什么.
行為提示:教會學生看書,自學時對于書中的問題一定要認真探究,書寫答案.
教會學生落實重點.
情景導入 生成問題
舊知回顧:
1.什么是絕對值?
答:在數軸上,表示數a的點到原點的距離叫做數a的絕對值.
2.正數、負數、0的絕對值分別是什么?
答:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0.
自學互研 生成能力
知識模塊一 用數軸比較有理數的大小
閱讀教材P14~P15的內容,回答下列問題:
問題:如何用數軸比較數的大小?正數與負數比較誰大?0與負數比較哪個大?
答:數軸上不同的兩個點表示的數,右邊點表示的數總比左邊點表示的數大.正數大于0,0大于負數,正數大于負數.
方法指導:引導學生學會在數軸上比較數的大小,體會右邊的數總比左邊大.
學習筆記:
行為提示:教會學生怎么交流.先對學,再群學.充分在小組內展示自己,分析答案,提出疑惑,共同解決(可按結對子學——幫扶學——組內群學來開展).在群學后期教師可有意安排每組展示問題,并給學生板書題目和組內演練的時間.
典例:如圖所示,根據有理數a、b、c在數軸上的位置,比較a、b、c的大小關系正確的是( A )
A.a>b>c B.a>c>b
C.b>c>a D.c>b>a
仿例1:數a在數軸上對應的點如圖所示,則a、-a、-1的大小關系是( C )
A.-aC.a<-1<-a D.a<-a<-1
仿例2:把下列各數在數軸上表示出來,并用“<”連接各數.
-1.5,-0.5,-3.5,-5.
解:將這些數在數軸上表示出來,如圖:
從數軸上可看出:-5<-3.5<-1.5<-0.5.
知識模塊二 用法則比較有理數的大小
閱讀教材P15的內容,回答下列問題:
問題:兩個負數怎樣比較大小?
答:可在數軸上比較,也可根據“兩個負數比較大小,絕對值大的反而小”來比較.
典例:比較大小:
(1)-2.1<1; (2)-3.2>-4.3;
(3)-12<13; (4)-14<0.
仿例1:比較-12、-13、14的大小結果正確的是( A )
A.-12<-13<14 B.-12<14<-13
C.14<-13<-12 D.-13<-12<14
仿例2:比較下列各對數的大小:
(1)-(-3)與|-2|;
解:∵-(-3)=3,|-2|=2,
∴-(-3)>|-2|; (2)-(-6)與|-6|.
解:∵-(-6)=6,|-6|=6,
∴-(-6)=|-6|.
變例:整數x滿足|x|<3,則x=-2、-1、0、1、2,負整數x滿足3<|x|≤6,則x=-4、-5、-6.
交流展示 生成新知
1.將閱讀教材時“生成的問題”和通過“自學互研”得出的“結論”展示在各小組的小黑板上,并將疑難問題也板演到黑板上,再小組間就上述疑難問題相互釋疑.
2.各小組由組長統一分配展示任務,由代表將“問題和結論”展示在黑板上,通過交流“生成新知”.
知識模塊一 用數軸比較有理數的大小
知識模塊二 用法則比較有理數的大小
檢測反饋 達成目標
【當堂檢測】見所贈光盤和學生用書
【課后檢測】見學生用書
課后反思 查漏補缺
1.收獲:________________________________________________________________________
2.困惑:________________________________________________________________________
七年級數學教案人教版篇3
教學目的
借助“線段圖”分析復雜的行程問題中的數量關系,從而建立方程解決實際問題,發展分析問題,解決問題的能力,進一步體會方程模型的作用。
重點、難點
1.重點:列一元一次方程解決有關行程問題。
2.難點:間接設未知數。
教學過程
一、復習
1.列一元一次方程解應用題的一般步驟和方法是什么?
2.行程問題中的基本數量關系是什么?
路程=速度×時間 速度=路程 / 時間
二、新授
例1.小張和父親預定搭乘家門口的公共汽車趕往火車站,去家鄉看望爺爺,在行駛了三分之一路程后,估計繼續乘公共汽車將會在火車開車后半小時到達火車站,隨即下車改乘出租車,車速提高了一倍,結果趕在火車開車前15分鐘到達火車站,已知公共汽車的平均速度是40千米/時,問小張家到火車站有多遠?
畫“線段圖”分析, 若直接設元,設小張家到火車站的路程為x千米。
1.坐公共汽車行了多少路程?乘的士行了多少路程?
2.乘公共汽車用了多少時間,乘出租車用了多少時間?
3.如果都乘公共汽車到火車站要多少時間?
4,等量關系是什么?
如果設乘公共汽車行了x千米,則出租車行駛了2x千米。小張家到火車站的路程為3x千米,那么也可列出方程。
可設公共汽車從小張家到火車站要x小時。
設未知數的方法不同,所列方程的復雜程度一般也不同,因此在設未知數時要有所選擇。
三、鞏固練習
教科書第17頁練習1、2。
四、小結
有關行程問題的應用題常見的一個數量關系:路程=速度×時間,以及由此導出的其他關系。如何選擇設未知數使方程較為簡單呢?關鍵是找出較簡捷地反映題目全部含義的等量關系,根據這個等量關系確定怎樣設未知數。
四、作業
教科書習題6.3.2,第1至5題。
七年級數學教案人教版篇4
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價-成本 ; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息-利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2·80%=48.6
解方程,得 x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%-x
由等量關系,列出方程:
(1+40%)x·80%-x=15
解方程,得 x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。