初中數學教案10篇
數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用于現實世界的任何問題。下面給大家帶來一些關于初中數學教案,歡迎閱讀與借鑒,希望對你們有幫助!
初中數學教案篇1
教學目標:
知識目標:
1、初步掌握函數概念,能判斷兩個變量間的關系是否可看作函數。
2、根據兩個變量間的關系式,給定其中一個量,相應地會求出另一個量的值。
3、會對一個具體實例進行概括抽象成為數學問題。
能力目標:
1、通過函數概念,初步形成學生利用函數的觀點認識現實世界的意識和能力。
2、經歷具體實例的抽象概括過程,進一步發展學生的抽象思維能力。
情感目標:
1、經歷函數概念的抽象概括過程,體會函數的模型思想。
2、讓學生主動地從事觀察、操作、交流、歸納等探索活動,形成自己對數學知識的理解和有效的學習模式。
教學重點:
掌握函數概念。
判斷兩個變量之間的關系是否可看作函數。
能把實際問題抽象概括為函數問題。
教學難點:
理解函數的概念。
能把實際問題抽象概括為函數問題。
教學過程設計:
一、創設問題情境,導入新課
『師』:同學們,你們看下圖上面那個像車輪狀的物體是什么?
『生』:摩天輪。
『師』:你們坐過嗎?
……
『師』:當你坐在摩天輪上時,人的高度隨時在變化,那么變化是否有規律呢?
『生』:應該有規律。因為人隨輪一直做圓周運動。所以人的高度過一段時間就會重復依次,即轉動一圈高度就重復一次。
『師』:分析有道理。摩天輪上一點的高度h與旋轉時間t之間有一定的關系。請看下圖,反映了旋轉時間t(分)與摩天輪上一點的高度h(米)之間的關系。
大家從圖上可以看出,每過6分鐘摩天輪就轉一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時間所對應的高度h。下面根據圖5-1進行填表:
t/分 0 1 2 3 4 5 …… h/米
t/分 0 1 2 3 4 5 …… h/米 3 11 37 45 37 11 ……
『師』:對于給定的時間t,相應的高度h確定嗎?
『生』:確定。
『師』:在這個問題中,我們研究的對象有幾個?分別是什么?
『生』:研究的對象有兩個,是時間t和高度h。
『師』:生活中充滿著許許多多變化的量,你了解這些變量之間的關系嗎?如:彈簧的長度與所掛物體的質量,路程的距離與所用時間……了解這些關系,可以幫助我們更好地認識世界。下面我們就去研究一些有關變量的問題。
二、新課學習
做一做
(1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數的增加,物體的總數是如何變化的?
填寫下表:
層數n 1 2 3 4 5 … 物體總數y 1 3 6 10 15 … 『師』:在這個問題中的變量有幾個?分別師什么?
『生』:變量有兩個,是層數與圓圈總數。
(2)在平整的路面上,某型號汽車緊急剎車后仍將滑行S米,一般地有經驗公式,其中V表示剎車前汽車的速度(單位:千米/時)
①計算當fenbie為50,60,100時,相應的滑行距離S是多少?
②給定一個V值,你能求出相應的S值嗎?
解:略
議一議
『師』:在上面我們研究了三個問題。下面大家探討一下,在這三個問題中的共同點是什么?不同點又是什么?
『生』:相同點是:這三個問題中都研究了兩個變量。
不同點是:在第一個問題中,是以圖象的形式表示兩個變量之間的關系;第二個問題中是以表格的形式表示兩個變量間的關系;第三個問題是以關系式來表示兩個變量間的關系的。
『師』:通過對這三個問題的研究,明確“給定其中某一個變量的值,相應地就確定了另一個變量的值”這一共性。
函數的概念
在上面各例中,都有兩個變量,給定其中某一各變量(自變量)的值,相應地就確定另一個變量(因變量)的值。
一般地,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。
三、隨堂練習
書P152頁 隨堂練習1、2、3
四、本課小結
初步掌握函數的概念,能判斷兩個變量間的關系是否可看作函數。
在一個函數關系式中,能識別自變量與因變量,給定自變量的值,相應地會求出函數的值。
函數的三種表達式:
圖象;(2)表格;(3)關系式。
五、探究活動
為了加強公民的節水意識,某市制定了如下用水收費標準:每戶每月的用水不超過10噸時,水價為每噸1.2元;超過10噸時,超過的部分按每噸1.8元收費,該市某戶居民5月份用水x噸(x>10),應交水費y元,請用方程的知識來求有關x和y的關系式,并判斷其中一個變量是否為另一個變量的函數?
(答案:Y=1.8x-6或)
六、課后作業
習題6.1
初中數學教案篇2
一、內容和內容解析
1.內容
三角形中相關元素的概念、按邊分類及三角形的三邊關系.
2.內容解析
三角形是一種最基本的幾何圖形,是認識其他圖形的基礎,在本章中,學好了三角形的有關概念和性質,為進一步學習多邊形的相關內容打好基礎,本節主要介紹與三角形的的概念、按邊分類和三角形三邊關系,使學生對三角形的有關知識有更為深刻的理解.
本節課的教學重點:三角形中的相關概念和三角形三邊關系.
本節課的教學難點:三角形的三邊關系.
二、目標和目標解析
1.教學目標
(1)了解三角形中的相關概念,學會用符號語言表示三角形中的對應元素.
(2)理解并且靈活應用三角形三邊關系.
2.教學目標解析
(1)結合具體圖形,識三角形的概念及其基本元素.
(2)會用符號、字母表示三角形中的相關元素,并會按邊對三角形進行分類.
(3)理解三角形兩邊之和大于第三邊這一性質,并會運用這一性質來解決問題.
三、教學問題診斷分析
在探索三角形三邊關系的過程中,讓學生經歷觀察、探究、推理、交流等活動過程,培養學生的和推理能力和合作學習的精神.
四、教學過程設計
1.創設情境,提出問題
問題回憶生活中的三角形實例,結合你以前對三角形的了解,請你給三角形下一個定義.
師生活動:先讓學生分組討論,然后各小組派代表發言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解.
【設計意圖】三角形概念的獲得,要讓學生經歷其描述的過程,借此培養學生的語言表述能力,加深學生對三角形概念的理解.
2.抽象概括,形成概念
動態演示“首尾順次相接”這個的動畫,歸納出三角形的定義.
師生活動:
三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
【設計意圖】讓學生體會由抽象到具體的過程,培養學生的語言表述能力.
補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法.
師生活動:結合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡.
【設計意圖】進一步加深學生對三角形中相關元素的認知,并進一步熟悉幾何語言在學習中的應用.
3.概念辨析,應用鞏固
如圖,不重復,且不遺漏地識別所有三角形,并用符號語言表示出來.
1.以AB為一邊的三角形有哪些?
2.以∠D為一個內角的三角形有哪些?
3.以E為一個頂點的三角形有哪些?
4.說出ΔBCD的三個角.
師生活動:引導學生從概念出發進行思考,加深學生對三角形中相關元素概念的理解.
4.拓廣延伸,探究分類
我們知道,按照三個內角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關系對三角形進行分類,又應該如何分呢?小組之間同學進行交流并說說你們的想法.
師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯系,強化學生對三角形按邊分類的理解.
初中數學教案篇3
一、教學目標:
1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.
2、會求一組數據的極差.
二、重點、難點和難點的突破方法
1、重點:會求一組數據的極差.
2、難點:本節課內容較容易接受,不存在難點.
三、課堂引入:
下表顯示的是上海2001年2月下旬和2002年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.
經計算可以看出,對于2月下旬的這段時間而言,2001年和2002年上海地區的平均氣溫相等,都是12度.
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據兩段時間的氣溫情況可繪成的折線圖.
觀察一下,它們有區別嗎?說說你觀察得到的結果.
用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍.用這種方法得到的差稱為極差(range).
四、例習題分析
本節課在教材中沒有相應的例題,教材P152習題分析
問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統計知識首先應回憶復習已學知識.問題3答案并不唯一,合理即可。
初中數學教案篇4
一、教學目的
1.使學生進一步理解自變量的取值范圍和函數值的意義.
2.使學生會用描點法畫出簡單函數的圖象.
二、教學重點、難點
重點:1.理解與認識函數圖象的意義.
2.培養學生的看圖、識圖能力.
難點:在畫圖的三個步驟的列表中,如何恰當地選取自變量與函數的對應值問題.
三、教學過程
復習提問
1.函數有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結合函數y=x的圖象,說明什么是函數的圖象?
3.說出下列各點所在象限或坐標軸:
新課
1.畫函數圖象的方法是描點法.其步驟:
(1)列表.要注意適當選取自變量與函數的對應值.什么叫“適當”?——這就要求能選取表現函數圖象特征的幾個關鍵點.比如畫函數y=3x的圖象,其關鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.
一般地,我們把自變量與函數的對應值分別作為點的橫坐標和縱坐標,這就要把自變量與函數的對應值列出表來.
(2)描點.我們把表中給出的有序實數對,看作點的坐標,在直角坐標系中描出相應的點.
(3)用光滑曲線連線.根據函數解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.
一般地,根據函數解析式,我們列表、描點是有限的幾個,只需在平面直角坐標系中,把這有限的幾個點連成表示函數的曲線(或直線).
2.講解畫函數圖象的三個步驟和例.畫出函數y=x+0.5的圖象.
小結
本節課的重點是讓學生根據函數解析式畫函數圖象的三個步驟,自己動手畫圖.
練習
①選用課本練習(前一節已作:列表、描點,本節要求連線)
②補充題:畫出函數y=5x-2的圖象.
作業
選用課本習題.
四、教學注意問題
1.注意滲透數形結合思想.通過研究函數的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認識.把函數的解析式、列表、圖象三者結合起來,更有利于認識函數的本質特征.
2.注意充分調動學生自己動手畫圖的積極性.
3.認識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學中要傾向培養學生看圖、識圖的能力。
初中數學教案篇5
一.教學目標:
1.了解方差的定義和計算公式。
2.理解方差概念的產生和形成的過程。
3.會用方差計算公式來比較兩組數據的波動大小。
二.重點、難點和難點的突破方法:
1.重點:方差產生的必要性和應用方差公式解決實際問題。
2.難點:理解方差公式
3.難點的突破方法:
方差公式:S = [( - ) +( - ) +…+( - )]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現計算的錯誤,為突破這一難點,我安排了幾個環節,將難點化解。
(1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節課內容產生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質量穩定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經常要去了解一組數據的波動程度,僅僅知道平均數是不夠的。
(2)波動性可以通過什么方式表現出來?第一環節中點明了為什么去了解數據的波動性,第二環節則主要使學生知道描述數據,波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當波動大小區別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現一種數量來描述數據波動大小,這就引出方差產生的必要性。
(3)第三環節教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統計量。
三.例習題的意圖分析:
1.教材P125的討論問題的意圖:
(1).創設問題情境,引起學生的學習興趣和好奇心。
(2).為引入方差概念和方差計算公式作鋪墊。
(3).介紹了一種比較直觀的衡量數據波動大小的方法——畫折線法。
(4).客觀上反映了在解決某些實際問題時,求平均數或求極差等方法的局限性,使學生體會到學習方差的意義和目的。
2.教材P154例1的設計意圖:
(1).例1放在方差計算公式和利用方差衡量數據波動大小的規律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的掌握。
(2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。
四.課堂引入:
除采用教材中的引例外,可以選擇一些更時代氣息、更有現實意義的引例。例如,通過學生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。
五.例題的分析:
教材P154例1在分析過程中應抓住以下幾點:
1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數據的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數據波動大小,這一環節是明確題意。
2.在求方差之前先要求哪個統計量,為什么?學生也可以得出先求平均數,因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。
3.方差怎樣去體現波動大小?
這一問題的提出主要復習鞏固方差,反映數據波動大小的規律。
六.隨堂練習:
1.從甲、乙兩種農作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
問:(1)哪種農作物的苗長的比較高?
(2)哪種農作物的苗長得比較整齊?
2.段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?
測試次數1 2 3 4 5
段巍13 14 13 12 13
金志強10 13 16 14 12
參考答案:1.(1)甲、乙兩種農作物的苗平均高度相同;(2)甲整齊
2.段巍的成績比金志強的成績要穩定。
七.課后練習:
1.已知一組數據為2、0、-1、3、-4,則這組數據的方差為。
2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經過計算,兩人射擊環數的平均數相同,但S S,所以確定去參加比賽。
3.甲、乙兩臺機床生產同種零件,10天出的次品分別是( )
甲:0、1、0、2、2、0、3、1、2、4
乙:2、3、1、2、0、2、1、1、2、1
分別計算出兩個樣本的平均數和方差,根據你的計算判斷哪臺機床的性能較好?
4.小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)
小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據這幾次成績選拔一人參加比賽,你會選誰呢?
答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好
4. =10.9、S =0.02;
=10.9、S =0.008
選擇小兵參加比賽。
初中數學教案篇6
教學內容分析:
⑴ 學習特殊的平行四邊形—正方形,它的特殊的性質和判定。
⑵前面學習了平行四邊形、矩形菱形,類比他們的性質與判斷,有利于對正方形的研究。
⑶ 對本節的學習,繼續培養學生分類研究的思想,并且建立新舊知識的聯系,類比的基礎上進行歸納,梳理知識,進一步發展學生的推理能力。
學生分析:
⑴學生在小學初步認識了正方形,并且本節課之前,學生又學習了幾種平行四邊形,已經具備了觀察研究平行四邊形的經驗與知識基礎。
⑵學生在上幾節已有了推理的經歷,但是對于證明,學生的思維能力還不成熟,有待于提高。
教學目標:
⑴知識與技能:了解正方形是特殊的平行四邊形,掌握它的性質和判定,會利用性質與判定進行簡單的說理。
⑵過程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質與判定。通過運用提高學生的推理能力。
⑶情感態度與價值觀:在學習中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:掌握正方形的性質與判定,并進行簡單的推理。
難點:探索正方形的判定,發展學生的推理能
教學方法:類比與探究
教具準備:可以活動的四邊形模型。
教學過程:
一:復習鞏固,建立聯系。
【教師活動】
問題設置:①平行四邊形、矩形,菱形各有哪些性質?
②( ) 的四邊形是平行四邊形。( )的平行四邊形是矩形。( )的平行四邊形是菱形。( )的四邊形是矩形。( )的四邊形是菱形。
【學生活動】
學生回憶,并舉手回答,對于填空題,讓更多的學生參與,說出更多的答案。
【教師活動】
評析學生的結果,給予表揚。
總結性質從邊角對角線考慮,在填空時也考慮這幾方面之外,還應該考慮三者之間的聯系與區別。
演示平行四邊形變為矩形菱形的過程。
二:動手操作,探索發現。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學生活動】
學生拿出自備矩形紙片,動手操作,不難發現它是正方形。
設置問題:①什么是正方形?
觀察發現,從活動中體會。
【教師活動】:演示矩形變為正方形的過程,菱形變為正方形的過程。
【學生活動】認真觀察變化過程,思考之間的聯系,舉手回答設置問題。
設置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學生活動】
小組討論,分組回答。
【教師活動】
總結板書:
㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設置問題③正方形有那些性質?
【學生活動】
小組討論,舉手搶答。
【教師活動】
表揚學生發言,板書學生發現,㈡正方形 每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學生活動
折紙發現,說出自己的發現。得到正方形的又一性質。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變為正方形的過程,擦去板書㈠中的括號內容,出示一下問題:你還可以怎樣填空?
( )的菱形是正方形,( )的矩形是正方形,( )的平行四邊形是正方形,( )的四邊形是正方形。
學生活動
小組充分交流,表達不同的意見。
教師活動
評析活動,總結發現:
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現在哪里?生活中有哪些利用正方形的例子?
學生交流,感受正方形
三,應用體驗,推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及 的度數。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)
。
BC=AB=4cm(正方形的四條邊相等)
∴ =45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC= = =4 cm
∵AO= AC(正方形的對角線互相平分)
∴AO= ×4 =2 cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學生活動
獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結解題方法,從正方形的性質全面考慮,準確利用條件,減少麻煩。評析解題步驟,表揚突出學生。
出示例二:在正方形ABCD中,E、F、G、H 分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節課你有什么收獲?
學生舉手談論自己的收獲。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關系。
發表評論
初中數學教案篇7
一、教學目標
1.使學生理解并掌握分式的概念,了解有理式的概念;
2.使學生能夠求出分式有意義的條件;
3.通過類比分數研究分式的教學,培養學生運用類比轉化的思想方法解決問題的能力;
4.通過類比方法的教學,培養學生對事物之間是普遍聯系又是變化發展的辨證觀點的再認識.
二、重點、難點、疑點及解決辦法
1.教學重點和難點 明確分式的分母不為零.
2.疑點及解決辦法 通過類比分數的意義,加強對分式意義的理解.
三、教學過程
【新課引入】
前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)
【新課】
1.分式的定義
(1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:
用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.
(2)由學生舉幾個分式的例子.
(3)學生小結分式的概念中應注意的問題.
①分母中含有字母.
②如同分數一樣,分式的分母不能為零.
(4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]
2.有理式的分類
請學生類比有理數的分類為有理式分類:
例1 當取何值時,下列分式有意義?
(1);
解:由分母得.
∴當時,原分式有意義.
(2);
解:由分母得.
∴當時,原分式有意義.
(3);
解:∵恒成立,
∴取一切實數時,原分式都有意義.
(4).
解:由分母得.
∴當且時,原分式有意義.
思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?
例2 當取何值時,下列分式的值為零?
(1);
解:由分子得.
而當時,分母.
∴當時,原分式值為零.
小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.
(2);
解:由分子得.
而當時,分母,分式無意義.
當時,分母.
∴當時,原分式值為零.
(3);
解:由分子得.
而當時,分母.
當時,分母.
∴當或時,原分式值都為零.
(4).
解:由分子得.
而當時,,分式無意義.
∴沒有使原分式的值為零的的值,即原分式值不可能為零.
(四)總結、擴展
1.分式與分數的區別.
2.分式何時有意義?
3.分式何時值為零?
(五)隨堂練習
1.填空題:
(1)當時,分式的值為零
(2)當時,分式的值為零
(3)當時,分式的值為零
2.教材P55中1、2、3.
八、布置作業
教材P56中A組3、4;B組(1)、(2)、(3).
九、板書設計
課題 例1
1.定義例2
2.有理式分類
初中數學教案篇8
一、教學目標
1、認識中位數和眾數,并會求出一組數據中的眾數和中位數。
2、理解中位數和眾數的意義和作用。它們也是數據代表,可以反映一定的數據信息,幫助人們在實際問題中分析并做出決策。
3、會利用中位數、眾數分析數據信息做出決策。
二、重點、難點和難點的突破方法:
1、重點:認識中位數、眾數這兩種數據代表
2、難點:利用中位數、眾數分析數據信息做出決策。
3、難點的突破方法:
首先應交待清楚中位數和眾數意義和作用:
中位數僅與數據的排列位置有關,某些數據的變動對中位數沒有影響,中位數可能出現在所給的數據中,當一組數據中的個別數據變動較大時,可用中位數描述其趨勢。眾數是當一組數據中某一重復出現次數較多時,人們往往關心的一個量,眾數不受極端值的影響,這是它的一個優勢,中位數的計算很少不受極端值的影響。
教學過程中注重雙基,一定要使學生能夠很好的掌握中位數和眾數的求法,求中位數的步驟:⑴將數據由小到大(或由大到小)排列,⑵數清數據個數是奇數還是偶數,如果數據個數為奇數則取中間的數,如果數據個數為偶數,則取中間位置兩數的平均值作為中位數。求眾數的方法:找出頻數最多的那個數據,若幾個數據頻數都是最多且相同,此時眾數就是這多個數據。
在利用中位數、眾數分析實際問題時,應根據具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。
三、例習題的意圖分析
1、教材P143的例4的意圖
(1)、這個問題的研究對象是一個樣本,主要是反映了統計學中常用到一種解決問題的方法:對于數據較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結論去估計總體的情況。
(2)、這個例題另一個意圖是交待了當數據個數為偶數時,中位數的求法和解題步驟。(因為在前面有介紹中位數求法,這里不再重述)
(3)、問題2顯然反映學習中位數的意義:它可以估計一個數據占總體的相對位置,說明中位數是統計學中的一個重要的數據代表。
(4)、這個例題再一次體現了統計學知識與實際生活是緊密聯系的,所以應鼓勵學生學好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數,它代表該型號的產品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數是數據代表的一種。
四、課堂引入
嚴格的講教材本節課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。
五、例習題的分析
教材P144例4,從所給的數據可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數據重新排列,通過觀察會發現共有12個數據,偶數個可以取中間的兩個數據146、148,求其平均值,便可得這組數據的中位數。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數,因此這組數據的眾數可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。
六、隨堂練習
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統計了這15個人的銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個銷售員該月銷量的中位數和眾數。
假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規格的空調,銷售臺數如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據表格回答問題:
商店出售的各種規格空調中,眾數是多少?
假如你是經理,現要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數據的平均數,卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數又是眾數,是大部分人能達到的額定。
2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調。
七、課后練習
1.數據8、9、9、8、10、8、99、8、10、7、9、9、8的中位數是,眾數是
2.一組數據23、27、20、18、X、12,它的中位數是21,則X的值是.
3.數據92、96、98、100、X的眾數是96,則其中位數和平均數分別是( )
A.97、96 B.96、96.4 C.96、97 D.98、97
4.如果在一組數據中,23、25、28、22出現的次數依次為2、5、3、4次,并且沒有其他的數據,則這組數據的眾數和中位數分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:
溫度(℃) -8 -1 7 15 21 24 30
天數3 5 5 7 6 2 2
請你根據上述數據回答問題:
(1).該組數據的中位數是什么?
(2).若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?
答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天
初中數學教案篇9
一、教學目的:
1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關的論證和計算;
2.在菱形的判定方法的探索與綜合應用中,培養學生的觀察能力、動手能力及邏輯思維能力.
二、重點、難點
1.教學重點:菱形的兩個判定方法.
2.教學難點:判定方法的證明方法及運用.
三、例題的意圖分析
本節課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,并會用這些判定方法進行有關的論證和計算.這些題目的推理都比較簡單,學生掌握起來不會有什么困難,可以讓學生自己去完成.程度好一些的班級,可以選講例3.
四、課堂引入
1.復習
(1)菱形的定義:一組鄰邊相等的平行四邊形;
(2)菱形的性質1 菱形的四條邊都相等;
性質2 菱形的對角線互相平分,并且每條對角線平分一組對角;
(3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)
2.【問題】要判定一個四邊形是菱形,除根據定義判定外,還有其它的判定方法嗎?
3.【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉動木條,這個四邊形什么時候變成菱形?
通過演示,容易得到:
菱形判定方法1 對角線互相垂直的平行四邊形是菱形.
注意此方法包括兩個條件:(1)是一個平行四邊形;(2)兩條對角線互相垂直.
通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:
菱形判定方法2 四邊都相等的四邊形是菱形.
五、例習題分析
例1 (教材P109的例3)略
例2(補充)已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F.
求證:四邊形AFCE是菱形.
證明:∵ 四邊形ABCD是平行四邊形,
∴ AE∥FC.
∴ ∠1=∠2.
又 ∠AOE=∠COF,AO=CO,
∴ △AOE≌△COF.
∴ EO=FO.
∴ 四邊形AFCE是平行四邊形.
又 EF⊥AC,
∴ AFCE是菱形(對角線互相垂直的平行四邊形是菱形).
※例3(選講) 已知:如圖,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.
求證:四邊形CEHF為菱形.
略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.
所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.
六、隨堂練習
1.填空:
(1)對角線互相平分的四邊形是 ;
(2)對角線互相垂直平分的四邊形是________;
(3)對角線相等且互相平分的四邊形是________;
(4)兩組對邊分別平行,且對角線 的四邊形是菱形.
2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm.
3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。
七、課后練習
1.下列條件中,能判定四邊形是菱形的是 ( ).
(A)兩條對角線相等 (B)兩條對角線互相垂直
(C)兩條對角線相等且互相垂直 (D)兩條對角線互相垂直平分
2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.
3.做一做:
設計一個由菱形組成的花邊圖案.花邊的長為15 cm,寬為4 cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點.畫出花邊圖形.
初中數學教案篇10
學習目標:
1、能推導平方差公式,并會用幾何圖形解釋公式;
2、能用平方差公式進行熟練地計算;
3、經歷探索平方差公式的推導過程,發展符號感,體會特殊一般特殊的認識規律.
學習重難點:
重點:能用平方差公式進行熟練地計算;
難點:探索平方差公式,并用幾何圖形解釋公式.
學習過程:
一、自主探索
1、計算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)
(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)
2、觀察以上算式及其運算結果,你發現了什么規律?再舉兩例驗證你的發現.
3、你能用自己的語言敘述你的發現嗎?
4、平方差公式的特征:
(1)、公式左邊的兩個因式都是二項式。必須是相同的兩數的和與差。或者說兩 個二項式必須有一項完全相同,另一項只有符號不同。
(2)、公式中的a與b可以是數,也可以換成一個代數式。
二 、試一試
例1、利用平方差公式計算
(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)
例2、利用平方差公式計算
(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2
三、合作交流
如圖,邊長為a的大正方形中有一個邊長為b的小正方形.
(1)請表示圖中陰影部分的面積.
(2)小穎將陰影部分拼成了一個長方形,這個長方形的長和寬分別是多少?你能表示出它的面積嗎? a a b
(3)比較(1)(2)的結果,你能驗證平方差公式嗎?
四、鞏固練習
1、利用平方差公式計算
(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)
(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)
2、利用平方差公式計算
(1)803797 (2)398402
3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )
A.只能是數 B.只能是單項式 C.只能是多項式 D.以上都可以
4.下列多項式的乘法中,可以用平方差公式計算的是( )
A.(a+b)(b+a) B.(-a+b)(a-b)
C.( a+b)(b- a) D.(a2-b)(b2+a)
5.下列計算中,錯誤的有( )
①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;
③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.
A.1個 B.2個 C.3個 D.4個[來源:中.考.資.源.網WWW.ZK5U.COM]
6.若x2-y2=30,且x-y=-5,則x+y的值是( )
A.5 B.6 C.-6 D.-5
7.(-2x+y)(-2x-y)=______.
8.(-3x2+2y2)(______)=9x4-4y4.
9.(a+b-1)(a-b+1)=(_____)2-(_____)2.
10.兩個正方形的邊長之和為5,邊長之差為2,那么用較大的正方形的面積減去較小的正方形的面積,差是_____.
11.利用平方差公式計算:20 19 .
12.計算:(a+2)(a2+4)(a4+16)(a-2).
五、學習反思
我的收獲:
我的疑惑:
六、當堂測試
1、下列多項式乘法中能用平方差公式計算的是( ).
(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[
2、填空:(1)(x2-2)(x2+2)=
(2)(5x-3y)( )=25x2-9y2
3、計算:
(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)
4.利用平方差公式計算
①1003997 ②14 15
七、課外拓展
下列各式哪些能用平方差公式計算?怎樣用?
1) (a-b+c)(a-b-c)
2) (a+2b-3)(a-2b+3)
3) (2x+y-z+5)(2x-y+z+5)
4) (a-b+c-d)(-a-b-c-d)
2.2完全平方公式(1)