初一數學實數教案
每個七年級數學老師要做到教師引導與學生思考相結合,靜與動相結合,知識理論與實際操作相結合。每一個七年級數學老師都應該在課前寫一篇七年級數學教案,那么你知道如何寫七年級數學教案?你是否在找正準備撰寫“初一數學實數教案”,下面小編收集了相關的素材,供大家寫文參考!
初一數學實數教案篇1
學習目標
1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內錯角、同旁內角.
2. 通過比較、觀察、掌握同位角、內錯角、同旁內角的特征,能正確識別圖形中的同位角、內錯角和同旁內角.
重點難點
同位角、內錯角、同旁內角的特征
教學過程
一·導入
1.指出右圖中所有的鄰補角和對頂角?
2. 圖中的∠1與∠5,∠3與∠5,∠3與∠6 是鄰補角或對頂角嗎?
若都不是,請自學課本P6內容后回答它們各是什么關系的角?
二·問題導學
1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。
2. 如圖⑶是"直線 , 被直線 所截"形成的圖形
(1)∠1與∠5這對角在兩被截線AB,CD的 ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。
(2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內錯角。
(3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內角。
3.找出圖⑶中所有的同位角、內錯角、同旁內角
4.討論與交流:
(1)"同位角、內錯角、同旁內角"與"鄰補角、對頂角"在識別方法上有什么區別?
(2)歸納總結同位角、內錯角、同旁內角的特征:
同位角:"F" 字型,"同旁同側"
"三線八角" 內錯角:"Z" 字型,"之間兩側"
同旁內角:"U" 字型,"之間同側"
三·典題訓練
例1. 如圖⑵中∠1與∠2,∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?
小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內錯角;
兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內角;
自我檢測
⒈如圖⑷,下列說法不正確的是( )
A、∠1與∠2是同位角 B、∠2與∠3是同位角
C、∠1與∠3是同位角 D、∠1與∠4不是同位角
⒉如圖⑸,直線AB、CD被直線EF所截,∠A和 是同位角,∠A和 是內錯角,∠A和 是同旁內角.
⒊如圖⑹, 直線DE截AB, AC, 構成八個角:
① 指出圖中所有的同位角、內錯角、同旁內角.
②∠A與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?
⒋如圖⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出當BC、DE被AB所截時,∠3的同位角、內錯角和同旁內角.
②試說明∠1=∠2=∠3的理由.(提示:三角形內角和是1800)
相交線與平行線練習
課型:復習課: 備課人:徐新齊 審核人:霍紅超
一.基礎知識填空
1、如圖,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如圖,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如圖,∵∠D=∠DCF(已知)
∴_____//______( )
6、如圖,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2題) (第5、6題) (第7題) (第9題)
7、如圖,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
二.基礎過關題:
1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE 。
證明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代換 )
∴BD∥CE( )。
2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B + ∠F =180°。
證明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF,∠EHD,試說明GM ∥HN.
初一數學實數教案篇2
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:探索和掌握平行公理及其推論.
學習難點:對平行線本質屬性的理解,用幾何語言描述圖形的性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
(一)畫平行線
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
(二)平行公理及推論
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
③你畫的直線有什么位置關系? 。
②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:(一)選擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
(二)填空題:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
(1)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初一數學實數教案篇3
教學目的
通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數的值。
重點、難點
1.重點:方程的兩種變形。
2.難點:由具體實例抽象出方程的兩種變形。
教學過程
一、引入
上一節課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節課,我們將學習如何將方程變形。
二、新授
讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。
測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態時,顯然兩邊的質量相等。
如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯想到方程的變形嗎?
讓同學們觀察圖(1)的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。
問:圖(1)右邊的天平內的砝碼是怎樣由左邊天平變化而來的?它所表示的方程如何由方程x+2=5變形得到的?
學生回答后,教師歸納:方程兩邊都減去同一個數,方程的解不變。
問:若把方程兩邊都加上同一個數,方程的解有沒有變?如果把方程兩邊都加上(或減去)同一個整式呢?
讓同學們看圖(2)。左天平兩盤內的砝碼的質量關系可用方程表示為3x=2x+2,右邊的天平內的砝碼是怎樣由左邊天平變化而來的?
把天平兩邊都拿去2個大砝碼,相當于把方程3x=2x+2兩邊都減去2x,得到的方程的解變化了嗎?如果把方程兩邊都加上2x呢?
由圖(1)、(2)可歸結為;
方程兩邊都加上或都減去同一個數或同一個整式,方程的解不變。
讓學生觀察(3),由學生自己得出方程的第二個變形。
即方程兩邊都乘以或除以同一個不為零的數,方程的解不變:
通過對方程進行適當的變形.可以求得方程的解。
例1.解下列方程
(1)x-5=7 (2)4x=3x-4
(1)解兩邊都加上5,x,x=7+5 即 x=12
(2)兩邊都減去3x,x=3x-4-3x 即 x=-4
請同學們分別將x=7+5與原方程x-5=7;x=3x-4-3,與原方程4x=3x-4比較,你發現了這些方程的變形。有什么共同特點?
這就是說把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。
注意:“移項’’是指將方程的某一項從等號的左邊移到右邊或從右邊移到左邊,移項時要先變號后移項。
例2.解下列方程
(1)-5x=2 (2) x=
這里的變形通常稱為“將未知數的系數化為1”。
以上兩個例題都是對方程進行適當的變形,得到x=a的形式。
練習:
課本第6頁練習1、2、3。
練習中的第3題,即第2頁中的方程①先讓學生討論、交流。
鼓勵學生采用不同的方法,要他們說出每一步變形的根據,由他們自己得出采用哪種方法簡便,體會方程的不同解法中所經歷的轉化思想,讓學生自己體驗成功的感覺。
三、鞏固練習
教科書第7頁,練習
四、小結
本節課我們通過天平實驗,得出方程的兩種變形:
1.把方程兩邊都加上或減去同一個數或整式方程的解不變。
2.把方程兩邊都乘以或除以(不等零)的同一個數,方程的解不變。第①種變形又叫移項,移項別忘了要先變號,注意移項與在方程的一邊交換兩項的位置有本質的區別。
五、作業
教科書第7—8頁習題6.2.1第1、2、3。
初一數學實數教案篇4
教學目標:
1.知識與技能
結合具體實例,進一步認識三角形的概念,掌握三角形三條邊的關系.
2.過程與方法
通過觀察、操作、想象、推理、交流等活動,發展空間觀念,推理能力和有條理地表達能力.
3.情感、態度與價值觀
聯系學生的生活環境、創設情景,幫助學生樹立幾何知識源于實際、用于實際的觀念,激發學生的學習興趣.
教學重點難點:
1.重點
讓學生掌握三角形的概念及三角形的三邊關系,并能運用三邊關系解決生活中的實際問題.
2.難點
探究三角形的三邊關系應用三邊關系解決生活中的實際問題.
教學設計:
本節課件設計了以下幾個環節:回顧與思考、情境引入、三角形的概念、探索三角形三邊關系、練習應用、課堂小結、探究拓展思考、布置作業.
第一環節 回顧與思考
1、如何表示線段、射線和直線?
2、如何表示一個角?
第二環節 情境引入
活動內容:讓學生收集生活中有關三角形的圖片,課上讓學生舉例,并觀察圖片.
活動目的:讓學生能從生活中抽象出幾何圖形,感受到我們生活在幾何圖形的世界之中.培養學生善于觀察生活、樂于探索研究的學習品質,從而更大地激發學生學習數學的興趣
第三環節 三角形概念的講解
(1)你能從中找出四個不同的三角形嗎?
(2)與你的同伴交流各自找到的三角形.
(3)這些三角形有什么共同的特點?
通過上題的分析引出三角形的概念、三角形的表示方法及三角形的邊角的表示方法.并出兩道習題加以練習,從練習中歸納出三角形的三要素和注意事項.
第四環節 探索三角形三邊關系