小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 >

初中數學教案簡短反思

時間: 新華 教案模板

初中數學教案簡短反思篇1

總體說明:

完全平方公式則是對多項式乘法中出現的較為特殊的算式的一種歸納、總結.同時,完全平方公式的推導是初中數學中運用推理方法進行代數式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養學生的求簡意識有較大好處.而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數的恒等變形的重要基礎,同時也具有培養學生逐漸養成嚴密的邏輯推理能力的作用.因此學好完全平方公式對于代數知識的后繼學習具有相當重要的意義.

本節是北師大版七年級數學下冊第一章《整式的運算》的第8小節,占兩個課時,這是第一課時,它主要讓學生經歷探索與推導完全平方公式的過程,培養學生的符號感與推理能力,讓學生進一步體會數形結合的思想在數學中的作用.

一、學生學情分析

學生的技能基礎:學生通過對本章前幾節課的學習,已經學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節課的學習奠定了基礎.

學生活動經驗基礎:在平方差公式一節的學習中,學生已經經歷了探索和應用的過程,獲得了一些數學活動的經驗,培養了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

二、教學目標

知識與技能:

(1)讓學生會推導完全平方公式,并能進行簡單的應用.

(2)了解完全平方公式的幾何背景.

數學能力:

(1)由學生經歷探索完全平方公式的過程,進一步發展學生的符號感與推理能力.

(2)發展學生的數形結合的數學思想.

情感與態度:

將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.

三、教學重難點

教學重點:1、完全平方公式的推導;

2、完全平方公式的應用;

教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;

2、完全平方公式結構的認知及正確應用.

四、教學設計分析

本節課設計了十一個教學環節:學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.

第一環節:學生練習、暴露問題

活動內容:計算:(a+2)2

設想學生的做法有以下幾種可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正確做法;

針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?

活動目的:在很多學生的頭腦中,認為兩數和的完全平方與兩數的平方和等同,即:

(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環節的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.

第二環節:驗證(a+2)2=a2–4a+22

活動內容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

活動目的:在前一環節已經打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.

第三環節:推廣到一般情況,形成公式

活動內容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活動目的:讓學生經歷從特殊到一般的探究過程,體驗到發現的快樂.

第四環節:數形結合

活動內容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.

學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

活動目的:讓學生進一步認識到數與形都不是孤立存在的,數與形是可以有機地結合在一起,從而發展學生的數形結合的數學思想.

第五環節:進一步拓廣

活動內容:推導兩數差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活動目的:讓學生經歷由兩數和的完全平方公式拓廣到兩數差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數差的完全平方公式是兩數和的完全平方公式的應用.

第六環節:總結口訣、認識特征

活動內容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;

②公式中的a、b可以是任意一個代數式(數、字母、單項式、多項式)

口訣:首平方,尾平方,首尾相乘的兩倍在中央.

活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現錯誤.

第七環節:公式應用

活動內容:例:計算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+

活動目的:在前幾個環節中,學生對完全平方公式已經有了感性認識,通過本環節的講解以及下一環節的練習,使學生逐步經歷認識——模仿——再認識.從而上升到理性認識的階段.

第八環節:隨堂練習

活動內容:計算:①;②;③(n+1)2–n2

活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.

第九環節:學生PK

活動內容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.

活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.

第十環節:學生反思

活動內容:通過今天這堂課的學習,你有哪些收獲?

收獲1:認識了完全平方公式,并能簡單應用;

收獲2:了解了兩數和與兩數差的完全平方公式之間的差異;

收獲3:感受到數形結合的數學思想在數學中的作用.

活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數學思想的精妙.

第十一環節:布置作業:

課本P43習題1.13

初中數學教案簡短反思篇2

一、素質教育目標

(一)知識教學點

1.理解有理數乘方的意義.

2.掌握有理數乘方的運算.

(二)能力訓練點

1.培養學生觀察、分析、比較、歸納、概括的能力.

2.滲透轉化思想.

(三)德育滲透點:培養學生勤思、認真和勇于探索的精神.

(四)美育滲透點

把記成,顯示了乘方符號的簡潔美.

二、學法引導

1.教學方法:引導探索法,嘗試指導,充分體現學生主體地位.

2.學生學法:探索的性質→練習鞏固

三、重點、難點、疑點及解決辦法

1.重點:運算.

2.難點:運算的符號法則.

3.疑點:①乘方和冪的區別.

②與的區別.

四、課時安排

1課時

五、教具學具準備

投影儀、自制膠片.

六、師生互動活動設計

教師引導類比,學生討論歸納乘方的概念,教師出示探索性練習,學生討論歸納乘方的性質,教師出示鞏固性練習,學生多種形式完成.

七、教學步驟

(一)創設情境,導入 新課

師:在小學我們已經學過:記作,讀作的平方(或的二次方);記作,讀作的立方(或的三次方);那么可以記作什么?讀作什么?

生:可以記作,讀作的四次方.

師:呢?

生:可以記作,讀作的五次方.

師:(為正整數)呢?

生:可以記作,讀作的次方.

師:很好!把個相乘,記作,既簡單又明確.

【教法說明】教師給學生創設問題情境,鼓勵學生積極參與,大大調動了學生學習的積極性.同時,使學生認識到數學的發展是不斷進行推廣的,是由計算正方形的面積得到的,是由計算正方體和體積得到的,而,……是學生通過類推得到的.

師:在小學對底數,我們只能取正數.進入中學以后我們學習了有理數,那么還可取哪些數呢?請舉例說明.

生:還可取負數和零.例如:0×0×0記,(-2)×(-2)×(-2)×(-2)記作.

非常好!對于中的,不僅可以取正數,還可以取0和負數,也就是說可以取任意有理數,這就是我們今天研究的課題:(板書).

【教法說明】對于的范圍,是在教師的引導下,學生積極動腦參與,并且根據初一學生的認知水平,分層逐步說明可以取正數,可以取零,可以取負數,最后總結出可以取任意有理數.

(二)探索新知,講授新課

1.求個相同因數的積的運算,叫做乘方.

乘方的結果叫做冪,相同的因數叫做底數,相同的因數的個數叫做指數.一般地,在中,取任意有理數,取正整數.

注意:乘方是一種運算,冪是乘方運算的結果.看作是的次方的結果時,也可讀作的次冪.

鞏固練習(出示投影1)

(1)在中,底數是__________,指數是___________,讀作__________或讀作___________;

(2)在中,-2是__________,4是__________,讀作__________或讀作__________;

(3)在中,底數是_________,指數是__________,讀作__________;

(4)5,底數是___________,指數是_____________.

【教法說明】此組練習是鞏固乘方的有關概念,及時反饋學生掌握情況.(2)、(3)小題的區別表示底數是-2,指數是4的冪;而表示底數是2,指數是4的冪的相反數.為后面的計算做鋪墊.通過第(4)小題指出一個數可以看作這個數本身的一次方,如5就是,指數1通常省略不寫.

師:到目前為止,對有理數業說,我們已經學過幾種運算?分別是什么?其運算結果叫什么?

學生活動:同學們思考,前后桌同學互相討論交流,然后舉手回答.

生:到目前為止,已經學習過五種運算,它們是:

運算:加、減、乘、除、乘方;

運算結果:和、差、積、商、冪;

教師對學生的回答給予評價并鼓勵.

【教法說明】注重學生在認知過程中的思維.主動參與,通過學生討論、歸納得出的知識,比教師的單獨講解要記得牢,同時也培養學生歸納、總結的能力.

師:我們知道,乘方和加、減、乘、除一樣,也是一種運算,如何進行乘方運算?請舉例說明.

學生活動:學生積極思考,同桌相互討論,并在練習本上舉例.

【教法說明】通過學生積極動腦,主動參與,得出可以利用有理數的乘法運算來進行有理數乘方的運算.向學生滲透轉化的思想.

2.練習:(出示投影2)

計算:1.(1)2, (2), (3), (4).

2.(1),,,.

(2)-2,,.

3.(1)0, (2), (3), (4).

學生活動:學生獨立完成解題過程,請三個學生板演,教師巡回指導,待學生完成后,師生共同評價對錯,并予以鼓勵.

師:請同學們觀察、分析、比較這三組題中,每組題中底數、指數和冪之間有什么聯系?

先讓學生獨立思考,教師邊巡視邊做適當提示.然后讓學生討論,老師加入某一小組.

生:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數,零的任何次冪都是零.

師:請同學們繼續觀察與,與中,底數、指數和冪之間有何聯系?你能得出什么結論呢?

學生活動:學生積極思考,同桌之間、前后桌之間互相討論.

生:互為相反數的兩個數的奇次冪仍互為相反數,偶次冪相等.

師:請同學思考一個問題,任何一個數的偶次冪是什么數?

生:任何一個數的偶次冪是非負數.

師:你能把上述結論用數學符號表示嗎?

生:(1)當時,(為正整數);

(2)當

(3)當時,(為正整數);

(4)(為正整數);

(為正整數);

(為正整數,為有理數).

【教法說明】教師把重點放在教學情境的設計上,通過學生自己探索,獲取知識.教師要始終給學生創造發揮的機會,注重學生參與.學生通過特殊問題歸納出一般性的結論,既訓練學生歸納總結的能力和口頭表達的能力,又能使學生對法則記得牢,領會的深刻.

初中數學教案簡短反思篇3

學習目標

1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關系并能找出變化規律。

2、由坐標的變化探索新舊圖形之間的變化。

重點

1、作某一圖形關于對稱軸的對稱圖形,并能寫出所得圖形相應各點的坐標。

2、根據軸對稱圖形的`特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。

難點

體會極坐標和直角坐標思想,并能解決一些簡單的問題

學習過程(導入、探究新知、即時練習、小結、達標檢測、作業)

第一課時

學習過程:

一、舊知回顧:

1、平面直角坐標系定義:在平面內,兩條____________且有公共_________的數軸組成平面直角坐標系。

2、坐標平面內點的坐標的表示方法____________。

3、各象限點的坐標的特征:

二、新知檢索:

1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),

(3,0),(4,-2),(0,0)并用線段依次連接,觀察形成了什么圖形

三、典例分析

例1、

(1)將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果縱坐標保持不變,橫坐標分別減2呢?

(2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什么變化?如果橫坐標保持不變,縱坐標減2呢?

例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變為原來的2倍畫出圖形,分析所得圖形與原來圖形相比有什么變化?

(2)將魚的頂點的橫坐標保持不變,縱坐標分別變為原來的1/2畫出圖形,分析所得圖形與原來圖形相比有什么變化?

四、題組訓練

1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連接起來形成一個圖案。

(1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連接起來,所得圖案與原來圖案相比有什么變化?

(2)縱、橫分別加3呢?

(3)縱、橫分別變成原來的2倍呢?

歸納:圖形坐標變化規律

1、平移規律:2、圖形伸長與壓縮:

第二課時

一、舊知回顧:

1、軸對稱圖形定義:如果一個圖形沿著對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形。

中心對稱圖形定義:在同一平面內,如果把一個圖形繞某一點旋轉,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形

二、新知檢索:

1、如圖,左邊的魚與右邊的魚關于y軸對稱。

1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?

2、各個對應頂點的坐標有怎樣的關系?

3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關于y軸對稱,那么左邊的魚各個頂點的坐標將發生怎樣的變化?

三、典例分析,如圖所示,

1、右圖的魚是通過什么樣的變換得到左圖的魚的。

2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變為原來的1倍,畫出圖形,得到的魚與原來的魚有什么樣的位置關系。

3、如果將右邊的魚的縱、橫坐標都分別變為原來的1倍,得到的魚與原來的魚有什么樣的位置關系

四、題組練習

1、將坐標作如下變化時,圖形將怎樣變化?

①(x,y)(x,y+4)②(x,y)(x,y-2)③(x,y)(1/2x,y)

④(x,y)(3x,y)⑤(x,y)(x,1/2y)⑥(x,y)(3x,3y)

2、如圖,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形狀、大小完全一樣的蝴蝶,并寫出第二象限中蝴蝶各個頂點的坐標。

3、如圖,作字母M關于y軸的軸對稱圖形,并寫出所得圖形相應各端點的坐標。

4、描出下圖中楓葉圖案關于x軸的軸對稱圖形的簡圖。

初中數學教案簡短反思篇4

教學目標

理解平行四邊形的定義,能根據定義探究平行四邊形的性質.

教學思考

1.通過觀察、實驗、猜想、驗證、推理、交流等數學活動,發展學生合情推理能力和動手操作能力及應用數學的意識與能力.

2.能夠根據平行四邊形的性質進行簡單的推理和計算.

解決問題

通過平行四邊形性質的探索過程,豐富學生從事數學活動的經驗與體驗,能運用平行四邊形的性質進行有關的推理和計算,發展應用意識.

情感態度

在應用平行四邊形的性質的過程養成獨立思考的習慣,在數學學習活動中獲得成功的體驗.

重點

平行四邊形的性質的探究和平行四邊形的性質的應用.

難點

平行四邊形的性質的應用.

教學流程安排

活動流程圖

活動內容和目的

活動1欣賞圖片,了解生活中的特殊四邊形

活動2剪三角形紙片,拼凸四邊形

活動3理解平行四邊形的概念

活動4探究平行四邊形邊、角的性質

活動5平行四邊形性質的應用

活動6評價反思、布置作業

熟悉生活中特殊的四邊形,導出課題.

通過用三角形拼四邊形的過程,滲透轉化思想,激發探索精神.

掌握平行四邊形的定義及表示方法.

探究平行四邊形的性質.

運用平行四邊形的性質.

學生交流,內化知識,課后鞏固知識.

教學過程設計

問題與情景

師生行為

設計意圖

[活動1]

下面的圖片中,有你熟悉的哪些圖形?

(出示圖片)

演示圖片,學生欣賞.

教師介紹四邊形與我們生活密切聯系,學生可再補充列舉.

從實例圖片中,抽象出的特殊四邊形,培養學生的抽象思維.通過舉例,讓學生感受到數學與我們的生活緊密聯系.

問題與情景

師生行為

設計意圖

[活動2]

拼一拼

將一張紙對折,剪下兩張疊放的三角形紙片.將這兩個三角形相等的一組邊重合,你會得到怎樣的圖形.

(1)你拼出了怎樣的凸四邊形?與同伴交流.

(2)一位同學拼出了如下圖所示的一個四邊形,這個四邊形的對邊有怎樣的位置關系?說說你的理由.

學生經過實驗操作,開展獨立思考與合作學習.

教師深入學生之中,觀察學生頻出的方法與過程,接受學生質疑并指導個別學生探究.

教師待學生充分探究后,請學生展示拼圖的方法和不同的圖形.并引導學生分析(2)中的四邊形的邊的位置特征,從而引出本節課研究的內容

初中數學教案簡短反思篇5

教學目標

1、使學生能說出有理數大小的比較法則

2、能熟練運用法則結合數軸比較有理數的大小,特別是應用絕對值概念比較兩個負數的大小,能利用數軸對多個有理數進行有序排列。

3、能正確運用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關系。

三、教學重點與難點

重點:運用法則借助數軸比較兩個有理數的大小。

難點:利用絕對值概念比較兩個負分數的大小。

四、教學準備

多媒體課件

五、教學設計

(一)交流對話,探究新知

1、說一說

(多媒體顯示)某一天我們5個城市的最低氣溫    從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發學生的求知欲望,可能有些學生會說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學生會說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會說的,老師適當點拔,從而學生在合作交流中不知不覺地完成了以下填空。

比較這一天下列兩個城市間最低氣溫的高低(填"高于"或"低于")

廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。

2、畫一畫:(1)把上述5個城市最低氣溫的數表示在數軸上,(2)觀察這5個數在數軸上的位置,從中你發現了什么?

(3)溫度的高低與相應的數在數軸上的位置有什么?

(通過學生自己動手操作,觀察、思考,發現原點左邊的數都是負數,原點右邊的數都是正數;同時也發現5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數軸上原點右邊的兩個數,右邊的數總比左邊的數大。教師趁機追問,原點左邊的數也有這樣的規律嗎?從而激發學生探索知識的欲望,進一步驗證了原點左邊的數也有這樣的規律。從而使學生親身體驗探索的樂趣,在探究中不知不覺獲得了知識。)由小組討論后,教師歸納得出結論:

在數軸上表示的兩個數,右邊的數總比左邊的數大。

正數都大于零,負數都小于零,正數大于負數。

(二)應用新知,體驗成功

1、練一練(師生共同完成例1后,學生完成隨堂練習1)

例1:在數軸上表示數5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)

分析:本題意有幾層含義?應分幾步?

要點總結:小組討論歸納,本題解題時的一般步驟:①畫數軸②描點;③有序排列;④不等號連接。

隨堂練習: P19 T1

2、做一做

(1)在數軸上表示下列各對數,并比較它們的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出圖中各對數的絕對值,并比較它們的大小。

(3)由①、②從中你發現了什么?

(學生小組討論后,代表站起來發言,口述自己組的發現,說明自己組發現的過程,逐步培養學生觀察、歸納、用數學語言表達數學規律的能力。)

要點總結:兩個正數比較大小,絕對值大的數大;兩個負數比較大小,絕對值大的數反而小。

在學生討論的基礎上,由學生總結得出有理數大小的比較法則。

(1)正數都大于零,負數都小于零,正數大于負數。

(2)兩個正數比較大小,絕對值大的數大。

(3)兩個負數比較大小,絕對值大的數反而小。

3、師生共同完成例2后,學生完成隨堂練習2、3、4。

例2比較下列每對數的大小,并說明理由:(師生共同完成)

(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|

分析:第(4)(5)題較難,第(4)題應先通分,第(5)題應先化簡,再比較。同時在講解時,要注意格式。

注:絕對值比較時,分母相同,分子大的數大;分子相同,則分母大的數反而小;分子分母都不相同時,則應先通分再比較,或把分子化相同再比較。

兩個負數比較大小時的一般步驟:①求絕對值;②比較絕對值的大小;③比較負數的大小。

思考:還有別的方法嗎?(分組討論,積極思考)

4、想一想:我們有幾種方法來判斷有理數的大小?你認為它們各有什么特點?

由學生討論后,得出比較有理數的大小共有兩種方法,一種是法則,另一種是利用數軸,當兩個數比較時一般選用第一種,當多個有理數比較大小時,一般選用第二種較好。

練一練:P19 T2、3、4

5、考考你:請你回答下列問題:

(1)有沒有的有理數,有沒有最小的有理數,為什么?

(2)有沒有絕對值最小的有理數?若有,請把它寫出來?

(3)在于-1.5且小于4.2的整數有_____個,它們分別是____。

(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個數的大小嗎?(本題屬提高題,不要求全體學生掌握)

(新穎的問題會激發學生的好奇心,通過合作交流,自主探究等活動,培養學生思維的習慣和數學語言的表達能力)

6、議一議,談談本節課你有哪些收獲

(由師生共同完成本節課的小結)本節課主要學習了有理數大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數軸,運用這種方法時,首先必須把要比較的數在數軸上表示出來,然后按照它們在數軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個有理數大小時非常簡便。

六、布置作業:P19 A組、B組

基礎好的A、B兩組都做

基礎較差的同學選做A組。

初中數學教案簡短反思篇6

教學目標 1, 通過對數“零”的意義的探討,進一步理解正數和負數的概念;

2, 利用正負數正確表示相反意義的量(規定了指定方向變化的量)

3, 進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。

教學難點 深化對正負數概念的理解

知識重點 正確理解和表示向指定方向變化的量

教學過程(師生活動) 設計理念

知識回顧與深化 回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示.這就是說:數的范圍擴大了(數有正數和負數之分).那么,有沒有一種既不是正數又不是負數的數呢?

問題1:有沒有一種既不是正數又不是負數的數呢?

學生思考并討論.

(數0既不是正數又不是負數,是正數和負數的分

界,是基準.這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)

例如:在溫度的表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是

零上7℃,最低溫度是零下5℃時,就應該表示為+7℃

和-5℃,這里+7℃和-5℃就分別稱為正數和負數 .

那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?

問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類? “數0耽不是正數,也不是負數”也應看作是負數定義的一部分.在引入

負數后,0除了表示一個也沒有以外,還是正數和負數的分界.了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。

所舉的例子,要考慮學生的可接受性.“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明.這個問題只要初步認識即

可,不必深究.

分析問題

解決問題 問題3:教科書第6頁例題

說明:這是一個用正負數描述向指定方向變化情況的例子, 通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。

歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁).

類似的例子很多,如:

水位上升-3m,實際表示什么意思呢?

收人增加-10%,實際表示什么意思呢?

等等。

可視教學中的實際情況進行補充.

這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種

意義的量應該用正數表示是解題的關健.這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在

不必向學生提出.

鞏固練習 教科書第6頁練習

閱讀思考

教科書第8頁 閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流

小結與作業

課堂小結 以問題的形式,要求學生思考交流:

1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?

2,怎樣用正負數表示具有相反意義的量?

(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數.)

本課作業 1, 必做題:教科書第7頁習題1.1第3,6,7,8題

2, 選做題:教師自行安排

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指

定方向變化的量。

2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分.在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助.由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課.

3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解.

4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識.通過實際例子的學習激發學生學習數學的興趣.

初中數學教案簡短反思篇7

教學目標

1、知識與技能:體會公式的發現和推導過程,了解公式的幾何背景,理解公式的本質,會應用公式進行簡單的計算.

2、過程與方法:通過讓學生經歷探索完全平方公式的過程,培養學生觀察、發現、歸納、概括、猜想等探究創新能力,發展推理能力和有條理的表達能力.培養學生的數形結合能力.

3、情感態度價值觀:體驗數學活動充滿著探索性和創造性,并在數學活動中獲得成功的體驗與喜悅,樹立學習自信心.

教學重難點

教學重點:

1、對公式的理解,包括它的推導過程、結構特點、語言表述(學生自己的語言)、幾何解釋.

2、會運用公式進行簡單的計算.

教學難點:

1、完全平方公式的推導及其幾何解釋.

2、完全平方公式的結構特點及其應用.

教學工具

課件

教學過程

一、復習舊知、引入新知

問題1:請說出平方差公式,說說它的結構特點.

問題2:平方差公式是如何推導出來的?

問題3:平方差公式可用來解決什么問題,舉例說明.

問題4:想一想、做一做,說出下列各式的結果.

(1)(a+b)2(2)(a-b)2

(此時,教師可讓學生分別說說理由,并且不直接給出正確評價,還要繼續激發學生的學習興趣.)

二、創設問題情境、探究新知

一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)

(1)四塊面積分別為:、、、;

(2)兩種形式表示實驗田的總面積:

①整體看:邊長為的大正方形,S=;

②部分看:四塊面積的和,S=.

總結:通過以上探索你發現了什么?

問題1:通過以上探索學習,同學們應該知道我們提出的問題4正確的結果是什么了吧?

問題2:如果還有同學不認同這個結果,我們再看下面的問題,繼續探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.

(教學過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學生大膽猜想,發表見解,但要驗證)

問題3:你能說說(a+b)2=a2+2ab+b2

這個等式的結構特點嗎?用自己的語言敘述.

(結構特點:右邊是二項式(兩數和)的平方,右邊有三項,是兩數的平方和加上這兩數乘積的二倍)

問題4:你能根據以上等式的結構特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.

總結:我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.

問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?

語言描述:兩數和(或差)的平方等于這兩數的平方和加上(或減去)這兩數積的2倍.

強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.

三、例題講解,鞏固新知

例1:利用完全平方公式計算

(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2

解:(2x-3)2=(2x)2-2o(2x)o3+32

=4x2-12x+9

(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2

=16x2+40xy+25y2

(mn-a)2=(mn)2-2o(mn)oa+a2

=m2n2-2mna+a2

交流總結:運用完全平方公式計算的一般步驟

(1)確定首、尾,分別平方;

(2)確定中間系數與符號,得到結果.

四、練習鞏固

練習1:利用完全平方公式計算

練習2:利用完全平方公式計算

練習3:

(練習可采用多種形式,學生上黑板板演,師生共同評價.也可學生獨立完成后,學生互相批改,力求使學生對公式完全掌握,如有學生出現問題,學生、教師應及時幫助.)

五、變式練習

六、暢談收獲,歸納總結

1、本節課我們學習了乘法的完全平方公式.

2、我們在運用公式時,要注意以下幾點:

(1)公式中的字母a、b可以是任意代數式;

(2)公式的結果有三項,不要漏項和寫錯符號;

(3)可能出現①②這樣的錯誤.也不要與平方差公式混在一起.

七、作業設置

初中數學教案簡短反思篇8

教學目的

1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

2. 熟識等邊三角形的性質及判定.

2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

教學重點: 等腰三角形的性質及其應用。

教學難點: 簡潔的邏輯推理。

教學過程

一、復習鞏固

1.敘述等腰三角形的性質,它是怎么得到的?

等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。

等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

2.若等腰三角形的兩邊長為3和4,則其周長為多少?

二、新課

在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

等邊三角形具有什么性質呢?

1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。

2.你能否用已知的知識,通過推理得到你的猜想是正確的?

等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

3.上面的條件和結論如何敘述?

等邊三角形的各角都相等,并且每一個角都等于60°。

等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

等邊三角形也稱為正三角形。

例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數。

分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

問題2:求∠1是否還有其它方法?

三、練習鞏固

1.判斷下列命題,對的打“√”,錯的打“×”。

a.等腰三角形的角平分線,中線和高互相重合( )

b.有一個角是60°的等腰三角形,其它兩個內角也為60°( )

2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數。

3.P54練習1、2。

四、小結

由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

五、作業: 1.課本P57第7,9題。

2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數。

12.3.2 等邊三角形(二)

教學目標

1.掌握等邊三角形的性質和判定方法. 2.培養分析問題、解決問題的能力.

教學重點:等邊三角形的性質和判定方法.

教學難點:等邊三角形性質的應用

教學過程

I創設情境,提出問題

回顧上節課講過的等邊三角形的有關知識

1.等邊三角形是軸對稱圖形,它有三條對稱軸.

2.等邊三角形每一個角相等,都等于60°

3.三個角都相等的三角形是等邊三角形.

4.有一個角是60°的等腰三角形是等邊三角形.

其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.

II例題與練習

1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

①在邊AB、AC上分別截取AD=AE.

②作∠ADE=60°,D、E分別在邊AB、AC上.

③過邊AB上D點作DE∥BC,交邊AC于E點.

2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

3. P56頁練習1、2

III課堂小結:1.等腰三角形和性質;等腰三角形的條件

V布置作業: 1.P58頁習題12.3第ll題.

2.已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

12.3.2 等邊三角形(三)

教學過程

一、 復習等腰三角形的判定與性質

二、 新授:

1.等邊三角形的性質:三邊相等;三角都是60°;三邊上的中線、高、角平分線相等

2.等邊三角形的判定:

三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;

在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關系.

3.由學生解答課本148頁的例子;

4.補充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,

∠ABC=120o, 求證: AB=2BC

分析 由已知條件可得∠ABD=30o, 如能構造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.

47350 主站蜘蛛池模板: 体检车_移动CT车_CT检查车_CT车_深圳市艾克瑞电气有限公司移动CT体检车厂家-深圳市艾克瑞电气有限公司 | 祝融环境-地源热泵多恒系统高新技术企业,舒适生活环境缔造者! | 智能交通网_智能交通系统_ITS_交通监控_卫星导航_智能交通行业 | 【化妆品备案】进口化妆品备案流程-深圳美尚美化妆品有限公司 | 无锡门窗-系统门窗-阳光房-封阳台-断桥铝门窗厂[窗致美] | 内窥镜-工业内窥镜厂家【上海修远仪器仪表有限公司】 | 废气处理设备-工业除尘器-RTO-RCO-蓄热式焚烧炉厂家-江苏天达环保设备有限公司 | 耐高温硅酸铝板-硅酸铝棉保温施工|亿欧建设工程 | 耐力板-PC阳光板-PC板-PC耐力板 - 嘉兴赢创实业有限公司 | 菏泽知彼网络科技有限公司 | 深圳湾1号房价_深圳湾1号二手房源 | 硅PU球场、篮球场地面施工「水性、环保、弹性」硅PU材料生产厂家-广东中星体育公司 | 骨密度仪-骨密度测定仪-超声骨密度仪-骨龄测定仪-天津开发区圣鸿医疗器械有限公司 | 蓝牙音频分析仪-多功能-四通道-八通道音频分析仪-东莞市奥普新音频技术有限公司 | 北京浩云律师事务所-企业法律顾问_破产清算等公司法律服务 | 冷却塔厂家_冷却塔维修_冷却塔改造_凉水塔配件填料公司- 广东康明节能空调有限公司 | 校服厂家,英伦校服定做工厂,园服生产定制厂商-东莞市艾咪天使校服 | 超声波清洗机_超声波清洗机设备_超声波清洗机厂家_鼎泰恒胜 | 热处理温控箱,热处理控制箱厂家-吴江市兴达电热设备厂 | 长沙广告公司|长沙广告制作设计|长沙led灯箱招牌制作找望城湖南锦蓝广告装饰工程有限公司 | 青岛美佳乐清洁工程有限公司|青岛油烟管道清洗|酒店|企事业单位|学校工厂厨房|青岛油烟管道清洗 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 对辊式破碎机-对辊制砂机-双辊-双齿辊破碎机-巩义市裕顺机械制造有限公司 | 单螺旋速冻机-双螺旋-流态化-隧道式-食品速冻机厂家-广州冰泉制冷 | 华溶溶出仪-Memmert稳定箱-上海协烁仪器科技有限公司 | 浙江美尔凯特智能厨卫股份有限公司| 深圳快餐店设计-餐饮设计公司-餐饮空间品牌全案设计-深圳市勤蜂装饰工程 | 理化生实验室设备,吊装实验室设备,顶装实验室设备,实验室成套设备厂家,校园功能室设备,智慧书法教室方案 - 东莞市惠森教学设备有限公司 | 沈阳激光机-沈阳喷码机-沈阳光纤激光打标机-沈阳co2激光打标机 | 卫生型双针压力表-高温防腐差压表-安徽康泰电气有限公司 | 10吨无线拉力计-2吨拉力计价格-上海佳宜电子科技有限公司 | 蒸压釜-陶粒板隔墙板蒸压釜-山东鑫泰鑫智能装备有限公司 | 游泳池设计|设备|配件|药品|吸污机-东莞市太平洋康体设施有限公司 | 中国品牌排名投票_十大品牌榜单_中国著名品牌【中国品牌榜】 | 船老大板材_浙江船老大全屋定制_船老大官网 | 德州网站制作 - 网站建设设计 - seo排名优化 -「两山建站」 | 北京网站建设首页,做网站选【优站网】,专注北京网站建设,北京网站推广,天津网站建设,天津网站推广,小程序,手机APP的开发。 | 上海三信|ph计|酸度计|电导率仪-艾科仪器 | 3d可视化建模_三维展示_产品3d互动数字营销_三维动画制作_3D虚拟商城 【商迪3D】三维展示服务商 广东健伦体育发展有限公司-体育工程配套及销售运动器材的体育用品服务商 | 上海深蓝_缠绕机_缠膜机-上海深蓝机械装备有限公司 | 尚为传动-专业高精密蜗轮蜗杆,双导程蜗轮蜗杆,蜗轮蜗杆减速机,蜗杆减速机生产厂家 | 电车线(用于供电给电车的输电线路)-百科 |