小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 >

初中數學教案萬能

時間: 新華 教案模板

初中數學教案萬能篇1

教學目標 1, 通過對數“零”的意義的探討,進一步理解正數和負數的概念;

2, 利用正負數正確表示相反意義的量(規定了指定方向變化的量)

3, 進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。

教學難點 深化對正負數概念的理解

知識重點 正確理解和表示向指定方向變化的量

教學過程(師生活動) 設計理念

知識回顧與深化 回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?

問題1:有沒有一種既不是正數又不是負數的數呢?

學生思考并討論.

(數0既不是正數又不是負數,是正數和負數的分

界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)

例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是

零上7℃,最低溫度是零下5℃時,就應該表示為+7℃

和-5℃,這里+7℃和-5℃就分別稱為正數和負數 .

那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?

問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類? “數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入

負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。

所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即

可,不必深究.

分析問題

解決問題 問題3:教科書第6頁例題

說明:這是一個用正負數描述向指定方向變化情況的例子, 通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。

歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).

類似的例子很多,如:

水位上升-3m,實際表示什么意思呢?

收人增加-10%,實際表示什么意思呢?

等等。

可視教學中的實際情況進行補充.

這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種

意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在

不必向學生提出.

鞏固練習 教科書第6頁練習

閱讀思考

教科書第8頁 閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流

小結與作業

課堂小結 以問題的形式,要求學生思考交流:

1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?

2,怎樣用正負數表示具有相反意義的量?

(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)

本課作業 1, 必做題:教科書第7頁習題1.1第3,6,7,8題

2, 選做題:教師自行安排

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指

定方向變化的量。

2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.

3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.

4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.

初中數學教案萬能篇2

教學目標:

1、了解公式的意義,使學生能用公式解決簡單的實際問題;

2、初步培養學生觀察、分析及概括的能力;

3、通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。

教學建議:

一、教學重點、難點

重點:通過具體例子了解公式、應用公式。

難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。

二、重點、難點分析

人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。

三、知識結構

本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。

四、教法建議

1、對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。

2、在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。

3、在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。

教學設計示例:

一、教學目標

(一)知識教學點

1、使學生能利用公式解決簡單的實際問題。

2、使學生理解公式與代數式的關系。

(二)能力訓練點

1、利用數學公式解決實際問題的能力。

2、利用已知的公式推導新公式的能力。

(三)德育滲透點

數學來源于生產實踐,又反過來服務于生產實踐。

(四)美育滲透點

數學公式是用簡潔的數學形式來闡明自然規定,解決實際問題,形成了色彩斑斕的多種數學方法,從而使學生感受到數學公式的簡潔美。

二、學法引導

1、數學方法:引導發現法,以復習提問小學里學過的公式為基礎、突破難點。

2、學生學法:觀察→分析→推導→計算。

三、重點、難點、疑點及解決辦法

1、重點:利用舊公式推導出新的圖形的計算公式。

2、難點:同重點。

3、疑點:把要求的圖形如何分解成已經熟悉的圖形的和或差。

四、課時安排

1課時

五、教具學具準備

投影儀,自制膠片。

六、師生互動活動設計

教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發學生求圖形的面積,師生總結求圖形面積的公式。

七、教學步驟

(一)創設情景,復習引入

師:同學們已經知道,代數的一個重要特點就是用字母表示數,用字母表示數有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏。

在學生說出幾個公式后,師提出本節課我們應在小學學習的基礎上,研究如何運用公式解決實際問題。

板書:公式

師:小學里學過哪些面積公式?

板書:S=ah

(出示投影1)。解釋三角形,梯形面積公式

【教法說明】讓學生感知用割補法求圖形的面積。

初中數學教案萬能篇3

學習目標

1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內錯角、同旁內角.毛

2. 通過比較、觀察、掌握同位角、內錯角、同旁內角的特征,能正確識別圖形中的同位角、內錯角和同旁內角.

重點難點

同位角、內錯角、同旁內角的特征

教學過程

一·導入

1.指出右圖中所有的鄰補角和對頂角?

2. 圖中的∠1與∠5,∠3與∠5,∠3與∠6 是鄰補角或對頂角嗎?

若都不是,請自學課本P6內容后回答它們各是什么關系的角?

二·問題導學

1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。

2. 如圖⑶是"直線 , 被直線 所截"形成的圖形

(1)∠1與∠5這對角在兩被截線AB,CD的 ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。

(2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內錯角。

(3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內角。

3.找出圖⑶中所有的同位角、內錯角、同旁內角

4.討論與交流:

(1)"同位角、內錯角、同旁內角"與"鄰補角、對頂角"在識別方法上有什么區別?

(2)歸納總結同位角、內錯角、同旁內角的特征:

同位角:"F" 字型,"同旁同側"

"三線八角" 內錯角:"Z" 字型,"之間兩側"

同旁內角:"U" 字型,"之間同側"

三·典題訓練

例1. 如圖⑵中∠1與∠2,∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?

小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內錯角;

兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內角;

自我檢測

⒈如圖⑷,下列說法不正確的是( )

A、∠1與∠2是同位角 B、∠2與∠3是同位角

C、∠1與∠3是同位角 D、∠1與∠4不是同位角

⒉如圖⑸,直線AB、CD被直線EF所截,∠A和 是同位角,∠A和 是內錯角,∠A和 是同旁內角.

⒊如圖⑹, 直線DE截AB, AC, 構成八個角:

① 指出圖中所有的同位角、內錯角、同旁內角.

②∠A與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?

⒋如圖⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出當BC、DE被AB所截時,∠3的同位角、內錯角和同旁內角.

②試說明∠1=∠2=∠3的理由.(提示:三角形內角和是1800)

相交線與平行線練習

課型:復習課: 備課人:徐新齊 審核人:霍紅超

一.基礎知識填空

1、如圖,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如圖,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如圖,∵∠D=∠DCF(已知)

∴_____//______( )

6、如圖,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2題) (第5、6題) (第7題) (第9題)

7、如圖,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

二.基礎過關題:

1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE 。

證明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代換 )

∴BD∥CE( )。

2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B + ∠F =180°。

證明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF,∠EHD,試說明GM ∥HN.

初中數學教案萬能篇4

一、素質教育目標

(一)知識教學點

1.理解有理數乘方的意義.

2.掌握有理數乘方的運算.

(二)能力訓練點

1.培養學生觀察、分析、比較、歸納、概括的能力.

2.滲透轉化思想.

(三)德育滲透點:培養學生勤思、認真和勇于探索的精神.

(四)美育滲透點

把記成,顯示了乘方符號的簡潔美.

二、學法引導

1.教學方法:引導探索法,嘗試指導,充分體現學生主體地位.

2.學生學法:探索的性質→練習鞏固

三、重點、難點、疑點及解決辦法

1.重點:運算.

2.難點:運算的符號法則.

3.疑點:①乘方和冪的區別.

②與的區別.

四、課時安排

1課時

五、教具學具準備

投影儀、自制膠片.

六、師生互動活動設計

教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.

七、教學步驟

(一)創設情境,導入 新課

師:在小學我們已經學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?

生:可以記作,讀作的四次方.

師:呢?

生:可以記作,讀作的五次方.

師:(為正整數)呢?

生:可以記作,讀作的次方.

師:很好!把個相乘,記作,既簡單又明確.

【教法說明】教師給學生創設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數學的發展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.

師:在小學對底數,我們只能取正數.進入中學以后我們學習了有理數,那么還可取哪些數呢?請舉例說明.

生:還可取負數和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.

非常好!對于中的,不僅可以取正數,還可以取0和負數,也就是說可以取任意有理數,這就是我們今天研究的課題:(板書).

【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據初一學生的認知水平,分層逐步說明可以取正數,可以取零,可以取負數,最后總結出可以取任意有理數.

(二)探索新知,講授新課

1.求個相同因數的積的運算,叫做乘方.

乘方的結果叫做冪,相同的因數叫做底數,相同的因數的個數叫做指數.一般地,在中,取任意有理數,取正整數.

注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.

鞏固練習(出示投影1)

(1)在中,底數是__________,指數是___________,讀作__________或讀作___________;

(2)在中,-2是__________,4是__________,讀作__________或讀作__________;

(3)在中,底數是_________,指數是__________,讀作__________;

(4)5,底數是___________,指數是_____________.

【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區別表示底數是-2,指數是4的冪;而表示底數是2,指數是4的冪的相反數.為后面的計算做鋪墊.通過第(4)小題指出一個數可以看作這個數本身的一次方,如5就是,指數1通常省略不寫.

師:到目前為止,對有理數業說,我們已經學過幾種運算?分別是什么?其運算結果叫什么?

學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.

生:到目前為止,已經學習過五種運算,它們是:

運算:加、減、乘、除、乘方;

運算結果:和、差、積、商、冪;

教師對學生的回答給予評價并鼓勵.

【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養學生歸納、總結的能力.

師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.

學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.

【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數的乘法運算來進行有理數乘方的運算.向學生滲透轉化的思想.

2.練習:(出示投影2)

計算:1.(1)2, (2), (3), (4).

2.(1),,,.

(2)-2,,.

3.(1)0, (2), (3), (4).

學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.

師:請同學們觀察、分析、比較這三組題中,每組題中底數、指數和冪之間有什么聯系?

先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.

生:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數,零的任何次冪都是零.

師:請同學們繼續觀察與,與中,底數、指數和冪之間有何聯系?你能得出什么結論呢?

學生活動:學生積極思考,同桌之間、前后桌之間互相討論.

生:互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等.

師:請同學思考一個問題,任何一個數的偶次冪是什么數?

生:任何一個數的偶次冪是非負數.

師:你能把上述結論用數學符號表示嗎?

生:(1)當時,(為正整數);

(2)當

(3)當時,(為正整數);

(4)(為正整數);

(為正整數);

(為正整數,為有理數).

【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創造發揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.

初中數學教案萬能篇5

一、教學目標:

1、知道一次函數與正比例函數的定義。

2、理解掌握一次函數的圖象的特征和相關的性質。

3、弄清一次函數與正比例函數的區別與聯系。

4、掌握直線的平移法則簡單應用。

5、能應用本章的基礎知識熟練地解決數學問題。

二、教學重、難點:

重點:初步構建比較系統的函數知識體系。

難點:對直線的平移法則的理解,體會數形結合思想。

三、教學過程:

1、一次函數與正比例函數的定義:

一次函數:一般地,若y=kx+b(其中k,b為常數且k≠0),那么y是一次函數。

正比例函數:對于y=kx+b,當b=0,k≠0時,有y=kx,此時稱y是x的正比例函數,k為正比例系數。

2、一次函數與正比例函數的區別與聯系:

(1)從解析式看:y=kx+b(k≠0,b是常數)是一次函數;而y=kx(k≠0,b=0)是正比例函數,顯然正比例函數是一次函數的特例,一次函數是正比例函數的推廣。

(2)從圖象看:正比例函數y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx

平行的一條直線。

基礎訓練:

1、寫出一個圖象經過點(1,—3)的函數解析式為:

2、直線y=—2X—2不經過第象限,y隨x的增大而。

3、如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:

4、已知正比例函數y=(3k—1)x,,若y隨x的增大而增大,則k是:

5、過點(0,2)且與直線y=3x平行的直線是:

6、若正比例函數y=(1—2m)x的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是:

7、若y—2與x—2成正比例,當x=—2時,y=4,則x=時,y=—4。

8、直線y=—5x+b與直線y=x—3都交y軸上同一點,則b的值為。

9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。

(1)求線段AB的長。

(2)求直線AC的解析式。

初中數學教案萬能篇6

總體說明:

完全平方公式則是對多項式乘法中出現的較為特殊的算式的一種歸納、總結.同時,完全平方公式的推導是初中數學中運用推理方法進行代數式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養學生的求簡意識有較大好處.而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數的恒等變形的重要基礎,同時也具有培養學生逐漸養成嚴密的邏輯推理能力的作用.因此學好完全平方公式對于代數知識的后繼學習具有相當重要的意義.

本節是北師大版七年級數學下冊第一章《整式的運算》的第8小節,占兩個課時,這是第一課時,它主要讓學生經歷探索與推導完全平方公式的過程,培養學生的符號感與推理能力,讓學生進一步體會數形結合的思想在數學中的作用.

一、學生學情分析

學生的技能基礎:學生通過對本章前幾節課的學習,已經學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節課的學習奠定了基礎.

學生活動經驗基礎:在平方差公式一節的學習中,學生已經經歷了探索和應用的過程,獲得了一些數學活動的經驗,培養了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

二、教學目標

知識與技能:

(1)讓學生會推導完全平方公式,并能進行簡單的應用.

(2)了解完全平方公式的幾何背景.

數學能力:

(1)由學生經歷探索完全平方公式的過程,進一步發展學生的符號感與推理能力.

(2)發展學生的數形結合的數學思想.

情感與態度:

將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.

三、教學重難點

教學重點:1、完全平方公式的推導;

2、完全平方公式的應用;

教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;

2、完全平方公式結構的認知及正確應用.

四、教學設計分析

本節課設計了十一個教學環節:學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.

第一環節:學生練習、暴露問題

活動內容:計算:(a+2)2

設想學生的做法有以下幾種可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正確做法;

針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?

活動目的:在很多學生的頭腦中,認為兩數和的完全平方與兩數的平方和等同,即:

(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環節的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.

第二環節:驗證(a+2)2=a2–4a+22

活動內容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

活動目的:在前一環節已經打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.

第三環節:推廣到一般情況,形成公式

活動內容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活動目的:讓學生經歷從特殊到一般的探究過程,體驗到發現的快樂.

第四環節:數形結合

活動內容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.

學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

活動目的:讓學生進一步認識到數與形都不是孤立存在的,數與形是可以有機地結合在一起,從而發展學生的數形結合的數學思想.

第五環節:進一步拓廣

活動內容:推導兩數差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活動目的:讓學生經歷由兩數和的完全平方公式拓廣到兩數差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數差的完全平方公式是兩數和的完全平方公式的應用.

第六環節:總結口訣、認識特征

活動內容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;

②公式中的a、b可以是任意一個代數式(數、字母、單項式、多項式)

口訣:首平方,尾平方,首尾相乘的兩倍在中央.

活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現錯誤.

第七環節:公式應用

活動內容:例:計算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+

活動目的:在前幾個環節中,學生對完全平方公式已經有了感性認識,通過本環節的講解以及下一環節的練習,使學生逐步經歷認識——模仿——再認識.從而上升到理性認識的階段.

第八環節:隨堂練習

活動內容:計算:①;②;③(n+1)2–n2

活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.

第九環節:學生PK

活動內容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.

活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.

第十環節:學生反思

活動內容:通過今天這堂課的學習,你有哪些收獲?

收獲1:認識了完全平方公式,并能簡單應用;

收獲2:了解了兩數和與兩數差的完全平方公式之間的差異;

收獲3:感受到數形結合的數學思想在數學中的作用.

活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數學思想的精妙.

第十一環節:布置作業:

課本P43習題1.13

初中數學教案萬能篇7

教學目的

1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

2. 熟識等邊三角形的性質及判定.

2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

教學重點: 等腰三角形的性質及其應用。

教學難點: 簡潔的邏輯推理。

教學過程

一、復習鞏固

1.敘述等腰三角形的性質,它是怎么得到的?

等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。

等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

2.若等腰三角形的兩邊長為3和4,則其周長為多少?

二、新課

在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

等邊三角形具有什么性質呢?

1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。

2.你能否用已知的知識,通過推理得到你的猜想是正確的?

等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

3.上面的條件和結論如何敘述?

等邊三角形的各角都相等,并且每一個角都等于60°。

等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

等邊三角形也稱為正三角形。

例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數。

分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

問題2:求∠1是否還有其它方法?

三、練習鞏固

1.判斷下列命題,對的打“√”,錯的打“×”。

a.等腰三角形的角平分線,中線和高互相重合( )

b.有一個角是60°的等腰三角形,其它兩個內角也為60°( )

2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數。

3.P54練習1、2。

四、小結

由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

五、作業: 1.課本P57第7,9題。

2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數。

12.3.2 等邊三角形(二)

教學目標

1.掌握等邊三角形的性質和判定方法. 2.培養分析問題、解決問題的能力.

教學重點:等邊三角形的性質和判定方法.

教學難點:等邊三角形性質的應用

教學過程

I創設情境,提出問題

回顧上節課講過的等邊三角形的有關知識

1.等邊三角形是軸對稱圖形,它有三條對稱軸.

2.等邊三角形每一個角相等,都等于60°

3.三個角都相等的三角形是等邊三角形.

4.有一個角是60°的等腰三角形是等邊三角形.

其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.

II例題與練習

1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

①在邊AB、AC上分別截取AD=AE.

②作∠ADE=60°,D、E分別在邊AB、AC上.

③過邊AB上D點作DE∥BC,交邊AC于E點.

2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

3. P56頁練習1、2

III課堂小結:1.等腰三角形和性質;等腰三角形的條件

V布置作業: 1.P58頁習題12.3第ll題.

2.已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

12.3.2 等邊三角形(三)

教學過程

一、 復習等腰三角形的判定與性質

二、 新授:

1.等邊三角形的性質:三邊相等;三角都是60°;三邊上的中線、高、角平分線相等

2.等邊三角形的判定:

三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;

在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關系.

3.由學生解答課本148頁的例子;

4.補充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,

∠ABC=120o, 求證: AB=2BC

分析 由已知條件可得∠ABD=30o, 如能構造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.

初中數學教案萬能篇8

一、素質教育目標

(一)知識教學點

使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實.

(二)能力訓練點

逐步培養學生會觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點

引導學生探索、發現,以培養學生獨立思考、勇于創新的精神和良好的學習習慣.

二、教學重點、難點

1.重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實.

2.難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關鍵在于教師引導學生比較、分析,得出結論.

三、教學步驟

(一)明確目標

1.如圖6-1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?

2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?

3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?

4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?

前兩個問題學生很容易回答.這兩個問題的設計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識.但后兩個問題的設計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用.同時使學生對本章所要學習的內容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關直角三角形的其他未知邊角就可用學過的知識全部求出來.

通過四個例子引出課題.

(二)整體感知

1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值.

學生很快便會回答結果:無論三角尺大小如何,其比值是一個固定的值.程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長.

2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發現,不論三角形大小如何,所求的比值是固定的.大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?

這樣做,在培養學生動手能力的同時,也使學生對本節課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知.

(三)重點、難點的學習與目標完成過程

1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個命題呢?學生這時的思維很活躍.對于這個問題,部分學生可能能解決它.因此教師此時應讓學生展開討論,獨立完成.

2.學生經過研究,也許能解決這個問題.若不能解決,教師可適當引導:

若一組直角三角形有一個銳角相等,可以把其

頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學們能解決這個問題嗎?引導學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值.

通過引導,使學生自己獨立掌握了重點,達到知識教學目標,同時培養學生能力,進行了德育滲透.

而前面導課中動手實驗的設計,實際上為突破難點而設計.這一設計同時起到培養學生思維能力的作用.

練習題為 作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來.

(四)總結與擴展

1.引導學生作知識總結:本節課在復習勾股定理及含30°角直角三角形的性質基礎上,通過動手實驗、證明,我們發現,只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的.

教師可適當補充:本節課經過同學們自己動手實驗,大膽猜測和積極思考,我們發現了一個新的結論,相信大家的邏輯思維能力又有所提高,希望大家發揚這種創新精神,變被動學知識為主動發現問題,培養自己的創新意識.

2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道.今天我們又發現,銳角任意時,它的對邊與斜邊的比值也是固定的.如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了.看來這個比值很重要,下節課我們就著重研究這個“比值”,有興趣的同學可以提前預習一下.通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發了學生的興趣.

四、布置作業

本節課內容較少,而且是為正、余弦概念打基礎的,因此課后應要求學生預習正余弦概念.

五、板書設計

47346 主站蜘蛛池模板: 重庆钣金加工厂家首页-专业定做监控电视墙_操作台 | 建筑资质代办-建筑资质转让找上海国信启航 | 煤矿支护网片_矿用勾花菱形网_缝管式_管缝式锚杆-邯郸市永年区志涛工矿配件有限公司 | 中医治疗皮肤病_潍坊银康医院「山东」重症皮肤病救治平台 | 东莞精密模具加工,精密连接器模具零件,自動機零件,冶工具加工-益久精密 | 阁楼货架_阁楼平台_仓库仓储设备_重型货架_广州金铁牛货架厂 | 综合管廊模具_生态,阶梯护坡模具_检查井模具制造-致宏模具厂家 | 水厂自动化-水厂控制系统-泵站自动化|控制系统-闸门自动化控制-济南华通中控科技有限公司 | PTFE接头|聚四氟乙烯螺丝|阀门|薄膜|消解罐|聚四氟乙烯球-嘉兴市方圆氟塑制品有限公司 | 超声波气象站_防爆气象站_空气质量监测站_负氧离子检测仪-风途物联网 | 南京办公用品网-办公文具用品批发-打印机耗材采购 | 控显科技 - 工控一体机、工业显示器、工业平板电脑源头厂家 | 京港视通报道-质量走进大江南北-京港视通传媒[北京]有限公司 | 主题班会网 - 安全教育主题班会,各类主题班会PPT模板 | 步入式高低温测试箱|海向仪器| 硅PU球场、篮球场地面施工「水性、环保、弹性」硅PU材料生产厂家-广东中星体育公司 | 众品地板网-地板品牌招商_地板装修设计_地板门户的首选网络媒体。 | 深圳标识制作公司-标识标牌厂家-深圳广告标识制作-玟璟广告-深圳市玟璟广告有限公司 | 无锡网站建设-做网站-建网站-网页设计制作-阿凡达建站公司 | 知名电动蝶阀,电动球阀,气动蝶阀,气动球阀生产厂家|价格透明-【固菲阀门官网】 | 百度关键词优化_网站优化_SEO价格 - 云无限好排名 | 正压送风机-多叶送风口-板式排烟口-德州志诺通风设备 | 塑钢件_塑钢门窗配件_塑钢配件厂家-文安县启泰金属制品有限公司 深圳南财多媒体有限公司介绍 | 采暖炉_取暖炉_生物质颗粒锅炉_颗粒壁炉_厂家加盟批发_烟台蓝澳采暖设备有限公司 | 苏州西朗门业-欧盟CE|莱茵UL双认证的快速卷帘门品牌厂家 | 西门子伺服控制器维修-伺服驱动放大器-828D数控机床维修-上海涌迪 | 真空粉体取样阀,电动楔式闸阀,电动针型阀-耐苛尔(上海)自动化仪表有限公司 | 小青瓦丨古建筑瓦丨青瓦厂家-宜兴市徽派古典建筑材料有限公司 | 北京翻译公司-专业合同翻译-医学标书翻译收费标准-慕迪灵 | 杭州ROHS检测仪-XRF测试仪价格-百科 | 老城街小面官网_正宗重庆小面加盟技术培训_特色面馆加盟|牛肉拉面|招商加盟代理费用多少钱 | 医用空气消毒机-医用管路消毒机-工作服消毒柜-成都三康王 | 山东风淋室_201/304不锈钢风淋室净化设备厂家-盛之源风淋室厂家 翻斗式矿车|固定式矿车|曲轨侧卸式矿车|梭式矿车|矿车配件-山东卓力矿车生产厂家 | 智慧钢琴-电钢琴-便携钢琴-数码钢琴-深圳市特伦斯乐器有限公司 | LED投光灯-工矿灯-led路灯头-工业灯具 - 山东普瑞斯照明科技有限公司 | 台湾阳明固态继电器-奥托尼克斯光电传感器-接近开关-温控器-光纤传感器-编码器一级代理商江苏用之宜电气 | 合肥角钢_合肥槽钢_安徽镀锌管厂家-昆瑟商贸有限公司 | 首页 - 军军小站|张军博客 | 2025第九届世界无人机大会 | 环氧乙烷灭菌器_压力蒸汽灭菌器_低温等离子过氧化氢灭菌器 _低温蒸汽甲醛灭菌器_清洗工作站_医用干燥柜_灭菌耗材-环氧乙烷灭菌器_脉动真空压力蒸汽灭菌器_低温等离子灭菌设备_河南省三强医疗器械有限责任公司 | 环球电气之家-中国专业电气电子产品行业服务网站! |