小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 > 優秀教案 >

初中教案設計數學教案

時間: 新華 優秀教案

初中教案設計數學教案篇1

課題名稱:完全平方公式(1)

一、內容簡介

本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。

關鍵信息:

1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。

2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。

二、學習者分析:

1、在學習本課之前應具備的基本知識和技能:

①同類項的定義。

②合并同類項法則

③多項式乘以多項式法則。

2、學習者對即將學習的內容已經具備的水平:

在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。

三、教學/學習目標及其對應的課程標準:

(一)教學目標:

1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。

2、會推導完全平方公式,并能運用公式進行簡單的計算。

(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理

數、實數、代數式、防城、不等式、函數;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、防城、不等式、函數等進行描述。

(四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同

角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。

(五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難

和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。

四、教育理念和教學方式:

1、教師是學生學習的組織者、促進者、合作者:學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經歷,用自己的心靈去親自感悟。

教學是師生交往、積極互動、共同發展的過程。當學生迷路的時

候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內在的精神動力,鼓勵他不斷向上攀登。

2、采用“問題情景—探究交流—得出結論—強化訓練”的模式

展開教學。

3、教學評價方式:

(1)通過課堂觀察,關注學生在觀察、總結、訓練等活動中的主

動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。

(2)通過判斷和舉例,給學生更多機會,在自然放松的狀態下,

揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調查教學。

(3)通過課后訪談和作業分析,及時查漏補缺,確保達到預期的

教學效果。

五、教學媒體:多媒體六、教學和活動過程:

教學過程設計如下:

〈一〉、提出問題

[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?

(2m+3n)2=_______________,(-2m-3n)2=______________,

(2m-3n)2=_______________,(-2m+3n)2=_______________。

〈二〉、分析問題

1、[學生回答]分組交流、討論

(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,

(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。

(1)原式的特點。

(2)結果的項數特點。

(3)三項系數的特點(特別是符號的特點)。

(4)三項與原多項式中兩個單項式的關系。

2、[學生回答]總結完全平方公式的語言描述:

兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;

兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。

3、[學生回答]完全平方公式的數學表達式:

(a+b)2=a2+2ab+b2;

(a-b)2=a2-2ab+b2.

〈三〉、運用公式,解決問題

1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)

(m+n)2=____________,(m-n)2=_______________,

(-m+n)2=____________,(-m-n)2=______________,

(a+3)2=______________,(-c+5)2=______________,

(-7-a)2=______________,(0.5-a)2=______________.

2、判斷:

()①(a-2b)2=a2-2ab+b2

()②(2m+n)2=2m2+4mn+n2

()③(-n-3m)2=n2-6mn+9m2

()④(5a+0.2b)2=25a2+5ab+0.4b2

()⑤(5a-0.2b)2=5a2-5ab+0.04b2

()⑥(-a-2b)2=(a+2b)2

()⑦(2a-4b)2=(4a-2b)2

()⑧(-5m+n)2=(-n+5m)2

3、小試牛刀

①(x+y)2=______________;②(-y-x)2=_______________;

③(2x+3)2=_____________;④(3a-2)2=_______________;

⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;

⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.

〈四〉、[學生小結]

你認為完全平方公式在應用過程中,需要注意那些問題?

(1)公式右邊共有3項。

(2)兩個平方項符號永遠為正。

(3)中間項的符號由等號左邊的兩項符號是否相同決定。

(4)中間項是等號左邊兩項乘積的2倍。

〈五〉、冒險島:

(1)(-3a+2b)2=________________________________

(2)(-7-2m)2=__________________________________

(3)(-0.5m+2n)2=_______________________________

(4)(3/5a-1/2b)2=________________________________

(5)(mn+3)2=__________________________________

(6)(a2b-0.2)2=_________________________________

(7)(2xy2-3x2y)2=_______________________________

(8)(2n3-3m3)2=________________________________

〈六〉、學生自我評價

[小結]通過本節課的學習,你有什么收獲和感悟?

本節課,我們自己通過計算、分析結果,總結出了完全平方公式。在知識探索的過程中,同學們積極思考,大膽探索,團結協作共同取得了進步。

〈七〉[作業]P34隨堂練習P36習題

初中教案設計數學教案篇2

教學目標

1、使學生能說出有理數大小的比較法則

2、能熟練運用法則結合數軸比較有理數的大小,特別是應用絕對值概念比較兩個負數的大小,能利用數軸對多個有理數進行有序排列。

3、能正確運用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關系。

三、教學重點與難點

重點:運用法則借助數軸比較兩個有理數的大小。

難點:利用絕對值概念比較兩個負分數的大小。

四、教學準備

多媒體課件

五、教學設計

(一)交流對話,探究新知

1、說一說

(多媒體顯示)某一天我們5個城市的最低氣溫    從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發學生的求知欲望,可能有些學生會說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學生會說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會說的,老師適當點拔,從而學生在合作交流中不知不覺地完成了以下填空。

比較這一天下列兩個城市間最低氣溫的高低(填"高于"或"低于")

廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。

2、畫一畫:(1)把上述5個城市最低氣溫的數表示在數軸上,(2)觀察這5個數在數軸上的位置,從中你發現了什么?

(3)溫度的高低與相應的數在數軸上的位置有什么?

(通過學生自己動手操作,觀察、思考,發現原點左邊的數都是負數,原點右邊的數都是正數;同時也發現5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數軸上原點右邊的兩個數,右邊的數總比左邊的數大。教師趁機追問,原點左邊的數也有這樣的規律嗎?從而激發學生探索知識的欲望,進一步驗證了原點左邊的數也有這樣的規律。從而使學生親身體驗探索的樂趣,在探究中不知不覺獲得了知識。)由小組討論后,教師歸納得出結論:

在數軸上表示的兩個數,右邊的數總比左邊的數大。

正數都大于零,負數都小于零,正數大于負數。

(二)應用新知,體驗成功

1、練一練(師生共同完成例1后,學生完成隨堂練習1)

例1:在數軸上表示數5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)

分析:本題意有幾層含義?應分幾步?

要點總結:小組討論歸納,本題解題時的一般步驟:①畫數軸②描點;③有序排列;④不等號連接。

隨堂練習: P19 T1

2、做一做

(1)在數軸上表示下列各對數,并比較它們的大小

①2和7   ②-6和-1  ③-6和-36  ④-和-1.5

(2)求出圖中各對數的絕對值,并比較它們的大小。

(3)由①、②從中你發現了什么?

(學生小組討論后,代表站起來發言,口述自己組的發現,說明自己組發現的過程,逐步培養學生觀察、歸納、用數學語言表達數學規律的能力。)

要點總結:兩個正數比較大小,絕對值大的數大;兩個負數比較大小,絕對值大的數反而小。

在學生討論的基礎上,由學生總結得出有理數大小的比較法則。

(1)正數都大于零,負數都小于零,正數大于負數。

(2)兩個正數比較大小,絕對值大的數大。

(3)兩個負數比較大小,絕對值大的數反而小。

3、師生共同完成例2后,學生完成隨堂練習2、3、4。

例2比較下列每對數的大小,并說明理由:(師生共同完成)

(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|

分析:第(4)(5)題較難,第(4)題應先通分,第(5)題應先化簡,再比較。同時在講解時,要注意格式。

注:絕對值比較時,分母相同,分子大的數大;分子相同,則分母大的數反而小;分子分母都不相同時,則應先通分再比較,或把分子化相同再比較。

兩個負數比較大小時的一般步驟:①求絕對值;②比較絕對值的大小;③比較負數的大小。

思考:還有別的方法嗎?(分組討論,積極思考)

4、想一想:我們有幾種方法來判斷有理數的大小?你認為它們各有什么特點?

由學生討論后,得出比較有理數的大小共有兩種方法,一種是法則,另一種是利用數軸,當兩個數比較時一般選用第一種,當多個有理數比較大小時,一般選用第二種較好。

練一練:P19 T2、3、4

5、考考你:請你回答下列問題:

(1)有沒有的有理數,有沒有最小的有理數,為什么?

(2)有沒有絕對值最小的有理數?若有,請把它寫出來?

(3)在于-1.5且小于4.2的整數有_____個,它們分別是____。

(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個數的大小嗎?(本題屬提高題,不要求全體學生掌握)

(新穎的問題會激發學生的好奇心,通過合作交流,自主探究等活動,培養學生思維的習慣和數學語言的表達能力)

6、議一議,談談本節課你有哪些收獲

(由師生共同完成本節課的小結)本節課主要學習了有理數大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數軸,運用這種方法時,首先必須把要比較的數在數軸上表示出來,然后按照它們在數軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個有理數大小時非常簡便。

六、布置作業:P19 A組、B組

基礎好的A、B兩組都做

基礎較差的同學選做A組。

初中教案設計數學教案篇3

一、教學目標:

1、知道一次函數與正比例函數的定義。

2、理解掌握一次函數的圖象的特征和相關的性質。

3、弄清一次函數與正比例函數的區別與聯系。

4、掌握直線的平移法則簡單應用。

5、能應用本章的基礎知識熟練地解決數學問題。

二、教學重、難點:

重點:初步構建比較系統的函數知識體系。

難點:對直線的平移法則的理解,體會數形結合思想。

三、教學過程:

1、一次函數與正比例函數的定義:

一次函數:一般地,若y=kx+b(其中k,b為常數且k≠0),那么y是一次函數。

正比例函數:對于y=kx+b,當b=0,k≠0時,有y=kx,此時稱y是x的正比例函數,k為正比例系數。

2、一次函數與正比例函數的區別與聯系:

(1)從解析式看:y=kx+b(k≠0,b是常數)是一次函數;而y=kx(k≠0,b=0)是正比例函數,顯然正比例函數是一次函數的特例,一次函數是正比例函數的推廣。

(2)從圖象看:正比例函數y=kx(k≠0)的圖象是過原點(0,0)的一條直線;而一次函數y=kx+b(k≠0)的圖象是過點(0,b)且與y=kx

平行的一條直線。

基礎訓練:

1、寫出一個圖象經過點(1,—3)的函數解析式為:

2、直線y=—2X—2不經過第象限,y隨x的增大而。

3、如果P(2,k)在直線y=2x+2上,那么點P到x軸的距離是:

4、已知正比例函數y=(3k—1)x,,若y隨x的增大而增大,則k是:

5、過點(0,2)且與直線y=3x平行的直線是:

6、若正比例函數y=(1—2m)x的圖像過點A(x1,y1)和點B(x2,y2)當x1<x2時,y1>y2,則m的取值范圍是:

7、若y—2與x—2成正比例,當x=—2時,y=4,則x=時,y=—4。

8、直線y=—5x+b與直線y=x—3都交y軸上同一點,則b的值為。

9、已知圓O的半徑為1,過點A(2,0)的直線切圓O于點B,交y軸于點C。

(1)求線段AB的長。

(2)求直線AC的解析式。

初中教案設計數學教案篇4

教學目的

1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

2. 熟識等邊三角形的性質及判定.

2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

教學重點: 等腰三角形的性質及其應用。

教學難點: 簡潔的邏輯推理。

教學過程

一、復習鞏固

1.敘述等腰三角形的性質,它是怎么得到的?

等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。

等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

2.若等腰三角形的兩邊長為3和4,則其周長為多少?

二、新課

在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

等邊三角形具有什么性質呢?

1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。

2.你能否用已知的知識,通過推理得到你的猜想是正確的?

等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

3.上面的條件和結論如何敘述?

等邊三角形的各角都相等,并且每一個角都等于60°。

等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

等邊三角形也稱為正三角形。

例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數。

分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。

問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

問題2:求∠1是否還有其它方法?

三、練習鞏固

1.判斷下列命題,對的打“√”,錯的打“×”。

a.等腰三角形的角平分線,中線和高互相重合( )

b.有一個角是60°的等腰三角形,其它兩個內角也為60°( )

2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數。

3.P54練習1、2。

四、小結

由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

五、作業: 1.課本P57第7,9題。

2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數。

12.3.2 等邊三角形(二)

教學目標

1.掌握等邊三角形的性質和判定方法. 2.培養分析問題、解決問題的能力.

教學重點:等邊三角形的性質和判定方法.

教學難點:等邊三角形性質的應用

教學過程

I創設情境,提出問題

回顧上節課講過的等邊三角形的有關知識

1.等邊三角形是軸對稱圖形,它有三條對稱軸.

2.等邊三角形每一個角相等,都等于60°

3.三個角都相等的三角形是等邊三角形.

4.有一個角是60°的等腰三角形是等邊三角形.

其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.

II例題與練習

1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

①在邊AB、AC上分別截取AD=AE.

②作∠ADE=60°,D、E分別在邊AB、AC上.

③過邊AB上D點作DE∥BC,交邊AC于E點.

2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.

3. P56頁練習1、2

III課堂小結:1.等腰三角形和性質;等腰三角形的條件

V布置作業: 1.P58頁習題12.3第ll題.

2.已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?

12.3.2 等邊三角形(三)

教學過程

一、 復習等腰三角形的判定與性質

二、 新授:

1.等邊三角形的性質:三邊相等;三角都是60°;三邊上的中線、高、角平分線相等

2.等邊三角形的判定:

三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;

在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半

注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關系.

3.由學生解答課本148頁的例子;

4.補充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,

∠ABC=120o, 求證: AB=2BC

分析 由已知條件可得∠ABD=30o, 如能構造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.

初中教案設計數學教案篇5

學習目標

1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內錯角、同旁內角.毛

2. 通過比較、觀察、掌握同位角、內錯角、同旁內角的特征,能正確識別圖形中的同位角、內錯角和同旁內角.

重點難點

同位角、內錯角、同旁內角的特征

教學過程

一·導入

1.指出右圖中所有的鄰補角和對頂角?

2. 圖中的∠1與∠5,∠3與∠5,∠3與∠6 是鄰補角或對頂角嗎?

若都不是,請自學課本P6內容后回答它們各是什么關系的角?

二·問題導學

1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。

2. 如圖⑶是"直線 , 被直線 所截"形成的圖形

(1)∠1與∠5這對角在兩被截線AB,CD的 ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。

(2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內錯角。

(3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內角。

3.找出圖⑶中所有的同位角、內錯角、同旁內角

4.討論與交流:

(1)"同位角、內錯角、同旁內角"與"鄰補角、對頂角"在識別方法上有什么區別?

(2)歸納總結同位角、內錯角、同旁內角的特征:

同位角:"F" 字型,"同旁同側"

"三線八角" 內錯角:"Z" 字型,"之間兩側"

同旁內角:"U" 字型,"之間同側"

三·典題訓練

例1. 如圖⑵中∠1與∠2,∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?

小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內錯角;

兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內角;

自我檢測

⒈如圖⑷,下列說法不正確的是( )

A、∠1與∠2是同位角 B、∠2與∠3是同位角

C、∠1與∠3是同位角 D、∠1與∠4不是同位角

⒉如圖⑸,直線AB、CD被直線EF所截,∠A和 是同位角,∠A和 是內錯角,∠A和 是同旁內角.

⒊如圖⑹, 直線DE截AB, AC, 構成八個角:

① 指出圖中所有的同位角、內錯角、同旁內角.

②∠A與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?

⒋如圖⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出當BC、DE被AB所截時,∠3的同位角、內錯角和同旁內角.

②試說明∠1=∠2=∠3的理由.(提示:三角形內角和是1800)

相交線與平行線練習

課型:復習課: 備課人:徐新齊 審核人:霍紅超

一.基礎知識填空

1、如圖,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如圖,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如圖,∵∠D=∠DCF(已知)

∴_____//______( )

6、如圖,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2題) (第5、6題) (第7題) (第9題)

7、如圖,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

二.基礎過關題:

1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE 。

證明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代換 )

∴BD∥CE( )。

2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B + ∠F =180°。

證明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF,∠EHD,試說明GM ∥HN.

初中教案設計數學教案篇6

一、教學目標:

1、理解二元一次方程及二元一次方程的解的概念;

2、學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;

3、學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;

4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。

二、教學重點、難點:

重點:二元一次方程的意義及二元一次方程的解的概念。

難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。

三、教學方法與教學手段:

通過與一元一次方程的比較,加強學生的類比的思想方法;通過“合作學習”,使學生認識數學是根據實際的需要而產生發展的觀點。

四、教學過程:

1、情景導入:

新聞鏈接:x70歲以上老人可領取生活補助。

得到方程:80a+150b=902880、

2、新課教學:

引導學生觀察方程80a+150b=902880與一元一次方程有異同?

得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程。

做一做:

(1)根據題意列出方程:

①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價、設蘋果的單價x元/kg,梨的單價y元/kg;

②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:

(2)課本P80練習2、判定哪些式子是二元一次方程方程。

合作學習:

活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動。

問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人、團支書擬安排8個勞動組,2個文藝組,單從人數上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學生檢驗得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的&39;一對未知數的值叫做二元一次方程的一個解。

并提出注意二元一次方程解的書寫方法。

3、合作學習:

給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換、(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法、提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?

出示例題:已知二元一次方程x+2y=8。

(1)用關于y的代數式表示x;

(2)用關于x的代數式表示y;

(3)求當x=2,0,—3時,對應的y的值,并寫出方程x+2y=8的三個解。

(當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)

4、課堂練習:

(1)已知:5xm—2yn=4是二元一次方程,則m+n=;

(2)二元一次方程2x—y=3中,方程可變形為y=當x=2時,y=;

5、你能解決嗎?

小紅到郵局給遠在農村的爺爺寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。

6、課堂小結:

(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

(2)二元一次方程解的不定性和相關性;

(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式。

7、布置作業:

初中教案設計數學教案篇7

教材分析:

一元二次方程根與系數的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數的關系,以及以數x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數的關系簡化一些計算的知識。

學情分析:

1.學生已學習用求根公式法解一元二次方程。

2.本課的教學對象是九年級學生,學生對事物的認識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。

3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現代化的教學模式和傳統的教學模式相結合的基礎上掌握一元二次方程根與系數的關系。

教學目標:

1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數的關系式,能運用根與系數的關系由已知一元二次方程的一個根求出另一個根與未知數,會求一元二次方程兩個根的倒數和與平方數,兩根之差。

2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數學活動過程,發展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養學生的創新意識和創新精神。

3、情感目標:通過情境教學過程,激發學生的求知欲望,培養學生積極學習數學的態度。體驗數學活動中充滿著探索與創造,體驗數學活動中的成功感,建立自信心。

教學重難點:

1、重點:一元二次方程根與系數的關系。

2、難點:讓學生從具體方程的根發現一元二次方程根與系數之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。

板書設計:

一元二次方程根與系數的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2=,x1x2=。

問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎?①二次項系數a是否為零,決定著方程是否為二次方程;②當a≠0時,b=0,a、c異號,方程兩根互為相反數;③當a≠0時,△=b-4ac可判定根的情況;④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。

學生學習活動評價設計:

本節課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。

教學反思:

1.一元二次方程根與系數的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數之間的關系,是我們今后繼續研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。

2.以一元二次方程根與系數的關系的探索與推導,向學生展示認識事物的一般規律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力。

3.一元二次方程的根與系數的關系,在中考中多以填空,選擇,解答題的形式出現,考查的頻率較高,也常與幾何、二次函數等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。

4.使學生體會解題方法的多樣性,開闊解題思路,優化解題方法,增強擇優能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數學活動經驗,教師應注意引導。

56795 主站蜘蛛池模板: 闪蒸干燥机-喷雾干燥机-带式干燥机-桨叶干燥机-[常州佳一干燥设备] | CTP磁天平|小电容测量仪|阴阳极极化_双液系沸点测定仪|dsj电渗实验装置-南京桑力电子设备厂 | 国际金融网_每日财经新资讯网 | 网带通过式抛丸机,,网带式打砂机,吊钩式,抛丸机,中山抛丸机生产厂家,江门抛丸机,佛山吊钩式,东莞抛丸机,中山市泰达自动化设备有限公司 | 薪动-人力资源公司-灵活用工薪资代发-费用结算-残保金优化-北京秒付科技有限公司 | 打包钢带,铁皮打包带,烤蓝打包带-高密市金和金属制品厂 | 喷砂机厂家_自动喷砂机生产_新瑞自动化喷砂除锈设备 | 优宝-汽车润滑脂-轴承润滑脂-高温齿轮润滑油脂厂家 | 无线联网门锁|校园联网门锁|学校智能门锁|公租房智能门锁|保障房管理系统-KEENZY中科易安 | 12cr1mov无缝钢管切割-15crmog无缝钢管切割-40cr无缝钢管切割-42crmo无缝钢管切割-Q345B无缝钢管切割-45#无缝钢管切割 - 聊城宽达钢管有限公司 | 驾驶式洗地机/扫地机_全自动洗地机_工业洗地机_荣事达工厂官网 | 厦门ISO认证|厦门ISO9001认证|厦门ISO14001认证|厦门ISO45001认证-艾索咨询专注ISO认证行业 | 气力输送设备_料封泵_仓泵_散装机_气化板_压力释放阀-河南锐驰机械设备有限公司 | 洛阳防爆合格证办理-洛阳防爆认证机构-洛阳申请国家防爆合格证-洛阳本安防爆认证代办-洛阳沪南抚防爆电气技术服务有限公司 | 农产品溯源系统_农产品质量安全追溯系统_溯源系统 | 电线电缆厂家|沈阳电缆厂|电线厂|沈阳英联塑力线缆有限公司 | 多功能干燥机,过滤洗涤干燥三合一设备-无锡市张华医药设备有限公司 | 铁艺,仿竹,竹节,护栏,围栏,篱笆,栅栏,栏杆,护栏网,网围栏,厂家 - 河北稳重金属丝网制品有限公司 山东太阳能路灯厂家-庭院灯生产厂家-济南晟启灯饰有限公司 | 空气能采暖,热泵烘干机,空气源热水机组|设备|厂家,东莞高温热泵_正旭新能源 | 原子吸收设备-国产分光光度计-光谱分光光度计-上海光谱仪器有限公司 | 贴片电容-贴片电阻-二三极管-国巨|三星|风华贴片电容代理商-深圳伟哲电子 | 泰州物流公司_泰州货运公司_泰州物流专线-东鑫物流公司 | 万濠投影仪_瑞士TRIMOS高度仪_尼康投影仪V12BDC|量子仪器 | 日本SMC气缸接头-速度控制阀-日本三菱伺服电机-苏州禾力自动化科技有限公司 | 储气罐,真空罐,缓冲罐,隔膜气压罐厂家批发价格,空压机储气罐规格型号-上海申容压力容器集团有限公司 | 电动液压篮球架_圆管地埋式篮球架_移动平箱篮球架-强森体育 | 膜结构_ETFE膜结构_膜结构厂家_膜结构设计-深圳市烨兴智能空间技术有限公司 | 交通信号灯生产厂家_红绿灯厂家_电子警察监控杆_标志杆厂家-沃霖电子科技 | 工控机-工业平板电脑-研华工控机-研越无风扇嵌入式box工控机 | 对夹式止回阀_对夹式蝶形止回阀_对夹式软密封止回阀_超薄型止回阀_不锈钢底阀-温州上炬阀门科技有限公司 | 仓储笼_金属箱租赁_循环包装_铁网箱_蝴蝶笼租赁_酷龙仓储笼租赁 测试治具|过炉治具|过锡炉治具|工装夹具|测试夹具|允睿自动化设备 | 主题班会网 - 安全教育主题班会,各类主题班会PPT模板 | 学习安徽网| 氧化铝球_高铝球_氧化铝研磨球-淄博誉洁陶瓷新材料有限公司 | LINK FASHION 童装·青少年装展 河南卓美创业科技有限公司-河南卓美防雷公司-防雷接地-防雷工程-重庆避雷针-避雷器-防雷检测-避雷带-避雷针-避雷塔、机房防雷、古建筑防雷等-山西防雷公司 | 铝镁锰板厂家_进口钛锌板_铝镁锰波浪板_铝镁锰墙面板_铝镁锰屋面-杭州军晟金属建筑材料 | 多米诺-多米诺世界纪录团队-多米诺世界-多米诺团队培训-多米诺公关活动-多米诺创意广告-多米诺大型表演-多米诺专业赛事 | 中药超微粉碎机(中药细胞级微粉碎)-百科 | 济南保安公司加盟挂靠-亮剑国际安保服务集团总部-山东保安公司|济南保安培训学校 | 知企服务-企业综合服务(ZiKeys.com)-品优低价、种类齐全、过程管理透明、速度快捷高效、放心服务,知企专家! | 陕西鹏展科技有限公司 |