小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 七年級教案 > 數學教案 >

初中七年級數學教案

時間: 新華 數學教案

在一年的數學教育工作中,作為初中數學教師的你知道如何寫一篇初中七年級數學教案嗎?來寫一篇初中七年級數學教案吧,它會對你的教學工作起到不菲的幫助。你是否在找正準備撰寫“初中七年級數學教案”,下面小編收集了相關的素材,供大家寫文參考!

初中七年級數學教案篇1

一、教材分析

1、教材的地位和作用

本課位于人民教育出版社義務教育課程標準實驗教科書七年級下冊第五章第二節第一課時。主要內容是讓學生在充分感性認識的基礎上體會平行線的三種判定方法,它是空間與圖形領域的基礎知識,是《相交線與平行線》的重點,學習它會為后面的學行線性質、三角形、四邊形等知識打下堅實的“基石”。同時,本節學習將為加深“角與平行線”的認識,建立空間觀念,發展思維,并能讓學生在活動的過程中交流分享探索的成果,體驗成功的樂趣,提高運用數學的能力。

2、教學重難點

重 點 三種位置關系的角的特征;會根據三種位置關系的角來判斷兩直線平行的方法。

難 點 “轉化”的數學思想的培養。

由“說點兒理”到“用符號表示推理”的逐層加深。

二、教學目標

知識目標 了解同位角、內錯角、同旁內角等角的特征,認識“直線平行”的三個充分條件及在實際生活中的應用。

能力目標 ①通過觀察、思考探索等活動歸納出三種判定方法,培養學生轉化的數學思想,培養學生動手、分析、解決實際問題的能力。

②通過活動及實際問題的研究引導學生從數學角度發現和提出問題,并用數學方法探索、研究和解決問題。

情感目標 ①感受數學與生活的緊密聯系,體會數學的價值,激發學生學習數學的興趣,培養敢想、敢說、敢解決實際問題的學習習慣。

通過學生體驗、猜想并證明,讓學生體會數學充滿著探索和創造,培養學生團結協作,勇于創新的精神。

②通過“轉化”數學思想方法的運用,讓學生認識事物之間是普遍聯系,相互轉化的辯證唯物主義思想。

三、教學方法

1、采用指導探究法進行教學,主要通過二個師生雙邊活動:①動——師生互動,共同探索。②導——知識類比,合理引導等突出學生主體地位,讓教師成為學生學習的組織者、引導者、合作者,讓學生親自動手、動腦、動口參與數學活動,經歷問題的發生、發展和解決過程,在解決問題的過程中完成教學目標。

2、根據學生實際情況,整堂課圍繞“情景問題——學生體驗——合作交流”模式,鼓勵學生積極合作,充分交流,既滿足了學生對新知識的強烈探索欲望,又排除學生學習幾何方法的缺乏,和學無所用的思想顧慮。對學習有困難的學生及時給予幫助,讓他們在學習的過程中獲得愉快和進步。

3、利用課件輔助教學,突破教學重難點,擴大學生知識面,使每個學生穩步提高。

四、教學流程:

我的教學流程設計是:從創設情境,孕育新知開始,經歷探索新知,構建模式;解釋新知,落實新知;總結新知,布置作業等過程來完成教學。

創設情境,孕育新知:

①師生欣賞三幅圖片,讓學生觀察、思考從幾何圖形上看有什么共同點。

②從學生經歷過的事入手,讓學生比較兩張獎狀粘貼的好壞,并說明理由,讓學生留心實際生活,欣賞木工畫平行線的方法。

③落實到學生是否會畫平行線?本環節教師展示圖片,學生觀察思考,交流回答問題,了解實際生活中平行線的廣泛應用。

設計意圖:通過圖片和動畫展示,貼近學生生活,激發學生的學習興趣。從學生經歷過的事入手。讓學生知道數學知識無處不在,應用數學無時不有。符合“數學教學應從生活經驗出發”的新課程標準要求。

2、實驗操作,探索新知1

①由學生是否會畫平行線導入,用小學學過的方法過點P畫直線AB的平行線CD,學生動手畫并展示。

②學生思考三角尺起什么作用(教師點撥)?

③學生動手操作:用學具塑料條擺兩條平行線被第三條直線所截的模型,并探討圖中角的關系(同位角)。

④教師把學生畫平行線的過程和塑料條模型抽象成幾何圖形,指明同位角的位置關系是截線,被截線的同旁,

歸納:兩直線平行條件1

教師展示一組練習,學生獨立完成,鞏固新知。

在這一環節中,教師應關注:

①學生能否畫平行線,動手操作是否準確

②學生能否獨立探究、參與、合作、交流

設計意圖:復習提問,利用教具、學具讓學生動手,提高學生學習興趣,調動學生思考和積極性,提高學生合作交流的能力和質量,教師有的放矢,讓學生掌握重點,培養學生自主探究的學習習慣和能力。及時練習鞏固,,體現學以致用的觀念,消除學生學無所用的思想顧慮。

3、大膽猜想,探究新知

⑴學生分組討論:

①∠2和∠3是什么位置關系?

∠3和∠4是什么位置關系?

②直線CD繞O旋轉是否還保持上述位置關系?

③∠2與∠3,∠2與∠4一定相等嗎?猜想,展示討論成果。

⑵學生探究:

問題:①∠2=∠3能得到AB∥CD嗎?

②∠2+∠4=180可以判定AB∥CD嗎?

學生用語言表述推理過程,教師深入學生中并點撥將未知的轉化為已知,并規范推理過程。和學生一起歸納直線平行的條件2,3。

⑶學生獨立完成練習。

本環節教師關注:

①學生能否主動參與數學活動,敢于發表個人觀點。

②小組團結協作程度,創新意識。

③表揚優秀小組

設計意圖:猜想、交流、歸納,符合知識的形成過程,培養學生轉化的數學思想,學會將陌生的轉化為熟悉的,將未知的轉化為已知的。并用練習及時鞏固,落實新知與方法,增強學生運用數學的能力。

4、解釋運用,鞏固新知

本環節共有五個練習,第一題落實同位角、內錯角、同旁內角位置特征。第二、三題落實三種判定方法的應用。第四、五題是注重學生動手操作,解決實際問題的訓練。

本環節教師應關注:

①深入學生當中,對學習有困難學生進行鼓勵,幫助。

②學生的思維角度是否合理。

設計意圖:加強學生運用新知的意識,培養學生解決實際問題的能力和學習數學的興趣,讓學生鞏固所學內容,并進行自我評價,既面向全體學生,又照顧個別學有余力的學生,體現因材施教的原則。

5、總結新知,布置作業

通過設問回答補充的方式小結,學生自主回答三個問題,教師關注全體學生對本節課知識的程度,學生是否愿意表達自己的觀點,采用必做題和選做題的方式布置作業。

設計意圖:通過提問方式引導學生進行小結,養成學習——總結——再學習的良好習慣,發揮自我評價作用,同時可培養學生的語言表達能力。作業分層要求,做到面向全體學生,給基礎好的學生充分的空間,滿足他們的求知欲。

五、教學設計

初中七年級數學教案篇2

一、素質教育目標

(一)知識教學點

使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.

(二)能力訓練點

逐步培養學生會觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點

引導學生探索、發現,以培養學生獨立思考、勇于創新的精神和良好的學習習慣.

二、教學重點、難點

1.重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.

2.難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論.

三、教學步驟

(一)明確目標

1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?

2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?

3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?

4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?

前兩個問題學生很容易回答.這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識.但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用.同時使學生對本章所要學習的內容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來.

通過四個例子引出課題.

(二)整體感知

1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.

學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.

2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發現,不論三角形大小如何,所求的比值是固定的.大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?

這樣做,在培養學生動手能力的同時,也使學生對本節課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知.

(三)重點、難點的學習與目標完成過程

1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學生這時的思維很活躍.對于這個問題,部分學生可能能解決它.因此教師此時應讓學生展開討論,獨立完成.

2.學生經過研究,也許能解決這個問題.若不能解決,教師可適當引導:

若一組直角三角形有一個銳角相等,可以把其

頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.

通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養學生能力,進行了德育滲透.

而前面導課中動手實驗的設計,實際上為突破難點而設計.這一設計同時起到培養學生思維能力的作用.

練習題為 作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來.

(四)總結與擴展

1.引導學生作知識總結:本節課在復習勾股定理及含30°角直角三角形的性質基礎上,通過動手實驗、證明,我們發現,只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.

教師可適當補充:本節課經過同學們自己動手實驗,大膽猜測和積極思考,我們發現了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發揚這種創新精神,變被動學知識為主動發現問題,培養自己的創新意識.

2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發現,銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下.通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發了學生的興趣.

四、布置作業

本節課內容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念.

五、板書設計

初中七年級數學教案篇3

教學目標 1, 通過對數“零”的意義的探討,進一步理解正數和負數的概念;

2, 利用正負數正確表示相反意義的量(規定了指定方向變化的量)

3, 進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。

教學難點 深化對正負數概念的理解

知識重點 正確理解和表示向指定方向變化的量

教學過程(師生活動) 設計理念

知識回顧與深化 回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?

問題1:有沒有一種既不是正數又不是負數的數呢?

學生思考并討論.

(數0既不是正數又不是負數,是正數和負數的分

界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)

例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是

零上7℃,最低溫度是零下5℃時,就應該表示為+7℃

和-5℃,這里+7℃和-5℃就分別稱為正數和負數 .

那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?

問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類? “數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入

負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。

所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即

可,不必深究.

分析問題

解決問題 問題3:教科書第6頁例題

說明:這是一個用正負數描述向指定方向變化情況的例子, 通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。

歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).

類似的例子很多,如:

水位上升-3m,實際表示什么意思呢?

收人增加-10%,實際表示什么意思呢?

等等。

可視教學中的實際情況進行補充.

這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種

意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在

不必向學生提出.

鞏固練習 教科書第6頁練習

閱讀思考

教科書第8頁 閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流

小結與作業

課堂小結 以問題的形式,要求學生思考交流:

1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?

2,怎樣用正負數表示具有相反意義的量?

(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)

本課作業 1, 必做題:教科書第7頁習題1.1第3,6,7,8題

2, 選做題:教師自行安排

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指

定方向變化的量。

2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.

3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.

4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.

初中七年級數學教案篇4

教學目標

1.理解有理數加法的意義,掌握有理數加法法則中的符號法則和絕對值運算法則;

2.能根據有理數加法法則熟練地進行有理數加法運算,弄清有理數加法與非負數加法的區別;

3.三個或三個以上有理數相加時,能正確應用加法交換律和結合律簡化運算過程;

4.通過有理數加法法則及運算律在加法運算中的運用,培養學生的運算能力;

5.本節課通過行程問題說明法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數學知識來源于生活,并應用于生活。

教學建議

(一)重點、難點分析

本節教學的重點是依據法則熟練進行運算。難點是法則的理解。

(1)加法法則本身是一種規定,教材通過行程問題讓學生了解法則的合理性。

(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。

(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數與0相加,仍得這個數。

(二)知識結構

(三)教法建議

1.對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數、相反數、絕對值等知識。

2.法則是規定的,而教材開始部分的行程問題是為了說明加法法則的合理性。

3.應強調加法交換律“a+b=b+a”中字母a、b的任意性。

4.計算三個或三個以上的加法算式,應建議學生養成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。

5.可以給出一些類似“兩數之和必大于任何一個加數”的判斷題,以明確由于負數參與加法運算,一些算術加法中的正確結論在有理數加法運算中未必也成立。

6.在探討導出法則的行程問題時,可以嘗試發揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數運算法則。

教學設計示例

(第一課時)

教學目的

1.使學生理解有理數加法的意義,初步掌握有理數加法法則,并能準確地進行運算.

2.通過運算,培養學生的運算能力.

教學重點與難點

重點:熟練應用法則進行加法運算.

難點:法則的理解.

教學過程

(一)復習提問

1.有理數是怎么分類的?

2.有理數的絕對值是怎么定義的?一個有理數的絕對值的幾何意義是什么?

3.有理數大小比較是怎么規定的?下列各組數中,哪一個較大?利用數軸說明?

-3與-2;|3|與|-3|;|-3|與0;

-2與|+1|;-|+4|與|-3|.

(二)引入新課

在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數和零的范圍內的運算.引入負數之后,這些運算法則將是怎樣的呢?我們先來學運算.

(三)進行新課 (板書課題)

例1 如圖所示,某人從原點0出發,如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?

兩次行走后距原點0為8米,應該用加法.

為區別向東還是向西走,這里規定向東走為正,向西走為負.這兩數相加有以下三種情況:

1.同號兩數相加

(1)某人向東走5米,再向東走3米,兩次一共走了多少米?

這是求兩次行走的路程的和.

5+3=8

用數軸表示如圖

從數軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.

可見,正數加正數,其和仍是正數,和的絕對值等于這兩個加數的絕對值的和.

(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?

顯然,兩次一共向西走了8米

(-5)+(-3)=-8

用數軸表示如圖

從數軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.

可見,負數加負數,其和仍是負數,和的絕對值也是等于兩個加數的絕對值的和.

總之,同號兩數相加,取相同的符號,并把絕對值相加.

例如,(-4)+(-5),……同號兩數相加

(-4)+(-5)=-( ),…取相同的符號

4+5=9……把絕對值相加

∴ (-4)+(-5)=-9.

口答練習:

(1)舉例說明算式7+9的實際意義?

(2)(-20)+(-13)=?

(3)

2.異號兩數相加

(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?

由數軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.

5+(-5)=0

可知,互為相反數的兩個數相加,和為零.

(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?

由數軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.

就是 5+(-3)=2.

(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?

由數軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.

就是 3+(-5)=-2.

請同學們想一想,異號兩數相加的法則是怎么規定的?強調和的符號是如何確定的?和的絕對值如何確定?

最后歸納

絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0.

例如(-8)+5……絕對值不相等的異號兩數相加

8>5

(-8)+5=-( )……取絕對值較大的加數符號

8-5=3 ……用較大的絕對值減去較小的絕對值

∴(-8)+5=-3.

口答練習

用算式表示:溫度由-4℃上升7℃,達到什么溫度.

(-4)+7=3(℃)

3.一個數和零相加

(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?

顯然,5+0=5.結果向東走了5米.

(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?

容易得出:(-5)+0=-5.結果向東走了-5米,即向西走了5米.

請同學們把(1)、(2)畫出圖來

由(1),(2)得出:一個數同0相加,仍得這個數.

總結有理數加法的三個法則.學生看書,引導他們看有理數加法運算的三種情況.

有理數加法運算的三種情況:

特例:兩個互為相反數相加;

(3)一個數和零相加.

每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.

(四)例題分析

例1 計算(-3)+(-9).

分析:這是兩個負數相加,屬于同號兩數相加,和的符號與加數相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).

解:(-3)+(-9)=-12.

例2

分析:這是異號兩數相加,和的符號與絕對值較大的加數的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值..(強調“兩個較大”“一個較小”)

解:

解題時,先確定和的符號,后計算和的絕對值.

(五)鞏固練習

1.計算(口答)

(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);

(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;

2.計算

(1)5+(-22); (2)(-1.3)+(-8)

(3)(-0.9)+1.5; (4)2.7+(-3.5)

探究活動

題目 (1)在1,2,3,4四個數的前面添加正號或負號,使它們的和為0;

(2)在1,2,3,…,11,12十二個數的前面添加正號或負號,使它們的和為零;

(3)在1,2,3,4,…,99,100一百個數的前面添加正號或負號,使它們的和為0;

(4) 在解決這個問題的過程中,你能總結出一些什么數學規律?

參考答案 我們不妨不妨以第二問為例探討,比如,在12,11,10,5這四個數的前面添加負號,則這12個數的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.

現在我們將各數的符號加以調整,考慮到將一個正數變號,其和就要減少這個正數的兩倍,因此可得到兩個(明顯的)解答:

(1)得+1變為-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①

(2)將(+6-5)變為-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②

又如,在11,10,8,7,5這五個數的前面添加負號,得

12-11-10-9-8-7+6-5+4+3+2+1=-4,

我們就有多種調整的方法,如將-8與+6變號,有

12-11-10+9+8-7-6-5+4+3+2+1=0. ③

經過幾次試驗,我們發現了規律:欲使十二個數的和為零,其中正數的和的絕對值與負數的和的絕對值必須相等.但

1+2+3+4+5+6+7+8+9+10+11+12=78

因此我們應該使各正數的和的絕對值與各負數的和的絕對值均為

為了簡便起見,我們把①式所表示的一個解答記為(12,11,10,5,1),那么②,③兩式所表示的解答就分別記為(12,11,10,6)與(11,10,7,6,5).

同時我們還發現:如果(12,11,10,5,1)是一個解答,那么(9,8,7,6,4,3,2)也必定是一個解答.同樣,對應于②,③兩式,還分別有另兩個解答:(9,8,7,5,4,3,2,1)與(12,9,8,4,3,2,1).這個規律我們不妨叫做對偶律.

此外我們還可發現,由于的三個數12,11,10其和33<39,因此必須再增加一個數6,才有解答(12,11,10,6),也就是說:添加負號的數至少要有四個;反過來,根據對偶律得:添加負號的數最多不超過八個.

掌握了上述幾條規律,我們就能夠在很短的時間內得到許多解答.最后讓我們告訴你,第(2)問的解答個數并非無數多,其總數是124個.

初中七年級數學教案篇5

教學目標

1、知識與技能:體會公式的發現和推導過程,了解公式的幾何背景,理解公式的本質,會應用公式進行簡單的計算.

2、過程與方法:通過讓學生經歷探索完全平方公式的過程,培養學生觀察、發現、歸納、概括、猜想等探究創新能力,發展推理能力和有條理的表達能力.培養學生的數形結合能力.

3、情感態度價值觀:體驗數學活動充滿著探索性和創造性,并在數學活動中獲得成功的體驗與喜悅,樹立學習自信心.

教學重難點

教學重點:

1、對公式的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋.

2、會運用公式進行簡單的計算.

教學難點:

1、完全平方公式的推導及其幾何解釋.

2、完全平方公式的結構特點及其應用.

教學工具

課件

教學過程

一、復習舊知、引入新知

問題1:請說出平方差公式,說說它的結構特點.

問題2:平方差公式是如何推導出來的?

問題3:平方差公式可用來解決什么問題,舉例說明.

問題4:想一想、做一做,說出下列各式的結果.

(1)(a+b)2(2)(a-b)2

(此時,教師可讓學生分別說說理由,并且不直接給出正確評價,還要繼續激發學生的學習興趣.)

二、創設問題情境、探究新知

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)

(1)四塊面積分別為:、、、;

(2)兩種形式表示實驗田的總面積:

①整體看:邊長為的大正方形,S=;

②部分看:四塊面積的和,S=.

總結:通過以上探索你發現了什么?

問題1:通過以上探索學習,同學們應該知道我們提出的問題4正確的結果是什么了吧?

問題2:如果還有同學不認同這個結果,我們再看下面的問題,繼續探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.

(教學過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學生大膽猜想,發表見解,但要驗證)

問題3:你能說說(a+b)2=a2+2ab+b2

這個等式的結構特點嗎?用自己的語言敘述.

(結構特點:右邊是二項式(兩數和)的平方,右邊有三項,是兩數的平方和加上這兩數乘積的二倍)

問題4:你能根據以上等式的結構特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.

總結:我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.

問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?

語言描述:兩數和(或差)的平方等于這兩數的平方和加上(或減去)這兩數積的2倍.

強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.

三、例題講解,鞏固新知

例1:利用完全平方公式計算

(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

解:(2x-3)2=(2x)2-2o(2x)o3+32

=4x2-12x+9

(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

=16x2+40xy+25y2

(mn-a)2=(mn)2-2o(mn)oa+a2

=m2n2-2mna+a2

交流總結:運用完全平方公式計算的一般步驟

(1)確定首、尾,分別平方;

(2)確定中間系數與符號,得到結果.

四、練習鞏固

練習1:利用完全平方公式計算

練習2:利用完全平方公式計算

練習3:

(練習可采用多種形式,學生上黑板板演,師生共同評價.也可學生獨立完成后,學生互相批改,力求使學生對公式完全掌握,如有學生出現問題,學生、教師應及時幫助.)

五、變式練習

六、暢談收獲,歸納總結

1、本節課我們學習了乘法的完全平方公式.

2、我們在運用公式時,要注意以下幾點:

(1)公式中的字母a、b可以是任意代數式;

(2)公式的結果有三項,不要漏項和寫錯符號;

(3)可能出現①②這樣的錯誤.也不要與平方差公式混在一起.

七、作業設置

29533 主站蜘蛛池模板: 超高频感应加热设备_高频感应电源厂家_CCD视觉检测设备_振动盘视觉检测设备_深圳雨滴科技-深圳市雨滴科技有限公司 | 【法利莱住人集装箱厂家】—活动集装箱房,集装箱租赁_大品牌,更放心 | HDPE储罐_厂家-山东九州阿丽贝防腐设备| 清洁设备_洗地机/扫地机厂家_全自动洗地机_橙犀清洁设备官网 | 磁力抛光机_磁力研磨机_磁力去毛刺机_精密五金零件抛光设备厂家-冠古科技 | 微波萃取合成仪-电热消解器价格-北京安合美诚科学仪器有限公司 | 飞行者联盟-飞机模拟机_无人机_低空经济_航空技术交流平台 | 氧氮氢联合测定仪-联测仪-氧氮氢元素分析仪-江苏品彦光电 | 济南办公室装修-厂房装修-商铺装修-工装公司-山东鲁工装饰设计 | 中医治疗皮肤病_潍坊银康医院「山东」重症皮肤病救治平台 | 山东锐智科电检测仪器有限公司_超声波测厚仪,涂层测厚仪,里氏硬度计,电火花检漏仪,地下管线探测仪 | 磁力链接搜索神器_BT磁力狗_CILIMAO磁力猫_高效磁力搜索引擎2024 | 鲁尔圆锥接头多功能测试仪-留置针测试仪-上海威夏环保科技有限公司 | 吸污车_吸粪车_抽粪车_电动三轮吸粪车_真空吸污车_高压清洗吸污车-远大汽车制造有限公司 | 全自动定氮仪-半自动凯氏定氮仪厂家-祎鸿仪器 | 涡街流量计_LUGB智能管道式高温防爆蒸汽温压补偿计量表-江苏凯铭仪表有限公司 | 不锈钢水管-不锈钢燃气管-卫生级不锈钢管件-不锈钢食品级水管-广东双兴新材料集团有限公司 | PCB厂|线路板厂|深圳线路板厂|软硬结合板厂|电路板生产厂家|线路板|深圳电路板厂家|铝基板厂家|深联电路-专业生产PCB研发制造 | 芜湖厨房设备_芜湖商用厨具_芜湖厨具设备-芜湖鑫环厨具有限公司 控显科技 - 工控一体机、工业显示器、工业平板电脑源头厂家 | 折弯机-刨槽机-数控折弯机-数控刨槽机-数控折弯机厂家-深圳豐科机械有限公司 | 南溪在线-南溪招聘找工作、找房子、找对象,南溪综合生活信息门户! | 上海刑事律师|刑事辩护律师|专业刑事犯罪辩护律师免费咨询-[尤辰荣]金牌上海刑事律师团队 | 外观设计_设备外观设计_外观设计公司_产品外观设计_机械设备外观设计_东莞工业设计公司-意品深蓝 | 小型铜米机-干式铜米机-杂线全自动铜米机-河南鑫世昌机械制造有限公司 | 啤酒设备-小型啤酒设备-啤酒厂设备-济南中酿机械设备有限公司 | 世纪豪门官网 世纪豪门集成吊顶加盟电话 世纪豪门售后电话 | 聚氨酯保温钢管_聚氨酯直埋保温管道_聚氨酯发泡保温管厂家-沧州万荣防腐保温管道有限公司 | 模温机-油温机-电加热导热油炉-工业冷水机「欧诺智能」 | 山东钢格板|栅格板生产厂家供应商-日照森亿钢格板有限公司 | TwistDx恒温扩增-RAA等温-Jackson抗体-默瑞(上海)生物科技有限公司 | 薪动-人力资源公司-灵活用工薪资代发-费用结算-残保金优化-北京秒付科技有限公司 | 建筑消防设施检测系统检测箱-电梯**检测仪器箱-北京宇成伟业科技有限责任公司 | 耐高温风管_耐高温软管_食品级软管_吸尘管_钢丝软管_卫生级软管_塑料波纹管-东莞市鑫翔宇软管有限公司 | GAST/BRIWATEC/CINCINNATI/KARL-KLEIN/ZIEHL-ABEGG风机|亚喜科技 | 空气能暖气片,暖气片厂家,山东暖气片,临沂暖气片-临沂永超暖通设备有限公司 | 步入式高低温测试箱|海向仪器 | 高铝轻质保温砖_刚玉莫来石砖厂家_轻质耐火砖价格 | 十字轴_十字轴万向节_十字轴总成-南京万传机械有限公司 | 一体化污水处理设备-一体化净水设备-「山东梦之洁水处理」 | 真空干燥烘箱_鼓风干燥箱 _高低温恒温恒湿试验箱_光照二氧化碳恒温培养箱-上海航佩仪器 | 10吨无线拉力计-2吨拉力计价格-上海佳宜电子科技有限公司 |