數(shù)學(xué)滬科版七年級(jí)教案
七年級(jí)數(shù)學(xué)老師要全面而深刻地把握好人與數(shù)學(xué)的關(guān)系,讓數(shù)學(xué)噴射出繽紛的色彩。經(jīng)歷了一段時(shí)間的數(shù)學(xué)教學(xué),作為七年級(jí)數(shù)學(xué)老師的你知道如何寫七年級(jí)數(shù)學(xué)教案?你是否在找正準(zhǔn)備撰寫“數(shù)學(xué)滬科版七年級(jí)教案”,下面小編收集了相關(guān)的素材,供大家寫文參考!
數(shù)學(xué)滬科版七年級(jí)教案篇1
教學(xué)目標(biāo):
1、使學(xué)生在現(xiàn)實(shí)情境中理解有理數(shù)加法的意義
2、經(jīng)歷探索有理數(shù)加法法則的過程,掌握有理數(shù)加法法則,并能準(zhǔn)確地進(jìn)行加法運(yùn)算。
3、在教學(xué)中適當(dāng)滲透分類討論思想。
重點(diǎn):有理數(shù)的加法法則
重點(diǎn):異號(hào)兩數(shù)相加的法則
教學(xué)過程:
二、講授新課
1、同號(hào)兩數(shù)相加的法則
問題:一個(gè)物體作左右方向的運(yùn)動(dòng),我們規(guī)定向左為負(fù),向右為正。向右運(yùn)動(dòng)5m記作5m,向左運(yùn)動(dòng)5m記作-5m。如果物體先向右運(yùn)動(dòng)5m,再向右運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少?
學(xué)生回答:兩次運(yùn)動(dòng)后物體從起點(diǎn)向右運(yùn)動(dòng)了8m。寫成算式就是5+3=8(m)
教師:如果物體先向左運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少?
學(xué)生回答:兩次運(yùn)動(dòng)后物體從起點(diǎn)向左運(yùn)動(dòng)了8m。寫成算式就是(-5)+(-3)=-8(m)
師生共同歸納法則:同號(hào)兩數(shù)相加,取與加數(shù)相同的符號(hào),并把絕對(duì)值相加。
2、異號(hào)兩數(shù)相加的法則
教師:如果物體先向右運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)3m,那么兩次運(yùn)動(dòng)后物體從起點(diǎn)向哪個(gè)方向運(yùn)動(dòng)了多少米?
學(xué)生回答:兩次運(yùn)動(dòng)后物體從起點(diǎn)向右運(yùn)動(dòng)了2m。寫成算式就是5+(-3)=2(m)
師生借此結(jié)論引導(dǎo)學(xué)生歸納異號(hào)兩數(shù)相加的法則:異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
3、互為相反數(shù)的兩個(gè)數(shù)相加得零。
教師:如果物體先向右運(yùn)動(dòng)5m,再向左運(yùn)動(dòng)5m,那么兩次運(yùn)動(dòng)后總的結(jié)果是多少?
學(xué)生回答:經(jīng)過兩次運(yùn)動(dòng)后,物體又回到了原點(diǎn)。也就是物體運(yùn)動(dòng)了0m。
師生共同歸納出:互為相反數(shù)的兩個(gè)數(shù)相加得零
教師:你能用加法法則來解釋這個(gè)法則嗎?
學(xué)生回答:可用異號(hào)兩數(shù)相加的法則來解釋。
一般地,還有一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
三、鞏固知識(shí)
課本P18 例1,例2、課本P118 練習(xí)1、2題
四、總結(jié)
運(yùn)算的關(guān)鍵:先分類,再按法則運(yùn)算;
運(yùn)算的步驟:先確定符號(hào),再計(jì)算絕對(duì)值。
注意:要借用數(shù)軸來進(jìn)一步驗(yàn)證有理數(shù)的加法法則;異號(hào)兩數(shù)相加,首先要確定符號(hào),再把絕對(duì)值相加。
五、布置作業(yè)
課本P24習(xí)題1.3第1、7題。
數(shù)學(xué)滬科版七年級(jí)教案篇2
教學(xué)目的:
(一)知識(shí)點(diǎn)目標(biāo):
1.了解正數(shù)和負(fù)數(shù)在實(shí)際生活中的應(yīng)用。
2.深刻理解正數(shù)和負(fù)數(shù)是反映客觀世界中具有相反意義的理。
3.進(jìn)一步理解0的特殊意義。
(二)能力訓(xùn)練目標(biāo):
1.體會(huì)數(shù)學(xué)符號(hào)與對(duì)應(yīng)的思想,用正、負(fù)數(shù)表示具有相反意義的量。
2.熟練地用正、負(fù)數(shù)表示具有相反意義的量。
(三)情感與價(jià)值觀要求:
通過師生合作,聯(lián)系實(shí)際,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的熱情。
教學(xué)重點(diǎn):能用正、負(fù)數(shù)表示具有相反意義的量。
教學(xué)難點(diǎn):進(jìn)一步理解負(fù)數(shù)、數(shù)0表示的量的意義。
教學(xué)方法:小組合作、師生互動(dòng)。
教學(xué)過程:
創(chuàng)設(shè)問題情境,引入新課:分小組派代表,注意數(shù)學(xué)語言規(guī)范。
1.認(rèn)真想一想,你能用學(xué)過的知識(shí)解決下列問題嗎?
某零件的直徑在圖紙上注明是 ,單位是毫米,這樣標(biāo)注表示零件直徑的標(biāo)準(zhǔn)尺寸是 毫米,加工要求直徑可以是 毫米,最小可以是 毫米。
2.下列說法中正確的( )
A、帶有“一”的數(shù)是負(fù)數(shù); B、0℃表示沒有溫度;
C、0既可以看作是正數(shù),也可以看作是負(fù)數(shù)。
D、0既不是正數(shù),也不是負(fù)數(shù)。
[師]這節(jié)課我們就來繼續(xù)認(rèn)識(shí)正、負(fù)數(shù)及它們?cè)谏钪械膶?shí)際意義,特別是數(shù)0。
講授新課:
例1. 仔細(xì)找一找,找了具有相反意義的量:
甲隊(duì)勝5場(chǎng);零下6度;向南走50米;運(yùn)進(jìn)糧食40噸;乙隊(duì)負(fù)4場(chǎng);零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一個(gè)月內(nèi),小明的體重增加2千克,小華體重減少1千克,小強(qiáng)體重?zé)o變化,寫出他們這個(gè)月的體重增長(zhǎng)值;
(2)2001年下列國家的商品進(jìn)出口總額比上年的變化情況是:
美國減少6.4%,德國增長(zhǎng)1.3%,法國減少2.4%,
英國減少3.5%,意大利增長(zhǎng)0.2%,中國增長(zhǎng)7.5%。
寫出這些國家2001年商品進(jìn)出口總額的增長(zhǎng)率。
例3. 下列各數(shù)中,哪些是正數(shù),哪些是負(fù)數(shù)?哪些是正整數(shù),哪些是負(fù)整數(shù)?哪些是正分?jǐn)?shù)(小數(shù)),哪些是負(fù)分?jǐn)?shù)(小數(shù))?
例4. 小紅從阿地出發(fā)向東走了3千米,記作+3千米,接著她又向西走3千米,那么小紅距阿地多少千米?
復(fù)習(xí)鞏固:練習(xí):課本P6 練習(xí)
課時(shí)小結(jié):這節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你能說一說嗎?
課后作業(yè):課本P7習(xí)題1.1 的第3、6、7、8題。
活動(dòng)與探究:海邊的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潛水艇在海平面下30米處,現(xiàn)以海邊堤岸為基準(zhǔn),將其記為0米,那么附近建筑物及潛水艇的高度各應(yīng)如何表示?
課后反思:————
數(shù)學(xué)滬科版七年級(jí)教案篇3
【學(xué)習(xí)目標(biāo)】
1.讓學(xué)生經(jīng)歷有理數(shù)大小比較法則的獲得過程,幫助學(xué)生積累教學(xué)活動(dòng)經(jīng)驗(yàn).
2.掌握有理數(shù)大小的比較法則,會(huì)用法則進(jìn)行有理數(shù)大小的比較.
【學(xué)習(xí)重點(diǎn)】
利用數(shù)軸比較兩個(gè)有理數(shù)的大小,利用絕對(duì)值比較兩個(gè)負(fù)數(shù)的大小.
【學(xué)習(xí)難點(diǎn)】
兩個(gè)負(fù)數(shù)大小的比較.
行為提示:創(chuàng)景設(shè)疑,幫助學(xué)生知道本節(jié)課學(xué)什么.
行為提示:教會(huì)學(xué)生看書,自學(xué)時(shí)對(duì)于書中的問題一定要認(rèn)真探究,書寫答案.
教會(huì)學(xué)生落實(shí)重點(diǎn).
情景導(dǎo)入 生成問題
舊知回顧:
1.什么是絕對(duì)值?
答:在數(shù)軸上,表示數(shù)a的點(diǎn)到原點(diǎn)的距離叫做數(shù)a的絕對(duì)值.
2.正數(shù)、負(fù)數(shù)、0的絕對(duì)值分別是什么?
答:一個(gè)正數(shù)的絕對(duì)值是它本身,一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),0的絕對(duì)值是0.
自學(xué)互研 生成能力
知識(shí)模塊一 用數(shù)軸比較有理數(shù)的大小
閱讀教材P14~P15的內(nèi)容,回答下列問題:
問題:如何用數(shù)軸比較數(shù)的大小?正數(shù)與負(fù)數(shù)比較誰大?0與負(fù)數(shù)比較哪個(gè)大?
答:數(shù)軸上不同的兩個(gè)點(diǎn)表示的數(shù),右邊點(diǎn)表示的數(shù)總比左邊點(diǎn)表示的數(shù)大.正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù).
方法指導(dǎo):引導(dǎo)學(xué)生學(xué)會(huì)在數(shù)軸上比較數(shù)的大小,體會(huì)右邊的數(shù)總比左邊大.
學(xué)習(xí)筆記:
行為提示:教會(huì)學(xué)生怎么交流.先對(duì)學(xué),再群學(xué).充分在小組內(nèi)展示自己,分析答案,提出疑惑,共同解決(可按結(jié)對(duì)子學(xué)——幫扶學(xué)——組內(nèi)群學(xué)來開展).在群學(xué)后期教師可有意安排每組展示問題,并給學(xué)生板書題目和組內(nèi)演練的時(shí)間.
典例:如圖所示,根據(jù)有理數(shù)a、b、c在數(shù)軸上的位置,比較a、b、c的大小關(guān)系正確的是( A )
A.a>b>c B.a>c>b
C.b>c>a D.c>b>a
仿例1:數(shù)a在數(shù)軸上對(duì)應(yīng)的點(diǎn)如圖所示,則a、-a、-1的大小關(guān)系是( C )
A.-aC.a<-1<-a D.a<-a<-1
仿例2:把下列各數(shù)在數(shù)軸上表示出來,并用“<”連接各數(shù).
-1.5,-0.5,-3.5,-5.
解:將這些數(shù)在數(shù)軸上表示出來,如圖:
從數(shù)軸上可看出:-5<-3.5<-1.5<-0.5.
知識(shí)模塊二 用法則比較有理數(shù)的大小
閱讀教材P15的內(nèi)容,回答下列問題:
問題:兩個(gè)負(fù)數(shù)怎樣比較大小?
答:可在數(shù)軸上比較,也可根據(jù)“兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小”來比較.
典例:比較大小:
(1)-2.1<1; (2)-3.2>-4.3;
(3)-12<13; (4)-14<0.
仿例1:比較-12、-13、14的大小結(jié)果正確的是( A )
A.-12<-13<14 B.-12<14<-13
C.14<-13<-12 D.-13<-12<14
仿例2:比較下列各對(duì)數(shù)的大小:
(1)-(-3)與|-2|;
解:∵-(-3)=3,|-2|=2,
∴-(-3)>|-2|; (2)-(-6)與|-6|.
解:∵-(-6)=6,|-6|=6,
∴-(-6)=|-6|.
變例:整數(shù)x滿足|x|<3,則x=-2、-1、0、1、2,負(fù)整數(shù)x滿足3<|x|≤6,則x=-4、-5、-6.
交流展示 生成新知
1.將閱讀教材時(shí)“生成的問題”和通過“自學(xué)互研”得出的“結(jié)論”展示在各小組的小黑板上,并將疑難問題也板演到黑板上,再小組間就上述疑難問題相互釋疑.
2.各小組由組長(zhǎng)統(tǒng)一分配展示任務(wù),由代表將“問題和結(jié)論”展示在黑板上,通過交流“生成新知”.
知識(shí)模塊一 用數(shù)軸比較有理數(shù)的大小
知識(shí)模塊二 用法則比較有理數(shù)的大小
檢測(cè)反饋 達(dá)成目標(biāo)
【當(dāng)堂檢測(cè)】見所贈(zèng)光盤和學(xué)生用書
【課后檢測(cè)】見學(xué)生用書
課后反思 查漏補(bǔ)缺
1.收獲:________________________________________________________________________
2.困惑:________________________________________________________________________
數(shù)學(xué)滬科版七年級(jí)教案篇4
列代數(shù)式
教學(xué)目標(biāo)
1. 使學(xué)生在了解代數(shù)式概念的基礎(chǔ)上,能把簡(jiǎn)單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;
2. 初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):列代數(shù)式.
難點(diǎn):弄清楚語句中各數(shù)量的意義及相互關(guān)系.
課堂教學(xué)過程設(shè)計(jì)
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1用代數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;( -7)
(4)乙數(shù)比x大16%((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計(jì)算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點(diǎn)同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴?jì)算關(guān)系式(即日常生活語言)列成代數(shù)式本節(jié)課我們就來一起學(xué)習(xí)這個(gè)問題。
二、講授新課
例1 用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)。
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x
(本題應(yīng)由學(xué)生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x
例2 用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的 與乙數(shù)的 的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b); (2) a- b; (3)a2+b2;
(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)
(本題應(yīng)由學(xué)生口答,教師板書完成)
此時(shí),教師指出:a與b的和,以及b與a的和都是指(a+b),這是因?yàn)榧臃ㄓ薪粨Q律但a與b的差指的是(a-b),而b與a的差指的是(b-a)兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運(yùn)算順序
例3 用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)
分析本題時(shí),可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個(gè)數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n; (2)5m+2
(這個(gè)例子直接為以后讓學(xué)生用代數(shù)式表示任意一個(gè)偶數(shù)或奇數(shù)做準(zhǔn)備)
例4 設(shè)字母a表示一個(gè)數(shù),用代數(shù)式表示:
(1)這個(gè)數(shù)與5的和的3倍;(2)這個(gè)數(shù)與1的差的 ;
(3)這個(gè)數(shù)的5倍與7的和的一半;(4)這個(gè)數(shù)的平方與這個(gè)數(shù)的 的和
分析:?jiǎn)l(fā)學(xué)生,做分析練習(xí)如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”
解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a
(通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個(gè)基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力)
例5 設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個(gè)座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個(gè)座位?
分析本題時(shí),可提出如下問題:
(1)教室里有6行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(2)教室里有m行座位,如果每行都有7個(gè)座位,那么這個(gè)教室總共有多少個(gè)座位呢?
(3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個(gè); (2)( m)m個(gè)
三、課堂練習(xí)
1設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商
2用代數(shù)式表示:
(1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)
3用代數(shù)式表示:
(1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)
〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕
四、師生共同小結(jié)
首先,請(qǐng)學(xué)生回答:
1怎樣列代數(shù)式?2列代數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對(duì)于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變?cè)}敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個(gè)基本的數(shù)量關(guān)系;
(3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備要求學(xué)生一定要牢固掌握
五、作業(yè)
1用代數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2已知一個(gè)長(zhǎng)方形的周長(zhǎng)是24厘米,一邊是a厘米,
求:(1)這個(gè)長(zhǎng)方形另一邊的長(zhǎng);(2)這個(gè)長(zhǎng)方形的面積.
學(xué)法探究
已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個(gè)這樣的圓環(huán)一個(gè)接著一個(gè)環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長(zhǎng)度是多少厘米?
分析:先深入研究一下比較簡(jiǎn)單的情形,比如三個(gè)圓環(huán)接在一起的情形,看 有沒有規(guī)律.
當(dāng)圓環(huán)為三個(gè)的時(shí)候,如圖:
此時(shí)鏈長(zhǎng)為,這個(gè)結(jié)論可以繼續(xù)推廣到四個(gè)環(huán)、五個(gè)環(huán)、…直至100個(gè)環(huán),答案不難得到:
解:
=99a+b(cm)