萬能初中數(shù)學(xué)教案模板
一份優(yōu)秀的教案應(yīng)該包含合理的教學(xué)流程,其中包括引導(dǎo)課程、教授新知識、復(fù)習(xí)鞏固、課堂總結(jié)以及布置作業(yè)等環(huán)節(jié)。寫萬能初中數(shù)學(xué)教案模板要注意什么?這里給大家提供萬能初中數(shù)學(xué)教案模板下載,供大家參考。
萬能初中數(shù)學(xué)教案模板篇1
一元二次方程的應(yīng)用(一)
一、素質(zhì)教育目標(biāo)
(-)知識教學(xué)點:使學(xué)生會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題.
(二)能力訓(xùn)練點:通過列方程解應(yīng)用問題,進一步提高分析問題、解決問題的能力.
二、教學(xué)重點、難點
1.教學(xué)重點:會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題.
2.教學(xué)難點 :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系.
三、教學(xué)步驟
(一)明確目標(biāo)
(二)整體感知:
(三)重點、難點的學(xué)習(xí)和目標(biāo)完成過程
1.復(fù)習(xí)提問
(1)列方程解應(yīng)用問題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答.
(2)兩個連續(xù)奇數(shù)的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整數(shù)).
2.例1 兩個連續(xù)奇數(shù)的積是323,求這兩個數(shù).
分析:(1)兩個連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法) .設(shè)較小的奇數(shù)為x,則另一奇數(shù)為x+2, 設(shè)較小的奇數(shù)為x-1,則另一奇數(shù)為x+1; 設(shè)較小的奇數(shù)為2x-1,則另一個奇數(shù)2x+1.
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進行比較、鑒別,選出最簡單解法.
解法(一)
設(shè)較小奇數(shù)為x,另一個為x+2,
據(jù)題意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解這個方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:這兩個奇數(shù)是17,19或者-19,-17.
解法(二)
設(shè)較小的奇數(shù)為x-1,則較大的奇數(shù)為x+1.
據(jù)題意,得(x-1)(x+1)=323.
整理后,得x2=324.
解這個方程,得x1=18,x2=-18.
當(dāng)x=18時,18-1=17,18+1=19.
當(dāng)x=-18時,-18-1=-19,-18+1=-17.
答:兩個奇數(shù)分別為17,19;或者-19,-17.
解法(三)
設(shè)較小的奇數(shù)為2x-1,則另一個奇數(shù)為2x+1.
據(jù)題意,得(2x-1)(2x+1)=323.
整理后,得4x2=324.
解得,2x=18,或2x=-18.
當(dāng)2x=18時,2x-1=18-1=17;2x+1=18+1=19.
當(dāng)2x=-18時,2x-1=-18-1=-19;2x+1=-18+1=-17
答:兩個奇數(shù)分別為17,19;-19,-17.
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個問題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負整數(shù).3.選出三種方法中最簡單的一種.
練習(xí)
1.兩個連續(xù)整數(shù)的積是210,求這兩個數(shù).
2.三個連續(xù)奇數(shù)的和是321,求這三個數(shù).
3.已知兩個數(shù)的和是12,積為23,求這兩個數(shù).
學(xué)生板書,練習(xí),回答,評價,深刻體會方程的思想方法.例2 有一個兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個位數(shù)字小2,求這兩位數(shù).
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)=十位數(shù)字×10+個位數(shù)字.
三位數(shù)=百位數(shù)字×100+十位數(shù)字×10+個位數(shù)字.
解:設(shè)個位數(shù)字為x,則十位數(shù)字為x-2,這個兩位數(shù)是10(x-2)+x.
據(jù)題意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
當(dāng)x=4時,x-2=2,10(x-2)+x=24.
答:這個兩位數(shù)是24.
練習(xí)1 有一個兩位數(shù),它們的十位數(shù)字與個位數(shù)字之和為8,如果把十位數(shù)字與個位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來的兩位數(shù)就得1855,求原來的兩位數(shù).(35,53)
2.一個兩位數(shù),其兩位數(shù)字的差為5,把個位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個兩位數(shù).
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書,評價,體會.
(四)總結(jié),擴展
1奇數(shù)的表示方法為2n+1,2n-1,……(n為整數(shù))偶數(shù)的表示方法是2n(n是整數(shù)),連續(xù)奇數(shù)(偶數(shù))中,較大的與較小的差為2,偶數(shù)、奇數(shù)可以是正數(shù),也可以是負數(shù).
數(shù)與數(shù)字的關(guān)系
兩位數(shù)=(十位數(shù)字×10)+個位數(shù)字.
三位數(shù)=(百位數(shù)字×100)+(十位數(shù)字×10)+個位數(shù)字.
……
2.通過本節(jié)課內(nèi)容的比較、鑒別、分析、綜合,進一步提高分析問題、解決問題的能力,深刻體會方程的思想方法在解應(yīng)用問題中的用途.
四、布置作業(yè)
教材P.42中A1、2、
一元二次方程的應(yīng)用(一)
一、素質(zhì)教育目標(biāo)
(-)知識教學(xué)點:使學(xué)生會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間關(guān)系的應(yīng)用題.
(二)能力訓(xùn)練點:通過列方程解應(yīng)用問題,進一步提高分析問題、解決問題的能力.
二、教學(xué)重點、難點
1.教學(xué)重點:會用列一元二次方程的方法解有關(guān)數(shù)與數(shù)字之間的關(guān)系的應(yīng)用題.
2.教學(xué)難點 :根據(jù)數(shù)與數(shù)字關(guān)系找等量關(guān)系.
三、教學(xué)步驟
(一)明確目標(biāo)
(二)整體感知:
(三)重點、難點的學(xué)習(xí)和目標(biāo)完成過程
1.復(fù)習(xí)提問
(1)列方程解應(yīng)用問題的步驟?
①審題,②設(shè)未知數(shù),③列方程,④解方程,⑤答.
(2)兩個連續(xù)奇數(shù)的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整數(shù)).
2.例1 兩個連續(xù)奇數(shù)的積是323,求這兩個數(shù).
分析:(1)兩個連續(xù)奇數(shù)中較大的奇數(shù)與較小奇數(shù)之差為2,(2)設(shè)元(幾種設(shè)法) .設(shè)較小的奇數(shù)為x,則另一奇數(shù)為x+2, 設(shè)較小的奇數(shù)為x-1,則另一奇數(shù)為x+1; 設(shè)較小的奇數(shù)為2x-1,則另一個奇數(shù)2x+1.
以上分析是在教師的引導(dǎo)下,學(xué)生回答,有三種設(shè)法,就有三種列法,找三位學(xué)生使用三種方法,然后進行比較、鑒別,選出最簡單解法.
解法(一)
設(shè)較小奇數(shù)為x,另一個為x+2,
據(jù)題意,得x(x+2)=323.
整理后,得x2+2x-323=0.
解這個方程,得x1=17,x2=-19.
由x=17得x+2=19,由x=-19得x+2=-17,
答:這兩個奇數(shù)是17,19或者-19,-17.
解法(二)
設(shè)較小的奇數(shù)為x-1,則較大的奇數(shù)為x+1.
據(jù)題意,得(x-1)(x+1)=323.
整理后,得x2=324.
解這個方程,得x1=18,x2=-18.
當(dāng)x=18時,18-1=17,18+1=19.
當(dāng)x=-18時,-18-1=-19,-18+1=-17.
答:兩個奇數(shù)分別為17,19;或者-19,-17.
解法(三)
設(shè)較小的奇數(shù)為2x-1,則另一個奇數(shù)為2x+1.
據(jù)題意,得(2x-1)(2x+1)=323.
整理后,得4x2=324.
解得,2x=18,或2x=-18.
當(dāng)2x=18時,2x-1=18-1=17;2x+1=18+1=19.
當(dāng)2x=-18時,2x-1=-18-1=-19;2x+1=-18+1=-17
答:兩個奇數(shù)分別為17,19;-19,-17.
引導(dǎo)學(xué)生觀察、比較、分析解決下面三個問題:
1.三種不同的設(shè)元,列出三種不同的方程,得出不同的x值,影響最后的結(jié)果嗎?
2.解題中的x出現(xiàn)了負值,為什么不舍去?
答:奇數(shù)、偶數(shù)是在整數(shù)范圍內(nèi)討論,而整數(shù)包括正整數(shù)、零、負整數(shù).3.選出三種方法中最簡單的一種.
練習(xí)
1.兩個連續(xù)整數(shù)的積是210,求這兩個數(shù).
2.三個連續(xù)奇數(shù)的和是321,求這三個數(shù).
3.已知兩個數(shù)的和是12,積為23,求這兩個數(shù).
學(xué)生板書,練習(xí),回答,評價,深刻體會方程的思想方法.例2 有一個兩位數(shù)等于其數(shù)字之積的3倍,其十位數(shù)字比個位數(shù)字小2,求這兩位數(shù).
分析:數(shù)與數(shù)字的關(guān)系是:
兩位數(shù)=十位數(shù)字×10+個位數(shù)字.
三位數(shù)=百位數(shù)字×100+十位數(shù)字×10+個位數(shù)字.
解:設(shè)個位數(shù)字為x,則十位數(shù)字為x-2,這個兩位數(shù)是10(x-2)+x.
據(jù)題意,得10(x-2)+x=3x(x-2),
整理,得3x2-17x+20=0,
當(dāng)x=4時,x-2=2,10(x-2)+x=24.
答:這個兩位數(shù)是24.
練習(xí)1 有一個兩位數(shù),它們的十位數(shù)字與個位數(shù)字之和為8,如果把十位數(shù)字與個位數(shù)字調(diào)換后,所得的兩位數(shù)乘以原來的兩位數(shù)就得1855,求原來的兩位數(shù).(35,53)
2.一個兩位數(shù),其兩位數(shù)字的差為5,把個位數(shù)字與十位數(shù)字調(diào)換后所得的數(shù)與原數(shù)之積為976,求這個兩位數(shù).
教師引導(dǎo),啟發(fā),學(xué)生筆答,板書,評價,體會.
(四)總結(jié),擴展
1奇數(shù)的表示方法為2n+1,2n-1,……(n為整數(shù))偶數(shù)的表示方法是2n(n是整數(shù)),連續(xù)奇數(shù)(偶數(shù))中,較大的與較小的差為2,偶數(shù)、奇數(shù)可以是正數(shù),也可以是負數(shù).
數(shù)與數(shù)字的關(guān)系
兩位數(shù)=(十位數(shù)字×10)+個位數(shù)字.
三位數(shù)=(百位數(shù)字×100)+(十位數(shù)字×10)+個位數(shù)字.
……
2.通過本節(jié)課內(nèi)容的比較、鑒別、分析、綜合,進一步提高分析問題、解決問題的能力,深刻體會方程的思想方法在解應(yīng)用問題中的用途.
四、布置作業(yè)
教材P.42中A1、2、
萬能初中數(shù)學(xué)教案模板篇2
一、說教材
(一)教材的地位和作用
本節(jié)教材是八年級數(shù)學(xué)第十六章第二節(jié)第一課時的內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了分式基本性質(zhì)、分式的約分和因式分解的基礎(chǔ)上,進一步學(xué)習(xí)分式的乘除法;另一方面,又為學(xué)習(xí)分式加減法和分式方程等知識奠定了基礎(chǔ)。因此,本節(jié)課在整個的初中數(shù)學(xué)的學(xué)習(xí)中起著承上啟下的過渡作用。
(二)教學(xué)目標(biāo)分析
根據(jù)新課標(biāo)的要求和本節(jié)課內(nèi)容特點,考慮到年級班級學(xué)生的知識水平,以及對教材的地位與作用的分析,我制定了如下三維教學(xué)目標(biāo)、
1.認(rèn)知目標(biāo)、理解并掌握分式的乘除法法則,能進行簡單的分式乘除法運算,能解決一些與分式乘除有關(guān)的實際問題。
2.技能目標(biāo)、經(jīng)歷從分?jǐn)?shù)的乘除法運算到分式的乘除法運算的過程,培養(yǎng)班級學(xué)生類比的探究能力,加深對從特殊到一般數(shù)學(xué)的思想認(rèn)識。
3.情感目標(biāo)、教學(xué)中讓班級學(xué)生在主動探究,合作交流中滲透類比轉(zhuǎn)化的思想,使班級學(xué)生在學(xué)知識的同時感受探索的樂趣和成功的體驗。
(三)教學(xué)重難點
本著課程標(biāo)準(zhǔn),在充分理解教材的基礎(chǔ)上,我確立了如下的教學(xué)重點、難點、
教學(xué)重點、運用分式的乘除法法則進行運算。
教學(xué)難點、分子、分母為多項式的分式乘除運算。
下面,為了講清重點難點,使班級學(xué)生能達到本節(jié)課的教學(xué)目標(biāo),我再從教法和學(xué)法上談?wù)劇?/p>
二、說學(xué)情
1.班級學(xué)生已經(jīng)學(xué)習(xí)分式基本性質(zhì)、分式的約分和因式分解,通過與分?jǐn)?shù)的乘除法類比,促進知識的正遷移。
2.八年級的班級學(xué)生接受能力、思維能力、自我控制能力都有很大變化和提高,自學(xué)能力較強,通過類比學(xué)習(xí)加快知識的學(xué)習(xí)。
三、說教法學(xué)法
(一)說教法
教學(xué)方式的改變是新課標(biāo)改革的目標(biāo),新課標(biāo)要求把過去單純的老師講,班級學(xué)生接受的教學(xué)方式,變?yōu)閹熒邮浇虒W(xué)。師生互動式教學(xué)以教學(xué)大綱為依據(jù),滲透新的教育理念,遵循教師主導(dǎo)、班級學(xué)生為主體的原則,結(jié)合本節(jié)課的內(nèi)容特點和班級學(xué)生的年齡特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,以問題的提出、問題的解決為主線,倡導(dǎo)班級學(xué)生主動參與教學(xué)實踐活動,以師生互動的形式,在教師的指導(dǎo)下突破難點、分式的乘除法運算,在例題的引導(dǎo)分析時,教學(xué)中應(yīng)予以簡單明白,深入淺出的分析本課教學(xué)難點、分子、分母為多項式的分式乘除運算。讓班級學(xué)生在練習(xí)題中鞏固難點,從真正意義上完成對知識的自我建構(gòu)。
另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)班級學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。
(二)說學(xué)法
從認(rèn)知狀況來說,班級學(xué)生在此之前對分?jǐn)?shù)乘除法運算比較熟悉,加上對本章第一節(jié)分式及其性質(zhì)學(xué)習(xí),抓住初中生具有豐富的想象能力和活躍的思維能力,愛發(fā)表見解,希望得到老師的表揚這些心理特征,因此,我認(rèn)為本節(jié)課適合采用班級學(xué)生自主探索、合作交流的數(shù)學(xué)學(xué)習(xí)方式。一方面運用實際生活中的問題引入,激發(fā)班級學(xué)生的興趣,使他們在課堂上集中注意力;另一方面,由于分式的乘除法法則與分?jǐn)?shù)的乘除法法則類似,以類比的方法得出分式的乘除法則,易于班級學(xué)生理解、接受,讓班級學(xué)生在自主探索、合作交流中加深理解分式的乘除運算,充分發(fā)揮班級學(xué)生學(xué)習(xí)的主動性。不但讓班級學(xué)生"學(xué)會"還要讓班級學(xué)生"會學(xué)"
四、說教學(xué)過程
新課標(biāo)指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)班級學(xué)生進行學(xué)習(xí)活動的過程,是教師和班級學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),接下來,我再具體談?wù)劚竟?jié)課的教學(xué)過程安排、
(一)提出問題,引入課題
俗話說、"好的開端是成功的一半"同樣,好的引入能激發(fā)班級學(xué)生興趣和求知欲。因此我用實際出發(fā)提出現(xiàn)實生活中的問題、
問題1求容積的高是,(引出分式乘法的學(xué)習(xí)需要)。
問題2求大拖拉機的工作效率是小拖拉機的工作效率的倍,(引出分式除法的學(xué)習(xí)需要)。
從實際出發(fā),引出分式的乘除的實在存在意義,讓班級學(xué)生感知學(xué)習(xí)分式的乘法和除法的實際需要,從而激發(fā)班級學(xué)生興趣和求知欲。
(二)類比聯(lián)想,探究新知
從班級學(xué)生熟悉的分?jǐn)?shù)的乘除法出發(fā),引發(fā)班級學(xué)生的學(xué)習(xí)興趣。(1)(2)
解后總結(jié)概括、
(1)式是什么運算?依據(jù)是什么?
(2)式又是什么運算?依據(jù)是什么?能說出具體內(nèi)容嗎?(如果有困難教師應(yīng)給于引導(dǎo))
(班級學(xué)生應(yīng)該能說出依據(jù)的是、分?jǐn)?shù)的乘法和除法法則)教師加以肯定,并指出與分?jǐn)?shù)的乘除法法則類似,引導(dǎo)班級學(xué)生類比分?jǐn)?shù)的乘除法則,猜想出分式的乘除法則。
【分式的乘除法法則】
乘法法則、分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母。
除法法則、分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
用式子表示為、
設(shè)計意圖、由于分式的乘除法法則與分?jǐn)?shù)的乘除法法則類似,故以類比的方法得出分式的乘除法則,易于班級學(xué)生理解、接受,體現(xiàn)了自主探索,合作學(xué)習(xí)的新理念。
(三)例題分析,應(yīng)用新知
師生活動、教師參與并指導(dǎo),班級學(xué)生獨立思考,并嘗試完成例題。
P11的例1,在例題分析過程中,為了突出重點,應(yīng)多次回顧分式的乘除法法則,使班級學(xué)生耳熟能詳。P11例2是分子、分母為多單項式的分式乘除法則的運用,為了突破本節(jié)課的難點我采取板演的形式,和班級學(xué)生一起詳細分析,提醒班級學(xué)生關(guān)注易錯易漏的環(huán)節(jié),學(xué)會解題的方法。
(四)練習(xí)鞏固,培養(yǎng)能力
P13練習(xí)第2題的(1)(3)(4)與第3題的(2)
師生活動、教師出示問題,班級學(xué)生獨立思考解答,并讓班級學(xué)生板演或投影展示班級學(xué)生的解題過程。
通過這一環(huán)節(jié),主要是為了通過課堂跟蹤反饋,達到鞏固提高的目的,進一步熟練解題的思路,也遵循了鞏固與發(fā)展相結(jié)合的原則。讓班級學(xué)生板演,一是為了暴露問題,二是為了規(guī)范解題格式和結(jié)果。
(五)課堂小結(jié),回扣目標(biāo)
引導(dǎo)班級學(xué)生自主進行課堂小結(jié)、
1.本節(jié)課我們學(xué)習(xí)了哪些知識?
2.在知識應(yīng)用過程中需要注意什么?
3.你有什么收獲呢?
師生活動、班級學(xué)生反思,提出疑問,集體交流。
設(shè)計意圖、學(xué)習(xí)結(jié)果讓班級學(xué)生作為反饋,讓他們體驗到學(xué)習(xí)數(shù)學(xué)的快樂,在交流中與全班同學(xué)分享,從而加深對知識的理解記憶。
(六)布置作業(yè)
教科書習(xí)題6.2第1、2(必做)練習(xí)冊P(選做),我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸。總的設(shè)計意圖是反饋教學(xué),鞏固提高。
五、說板書設(shè)計
在本節(jié)課中我將采用提綱式的板書設(shè)計,因為提綱式-條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于班級學(xué)生對教材內(nèi)容和知識體系的理解和記憶。
萬能初中數(shù)學(xué)教案模板篇3
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
使學(xué)生知道當(dāng)直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實、
(二)能力訓(xùn)練點
逐步培養(yǎng)學(xué)生會觀察、比較、分析、概括等邏輯思維能力、
(三)德育滲透點
引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣、
二、教學(xué)重點、難點
1、重點:使學(xué)生知道當(dāng)銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實、
2、難點:學(xué)生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論、
三、教學(xué)步驟
(一)明確目標(biāo)
1、如圖6—1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2、長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3、若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4、若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個問題學(xué)生很容易回答、這兩個問題的設(shè)計主要是引起學(xué)生的回憶,并使學(xué)生意識到,本章要用到這些知識、但后兩個問題的設(shè)計卻使學(xué)生感到疑惑,這對初三年級這些好奇、好勝的學(xué)生來說,起到激起學(xué)生的學(xué)習(xí)興趣的作用、同時使學(xué)生對本章所要學(xué)習(xí)的內(nèi)容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關(guān)鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關(guān)直角三角形的其他未知邊角就可用學(xué)過的知識全部求出來、
通過四個例子引出課題、
(二)整體感知
1、請每一位同學(xué)拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值、
學(xué)生很快便會回答結(jié)果:無論三角尺大小如何,其比值是一個固定的值、程度較好的學(xué)生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長、
2、請同學(xué)畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的大部分學(xué)生可能會想到,當(dāng)銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養(yǎng)學(xué)生動手能力的同時,也使學(xué)生對本節(jié)課要研究的知識有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知、
(三)重點、難點的學(xué)習(xí)與目標(biāo)完成過程
1、通過動手實驗,學(xué)生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”、但是怎樣證明這個命題呢?學(xué)生這時的思維很活躍、對于這個問題,部分學(xué)生可能能解決它、因此教師此時應(yīng)讓學(xué)生展開討論,獨立完成、
2、學(xué)生經(jīng)過研究,也許能解決這個問題、若不能解決,教師可適當(dāng)引導(dǎo):
若一組直角三角形有一個銳角相等,可以把其
頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上、這樣同學(xué)們能解決這個問題嗎?引導(dǎo)學(xué)生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的對邊、鄰邊與斜邊的比值,是一個固定值、
通過引導(dǎo),使學(xué)生自己獨立掌握了重點,達到知識教學(xué)目標(biāo),同時培養(yǎng)學(xué)生能力,進行了德育滲透、
而前面導(dǎo)課中動手實驗的設(shè)計,實際上為突破難點而設(shè)計、這一設(shè)計同時起到培養(yǎng)學(xué)生思維能力的作用、
練習(xí)題為作了孕伏同時使學(xué)生知道任意銳角的對邊與斜邊的比值都能求出來、
(四)總結(jié)與擴展
1、引導(dǎo)學(xué)生作知識總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過動手實驗、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的教師可適當(dāng)補充:本節(jié)課經(jīng)過同學(xué)們自己動手實驗,大膽猜測和積極思考,我們發(fā)現(xiàn)了一個新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚這種創(chuàng)新精神,變被動學(xué)知識為主動發(fā)現(xiàn)問題,培養(yǎng)自己的創(chuàng)新意識、
2、擴展:當(dāng)銳角為30°時,它的對邊與斜邊比值我們知道、今天我們又發(fā)現(xiàn),銳角任意時,它的對邊與斜邊的比值也是固定的如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了、看來這個比值很重要,下節(jié)課我們就著重研究這個“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下、通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發(fā)了學(xué)生的興趣、
四、布置作業(yè)
本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念、
萬能初中數(shù)學(xué)教案模板篇4
一、說教材
1、本課在在教材中的地位和作用《分式的加減》這節(jié)課是代數(shù)運算的基礎(chǔ),分兩課時完成,我所設(shè)計的是第一課時的教學(xué),主要內(nèi)容是同分母的分式相加減及簡單的異分母的分式相加減。學(xué)生已掌握了分?jǐn)?shù)的加減法運算,同時也學(xué)習(xí)過分式的基本性質(zhì),這為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),而掌握好本節(jié)課的知識,將為《分式的加減》第二課時以及《分式方程》的學(xué)習(xí)做好必備的知識儲備。
2、教學(xué)目標(biāo)
①知識與技能:會進行簡單的分式加減運算,具有一定的代數(shù)化歸能力,能解決一些簡單的實際問題;
②過程與方法:使學(xué)生經(jīng)歷探索分式加減運算法則的過程,理解其算理;
3、情感態(tài)度與價值觀:培養(yǎng)學(xué)生大膽猜想,積極探究的學(xué)習(xí)態(tài)度,發(fā)展學(xué)生有條理思考及代數(shù)表達能力,體會其價值。
4、重點、難點
①重點:掌握分式的加減運算
②難點:異分母的分式加減運算及簡單的分式混合運算
二、說教法
本課我主要以“創(chuàng)設(shè)情景——引導(dǎo)探究——類比歸納——拓展延伸”為主線,啟發(fā)和引導(dǎo)貫穿教學(xué)始終,通過師生共同研究探討,體現(xiàn)以教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)過程。
三、說學(xué)法
根據(jù)學(xué)生的認(rèn)知水平,我設(shè)計了“自主探索、合作交流、猜想歸納和鞏固提高”四個層次的學(xué)法。四、說教學(xué)過程
(一)創(chuàng)設(shè)情境,導(dǎo)入新知
第一環(huán)節(jié):提出問題
問題1:甲工程隊完成一項工程需n天,乙工程隊要比甲隊多用3天才能完成這項工程,兩隊共同工作一天完成這項工程的幾分之幾?
問題2:2001年,2002年,2003年某地的森林面積(單位:公頃)分別是S1,S2,S3,2003年與2002年相比,森林面積增長率提高了多少?
老師活動:組織學(xué)生分組討論,再共同研究學(xué)生活動:小組討論、探究、發(fā)言設(shè)計意圖:通過創(chuàng)設(shè)這兩個問題情境,引入分式的加減運算,既體現(xiàn)了分式加減運算的意義,又讓學(xué)生經(jīng)歷從實際問題建立分式模型的過程,并在此基礎(chǔ)上激發(fā)學(xué)生尋求解決問題的方法。
第二環(huán)節(jié):同分母分式相加減
想一想:(1)同分母的分?jǐn)?shù)如何加減?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3;(2)思考:類比分?jǐn)?shù)的加減法則,你能歸納出分式的加減法則嗎?老師活動:鼓勵學(xué)生通過類比、探究并大膽猜想分式的加減運算法則學(xué)生活動:分組進行討論、交流,并多舉類似例子進行類比,而后,小組發(fā)表意見,說明自己的推測。
在學(xué)生通過交流得到猜想的基礎(chǔ)上出示做一做:做一做:(1)1/a+2/a=_____________2(2)x/(x—2)–4/(x—2)=___________(3)(x+2)/(x+1)–(x—1)/(x+1)+(x—3)/(x+1)=___________教師通過讓學(xué)生練習(xí)“做一做”的題目,加以驗證和領(lǐng)悟,法則的形成打下基礎(chǔ),并導(dǎo)出分式加減運算法則:同分母的`分式相加減,分母不變,把分子相加減老師活動:引入習(xí)題“做一做”,適當(dāng)糾正學(xué)生的語言,并板書法則學(xué)生活動:通過個體練習(xí),領(lǐng)悟規(guī)律,再小組交流,形成法則設(shè)計意圖:引導(dǎo)學(xué)生通過類比分?jǐn)?shù)運算方法,大膽猜想分式的加減法則
(二)主動探究,拓展延伸
第三環(huán)節(jié):異分母的分式相加減想一想:
(1)異分母的分?jǐn)?shù)如何相加減?如:1/2+2/3=?:1/2—2/3=?。
(2)你認(rèn)為異分母的分式應(yīng)該如何加減?如:1/a+2/b=?老師活動:提出問題,引導(dǎo)、啟發(fā)學(xué)生通過異分母分?jǐn)?shù)相加減的方法類比得到異分母分式相加減的方法學(xué)生活動:參與交流、討論、歸納異分母分式加減的方法設(shè)計意圖:進一步鍛煉學(xué)生的類比思想;同時通過討論解決分式的通分,使學(xué)生掌握異分母分式轉(zhuǎn)化為同分母分式的方法,培養(yǎng)學(xué)生的轉(zhuǎn)化思想,為下節(jié)課做好準(zhǔn)備
(三)例題教學(xué)
第四環(huán)節(jié):解決問題
(1)回到開始提出的兩個問題:s3?s2s2?s111?問題一:(?)s2s1nn?3問題二:
(2)例題1:計算(課本P81頁)老師活動:出示習(xí)題,巡視、引導(dǎo)、糾正學(xué)生活動:自主完成
設(shè)計意圖:進一步提高學(xué)生對異分母分式的加減運算能力
(四)隨堂練習(xí)
第五環(huán)節(jié):鞏固深化
老師活動:巡視、引導(dǎo)學(xué)生活動:個體練習(xí)、板演設(shè)計意圖:檢驗學(xué)生是否掌握分式的加減運算方法(五)課堂小結(jié)第六環(huán)節(jié):提高認(rèn)識老師活動:本節(jié)課我們學(xué)了哪些知識?在運用過程中需要注意些什么?你有什么收獲?學(xué)生活動
歸納總結(jié)
(1)同分母分式加減法則
(2)簡單異分母分式的加減設(shè)計意圖:鍛煉學(xué)生及時總結(jié)的良好習(xí)慣和歸納能力(六)作業(yè)布置第七環(huán)節(jié):反思提煉課本P27第1、2題五、板書設(shè)計
萬能初中數(shù)學(xué)教案模板篇5
學(xué)生的發(fā)展是新課程標(biāo)準(zhǔn)實施的出發(fā)點和歸宿,課程改革的重點是面向全體學(xué)生,以學(xué)生的發(fā)展為主體,轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式。“二次函數(shù)的圖像的性質(zhì)”這一課題,通過對傳統(tǒng)教法的改進,以全新的自主的學(xué)習(xí)方式讓學(xué)生接受問題挑戰(zhàn),充分展示自己的觀點和見解,給學(xué)生創(chuàng)設(shè)一種寬松、愉快、和諧、民主的科研氛圍,讓學(xué)生感受“二次函數(shù)的性質(zhì)”的探究發(fā)現(xiàn)過程,體驗研究過程,體驗成功的快樂。
教學(xué)目標(biāo)
知識目標(biāo)
1、利用計算機制作動畫(讓學(xué)觀察拋物線的形成過程)培養(yǎng)學(xué)生以運動變化的觀點來觀察問題、分析問題、解決問題的意識。
2、會用描點法畫出二次函數(shù)的圖像,能通過圖像認(rèn)識二次函數(shù)的性質(zhì)
3、通過具體例子,在探索二次函數(shù)圖像和性質(zhì)的過程中,學(xué)會利用配方法將數(shù)字系數(shù)的二次函數(shù)表達式表示成:y=a(x-h)^2+k的形式,從而確定二次函數(shù)圖像的頂點和對稱軸。
4、通過一般式與頂點式的互化過程,了解互化的必要性。培養(yǎng)學(xué)生認(rèn)識“事物都是相互聯(lián)系、相互制約”的辯證唯物主義觀點。
5、在經(jīng)歷“觀察、猜測、探索、驗證、應(yīng)用”的過程中,滲透從“形”到“數(shù)”和從“數(shù)”到“形”的轉(zhuǎn)化,培養(yǎng)了學(xué)生的轉(zhuǎn)化、遷移能力,實現(xiàn)感性到理性的升華。
情感目標(biāo)
1、通過主動操作、合作交流、自主評價,改進學(xué)生的學(xué)習(xí)方式及學(xué)習(xí)質(zhì)量,激發(fā)學(xué)生的興趣,喚起好奇心與求知欲,點燃起學(xué)生智慧的火花,使學(xué)生積極思維,勇于探索,主動獲取知識。
2、讓學(xué)生在猜想與探究的過程中,體驗成功的快樂,培養(yǎng)他們主動參與的意識、協(xié)同合作的意識、勇于創(chuàng)新和實踐的科學(xué)精神。
能力目標(biāo)
1、擬通過本節(jié)課的學(xué)習(xí),培養(yǎng)學(xué)生的觀察能力、探索能力、數(shù)形結(jié)合能力、歸納概括能力,綜合培養(yǎng)學(xué)生的思維能力及創(chuàng)新能力。
2、培養(yǎng)學(xué)生運用運動變化的觀點來分析、探討問題的意識。
教學(xué)重點:二次函數(shù)的性質(zhì)
教學(xué)難點:通過研究、、、這幾類函數(shù)圖像,得出平移規(guī)律,并總結(jié)概括出二次函數(shù)的性質(zhì)。
教學(xué)方法:
運用問題解決理論指導(dǎo)教學(xué),力求體現(xiàn)“自主學(xué)習(xí)、動手實踐、合作交流”的教學(xué)理念。
教學(xué)設(shè)備:計算機、網(wǎng)絡(luò)
[教學(xué)內(nèi)容]
步驟教學(xué)內(nèi)容呈現(xiàn)方式
復(fù)習(xí)我們已經(jīng)學(xué)習(xí)了一次函數(shù)與反比例函數(shù),那么一次函數(shù),反比例函數(shù)的圖像分別是、.用媒體方式呈現(xiàn),讓學(xué)生填空,然后提交.
探索二次函數(shù)的圖象是什么呢?(課前已經(jīng)做過)
(1)畫出圖像經(jīng)過了哪些過程?
(2)列表時自變量取了幾個數(shù)?哪幾個數(shù)?
(3)找?guī)孜煌瑢W(xué)展示一下自己畫的圖像。
(4)想一想,列表時如何合理選值?以什么數(shù)為中心?當(dāng)x取互為相反數(shù)的值時,y的值如何?讓學(xué)生結(jié)合老師強調(diào)的作圖注意事項,再畫函數(shù)的圖圖像。
然后老師用畫函數(shù)工具作出的圖像。由學(xué)生觀察作比較。
教會學(xué)生用畫函數(shù)工具畫圖,讓學(xué)生比較兩種畫法,弄清學(xué)生自己所畫的不足之處.
(2)觀察函數(shù)的圖象,你能得出什么結(jié)論?
用幾何畫板呈現(xiàn)已畫好的函數(shù)圖象,讓學(xué)生觀察圖象上的點變化的過程,確認(rèn)函數(shù)值隨著自變量的變化而變化的規(guī)律.
讓學(xué)生歸納函數(shù)的圖象的性質(zhì).
老師作總結(jié).
歸納:(1)二次函數(shù)的圖象是拋物線,并且開口向上;
(2)二次函數(shù)的圖象的對稱軸是軸;
(3)拋物線與對稱軸的交點叫做拋物線的頂點,那么二次函數(shù)的頂點坐標(biāo)是;
(4)在對稱軸的左邊隨著的增大而減小;在對稱軸的右邊隨著的增大而增大.
實踐一
一、1.利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì):
(1);
(2).
利用畫函數(shù)圖象工具。觀察、比較兩圖象之間的關(guān)系。
2.練習(xí):利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì):
(1);
(2).
學(xué)生觀察、總結(jié)、交流
二、1.利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì),尋找兩圖象之間的關(guān)系:
(1),;
(2),.
利用畫函數(shù)圖象工具.
2.練習(xí):利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象:
,,
觀察三條拋物線的相互關(guān)系,并分別指出它們的開口方向及對稱軸、頂點的位置.你能說出拋物線的開口方向及對稱軸、頂點的位置嗎?
利用畫函數(shù)圖象工具.
三、1.利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì),尋找三個圖象之間的關(guān)系:
(1),;
(2),;
(3),.
利用畫函數(shù)圖象工具.
2.不畫出圖象,你能說明拋物線與之間的關(guān)系嗎?
四、1.利用畫函數(shù)圖象工具在同一直角坐標(biāo)系下畫出下列函數(shù)的圖象,并觀察圖象,說出圖象性質(zhì),尋找三個圖象之間的關(guān)系:
(1),,;
(2),,;
(3),,.
利用畫函數(shù)圖象工具.教師指出就叫拋物線的頂點式。
2.把拋物線向左平移3個單位,再向下平移4個單位,所得的拋物線的函數(shù)關(guān)系式為.
討論二次函數(shù)的圖象可由函數(shù)怎樣平移而得到?
歸納:由函數(shù)的圖象沿對稱軸向上(下)平移個單位(為向上,為向下),
向右(左)平移個單位(為向右,為向左)得到函數(shù)的圖象.
實踐二1.由二次函數(shù)解析式能否寫出它的一般式.
2.討論二次函數(shù)的圖象怎樣畫,它的開口方向、對稱軸和頂點坐標(biāo)分別是什么?學(xué)生努力把它變形為頂點式
牛刀小試(1)拋物線,當(dāng)x=時,y有最值,是.
(2)當(dāng)m=時,拋物線開口向下.
(3)已知函數(shù)是二次函數(shù),它的圖象開口,當(dāng)x時,y隨x的增大而增大.
(4)拋物線的開口,對稱軸是,頂點坐標(biāo)是,它可以看作是由拋物線向平移個單位得到的.
(5)函數(shù),當(dāng)x時,函數(shù)值y隨x的增大而減小.當(dāng)x時,函數(shù)取得最值,最值y=.
(6)畫圖填空:拋物線的開口,對稱軸是,頂點坐標(biāo)是,它可以看作是由拋物線向平移個單位得到的.
(7)將拋物線如何平移可得到拋物線()
A.向左平移4個單位,再向上平移1個單位
B.向左平移4個單位,再向下平移1個單位
C.向右平移4個單位,再向上平移1個單位
D.向右平移4個單位,再向下平移1個單位
(8)拋物線可由拋物線向平移個單位,再向平移個單位而得到.
(9)二次函數(shù)的對稱軸是.
(10)二次函數(shù)的圖象的頂點是,當(dāng)x時,y隨x的增大而減小.
通過網(wǎng)絡(luò)完成,然后反饋.
小結(jié)1、會用描點法畫出二次函數(shù)的圖象,概括出圖象的特點及函數(shù)的性質(zhì).
2、會用工具畫出、、、這幾類函數(shù)的圖象,通過比較,了解這幾類函數(shù)的性質(zhì).
3、熟練掌握二次函數(shù)、、、這幾類函數(shù)圖象間的平移規(guī)律.
4、能通過配方把二次函數(shù)化成+k的形式,從而確定這類二次函數(shù)的性質(zhì).
作業(yè)1.在同一直角坐標(biāo)系中,畫出下列函數(shù)的圖象.
(1)(2)
2.填空:
(1)拋物線,當(dāng)x=時,y有最值,是.
(2)當(dāng)m=時,拋物線開口向下.
(3)已知函數(shù)是二次函數(shù),它的圖象開口,當(dāng)x時,y隨x的增大而增大.
3.已知拋物線,求出它的對稱軸和頂點坐標(biāo),并畫出函數(shù)的圖象.
4.利用配方法,把下列函數(shù)寫成+k的形式,并寫出它們的圖象的開口方向、對稱軸和頂點坐標(biāo).
(1)
(2)
萬能初中數(shù)學(xué)教案模板篇6
教學(xué)目標(biāo)
1.理解二元一次方程及二元一次方程的解的概念;
2.學(xué)會求出某二元一次方程的幾個解和檢驗?zāi)硨?shù)值是否為二元一次方程的解;
3.學(xué)會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學(xué)重點、難點
重點:二元一次方程的意義及二元一次方程的解的概念.
難點:把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程.
教學(xué)過程
1.情景導(dǎo)入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領(lǐng)取生活補助,得到方程:80a+150b=902880.2.
2.新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1次的方程叫做二元一次方程.
3.合作學(xué)習(xí):
給定方程x+2y=8,男同學(xué)給出y(x取絕對值小于10的整數(shù))的值,女同學(xué)馬上給出對應(yīng)的x的值;接下來男女同學(xué)互換.(比一比哪位同學(xué)反應(yīng)快)請算的最快最準(zhǔn)確的同學(xué)講他的計算方法.提問:給出x的值,計算y的值時,y的系數(shù)為多少時,計算y最為簡便?
4.課堂練習(xí):
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當(dāng)x=2時,y=_
5.課堂總結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關(guān)性;
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
作業(yè)布置
本章的課后的方程式鞏固提高練習(xí)。
萬能初中數(shù)學(xué)教案模板篇7
一、教學(xué)目標(biāo):
知識與技能:理解掌握有理數(shù)的減法法則,會將有理數(shù)的減法運算轉(zhuǎn)化為加法運算。
過程與方法:通過把減法運算轉(zhuǎn)化為加法運算,向?qū)W生滲透轉(zhuǎn)化思想,通過有理數(shù)的減法運算,培養(yǎng)學(xué)生的運算能力。
情感態(tài)度與價值觀:通過揭示有理數(shù)的減法法則,滲透事物間普遍聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義思想。
二、教學(xué)重點:運用有理數(shù)的減法法則,熟練進行減法運算。
三、教學(xué)難點:理解有理數(shù)減法法則。
四、教材分析:本節(jié)是在學(xué)習(xí)了正負數(shù)、相反數(shù)、有理數(shù)加法運算之后,以初中代數(shù)第一冊第53頁的有理數(shù)減法法則及有理數(shù)減法運算的例1、例2為課堂教學(xué)內(nèi)容。有理數(shù)的減法運算是一種基本的有理數(shù)運算,對今后正確熟練地進行有理數(shù)的混合運算,并對解決實際問題都有十分重要的作用。
五、教學(xué)方法:師生互動法
六、教具:幻燈片
七、課時:1課時
八、教學(xué)過程:
1、計算(口答):
(1)1+(-2)
(2)-10+(+3)
(3)+10+(-3)
2、出示幻燈片二:
如圖:
這是20__年11月某天北京的溫度為-3~3℃,它的確切含義是什么?這一天北京的溫差是多少?
教師引導(dǎo)觀察
教師總結(jié):這就是我們今天要學(xué)習(xí)的內(nèi)容(引入新課,板書課題)
1、師:誰能把10-3=7這個式子中的性質(zhì)符號補出來呢?
(+10)-(+3)=7
再計算:(+10)+(-3),師讓學(xué)生觀察兩式結(jié)果,由此得到:
(+10)-(+3)=(+10)+(-3)
觀察減法是否可以轉(zhuǎn)化為加法計算呢?是如何轉(zhuǎn)化的呢?
(教師發(fā)揮主導(dǎo)作用,注意學(xué)生的參與意識)
2、再看一題:
計算:(-10)-(-3)
教師啟發(fā):要解決這個問題,根據(jù)有理數(shù)減法的意義,這就是要求一個數(shù)使它與-3相加會得到-10,那么這個數(shù)是多少?
問題:計算:(-10)+(+3)
教師引導(dǎo),學(xué)生觀察上述兩題結(jié)果,由此得到
(-10)-(-3)=(-10)+(+3)
教師進一步引導(dǎo)學(xué)生觀察式子,你能得到什么結(jié)論呢?
教師總結(jié):由以上兩式可以看出減法運算可以轉(zhuǎn)化成加法運算。
教師提問:通過以上的學(xué)習(xí),同學(xué)們想一想兩個有理數(shù)相減的法則是什么?
教師對學(xué)生回答給予點評,總結(jié)有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
強調(diào)法則:(1)減法轉(zhuǎn)化為加法,減數(shù)要變成相反數(shù)(2)法則適用于任何兩個有理數(shù)相減(3)用字母表示一般形式為a-b=a+(-b)
3、例題講解:
出示幻燈片三(例1和例2)
例1計算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教師板書做示范,強調(diào)解題的規(guī)范性,然后師生共同總結(jié)解題步驟,(1)轉(zhuǎn)化(2)進行加法運算。
例2:小明家蔬菜大棚的氣溫是24℃,此時棚外的氣溫是-13℃,棚內(nèi)氣溫比棚外氣溫高多少攝氏度?
師巡視指導(dǎo),最后師生講評兩個學(xué)生的解題過程。
課后練習(xí)1、2
教師巡視指導(dǎo)
師組織學(xué)生自己編題
1、談?wù)劚竟?jié)課你有哪些收獲和體會?[
2、本節(jié)課涉及的數(shù)學(xué)思想和數(shù)學(xué)方法是什么
教師點評:有理數(shù)減法法則是一個轉(zhuǎn)化法則,要求同學(xué)們掌握并能應(yīng)用進行計算。
課堂檢測(包括基礎(chǔ)題和能力提高題)
1、-9-(-11)
2、3-15
3、-37-12
4、水銀的凝固點是-38.87℃,酒精的凝固點是-117.3℃。水銀的凝固點比酒精的凝固點高多少攝氏度?
學(xué)生思考后搶答,盡量照顧不同層次的學(xué)生參與的積極性。
學(xué)生觀察思考如何計算
學(xué)生觀察思考
互相討論
學(xué)生口述解題過程
由兩個學(xué)生板演,其他學(xué)生在練習(xí)本上做
第1小題學(xué)生搶答
第2小題找兩個學(xué)生板演。
學(xué)生回答
學(xué)生相互交流自己的收獲和體會,教師參與互動并給予鼓勵性評價。
綜合考查學(xué)以致用
既復(fù)習(xí)鞏固有理數(shù)加法法則,同時為進行有理數(shù)減法運算打下基礎(chǔ)
創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的認(rèn)知興趣。
讓學(xué)生通過嘗試,自己認(rèn)識減法可以轉(zhuǎn)化為加法計算。
學(xué)生通過一個問題易于充分發(fā)揮學(xué)習(xí)的主動性,同時也培養(yǎng)了學(xué)生分析問題的能力
可以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)風(fēng)和良好的學(xué)習(xí)習(xí)慣,同時鍛煉學(xué)生的表達能力
可以照顧不層次的學(xué)生,調(diào)動學(xué)生學(xué)習(xí)積極性。
通過練習(xí)讓學(xué)生進一步鞏固新知,體驗知識的應(yīng)用性。
能增強學(xué)生學(xué)習(xí)的&39;主動性和參與意識。
學(xué)生嘗試小結(jié),疏理知識,自由發(fā)表學(xué)習(xí)心得,能鍛煉學(xué)生的語言表達能力和歸納概括能力。
鍛煉學(xué)生綜合運用知識,獨立解題的能力
板書設(shè)計:
2.6有理數(shù)的減法
有理數(shù)減法法則:
(+10)-(+3)=(+10)+(-3)
(-10)-(-3)=(-10)+(+3)
減去一個數(shù)等于加上這個數(shù)的相反數(shù).例1:
例2:
練習(xí):
教學(xué)反思:
本節(jié)課我在問題探索過程中,以提問的形式展現(xiàn)新問題,激發(fā)學(xué)生的好奇心,學(xué)生學(xué)習(xí)的積極性很高,討論交流的氣氛很熱烈,解決問題后有一種成就感,從而使學(xué)生更積極主動的學(xué)習(xí),并且營造了良好的學(xué)習(xí)氛圍,從而收到較好的學(xué)習(xí)效果。
萬能初中數(shù)學(xué)教案模板篇8
一、案例實施背景
教材為人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書七年級數(shù)學(xué)(下冊)。
二、案例主題分析與設(shè)計
本節(jié)課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書七年級數(shù)學(xué)(下冊)第五章第3節(jié)內(nèi)容——5.3.1平行線的性質(zhì),它是直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是“空間與圖形”的重要組成部分。
《數(shù)學(xué)課程標(biāo)準(zhǔn)》強調(diào):數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué),是師生之間、生生之間交往互動與共同發(fā)展的過程;動手實踐,自主探索,合作交流是孩子學(xué)習(xí)數(shù)學(xué)的重要方式;合作交流的學(xué)習(xí)形式是培養(yǎng)孩子積極參與、自主學(xué)習(xí)的有效途徑。本節(jié)課將以“生活?數(shù)學(xué)”“活動?思考”“表達?應(yīng)用”為主線開展課堂教學(xué),以學(xué)生看得到、感受得到的基本素材創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生活動,并在活動中激發(fā)學(xué)生認(rèn)真思考、積極探索,主動獲取數(shù)學(xué)知識,從而促進學(xué)生研究性學(xué)習(xí)方式的形成,同時通過小組內(nèi)學(xué)生相互協(xié)作研究,培養(yǎng)學(xué)生合作性學(xué)習(xí)精神。
三、案例教學(xué)目標(biāo)
1.知識與技能:掌握平行線的性質(zhì),能應(yīng)用性質(zhì)解決相關(guān)問題。
2.數(shù)學(xué)思考:在平行線的性質(zhì)的探究過程中,讓學(xué)生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。
3.解決問題:通過探究平行線的性質(zhì),使學(xué)生形成數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神。
4.情感態(tài)度與價值觀:在探究活動中,讓學(xué)生獲得親自參與研究的情感體驗,從而增強學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和團結(jié)合作、勇于探索、鍥而不舍的精神。
四、案例教學(xué)重、難點
1.重點:對平行線性質(zhì)的掌握與應(yīng)用。
2.難點:對平行線性質(zhì)1的探究。
五、案例教學(xué)用具
1.教具:多媒體平臺及多媒體課件.
2.學(xué)具:三角尺、量角器、剪刀。
六、案例教學(xué)過程
1.創(chuàng)設(shè)情境,設(shè)疑激思
⑴播放一組幻燈片。
內(nèi)容:①供火車行駛的鐵軌上;②游泳池中的泳道隔欄;③橫格紙中的線。
⑵提問溫故:日常生活中我們經(jīng)常會遇到平行線,你能說出直線平行的條件嗎?
⑶學(xué)生活動:針對問題,學(xué)生思考后回答——①同位角相等兩直線平行;②內(nèi)錯角相等兩直線平行;③同旁內(nèi)角互補兩直線平行。
⑷教師肯定學(xué)生的回答并提出新問題:若兩直線平行,那么同位角、內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系呢?從而引出課題:7.2探索平行線的性質(zhì)(板書)。
2.數(shù)形結(jié)合,探究性質(zhì)
⑴畫圖探究,歸納猜想。
教師提要求,學(xué)生實踐操作:任意畫出兩條平行線(a∥b),畫一條截線c與這兩條平行線相交,標(biāo)出8個角。(統(tǒng)一采用阿拉伯?dāng)?shù)字標(biāo)角)
教師提出研究性問題一:
指出圖中的同位角,并度量這些角,填寫結(jié)果:
第一組:同位角()()角的度數(shù)()()數(shù)量關(guān)系()
第二組:同位角()()角的度數(shù)()()數(shù)量關(guān)系()
第三組:同位角()()角的度數(shù)()()數(shù)量關(guān)系()
第四組:同位角()()角的度數(shù)()()數(shù)量關(guān)系()
教師提出研究性問題二:
將圖中的同位角任先一組剪下后疊合。學(xué)生活動一:畫圖—剪圖—疊合—猜想學(xué)生活動二:畫圖—剪圖—疊合—猜想讓學(xué)生根據(jù)活動得出的數(shù)據(jù)與操作得出的結(jié)果歸納猜想:兩直線平行,同位角相等。
教師提出研究性問題三:
再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?
學(xué)生活動:探究、按小組討論,最后得出結(jié)論:仍然成立。
⑵教師用《幾何畫板》課件驗證猜想,讓學(xué)生直觀感受猜想
⑶教師展示平行線性質(zhì)1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
3.引申思考,培養(yǎng)創(chuàng)新
教師提出研究性問題四:
請判斷兩條平行線被第三條直線所截,內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系?學(xué)生活動:獨立探究——小組討論——成果展示。
教師活動:評價學(xué)生的研究成果,并引導(dǎo)學(xué)生說理
因為a∥b(已知)所以∠1=∠2(兩直線平行,同位角相等)
又∠1=∠3(對頂角相等)∠1+∠4=180°(鄰補角的定義)
所以∠2=∠3(等量代換)∠2+∠4=180°(等量代換)
教師展示:平行線性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等。(兩直線平行,內(nèi)錯角相等)
平行線性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補。(兩直線平行,同旁內(nèi)角互補)
4.實際應(yīng)用,優(yōu)勢互補
⑴(搶答)課本P21練一練
1、2及習(xí)題5.3
1、3.
⑵(討論解答)課本P22習(xí)題5.
32、
4、5.
5.課堂總結(jié):
這節(jié)課你有哪些收獲?
⑴學(xué)生總結(jié):平行線的性質(zhì)
1、
2、3.⑵教師補充總結(jié):
①用“運動”的觀點觀察數(shù)學(xué)問題;(如前面將同位角剪下疊合后分析問題)。
②用數(shù)形結(jié)合的方法來解決問題;(如我們前面將同位角測量后分析問題)。③用準(zhǔn)確的語言來表達問題(如平行線的性質(zhì)
1、
2、3的表述)。
④用邏輯推理的形式來論證問題。(如我們前面對性質(zhì)2和3的說理過程)
6.作業(yè)。學(xué)習(xí)與評價:P236(選擇);P24
7、12(拓展與延伸)。
七、教學(xué)反思
數(shù)學(xué)課要注重引導(dǎo)學(xué)生探索與獲取知識的過程而不單注重學(xué)生對知識內(nèi)容的認(rèn)識,因為“過程”不僅能引導(dǎo)學(xué)生更好地理解知識,還能夠引導(dǎo)學(xué)生在活動中思考,更好地感受知識的價值,增強應(yīng)用數(shù)學(xué)知識解決問題的意識;感受生活與數(shù)學(xué)的聯(lián)系,獲得“情感、態(tài)度、價值觀”方面的體驗。這節(jié)課的教學(xué)實現(xiàn)了三個方面的轉(zhuǎn)變:
1.教的轉(zhuǎn)變
本節(jié)課教師的角色從知識的傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者。教師成為了學(xué)生的導(dǎo)師、伙伴、甚至成為了學(xué)生的學(xué)生,在課堂上除了導(dǎo)引學(xué)生活動外,還要認(rèn)真聆聽學(xué)生“教”你他們活動的過程和通過活動所得的知識或方法。
2.學(xué)的轉(zhuǎn)變
學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀W(xué),跟老師學(xué)轉(zhuǎn)變?yōu)樽灾魅W(xué)。本節(jié)課學(xué)生不是停留在學(xué)會課本知識的層面上,而是站在研究者的角度深入其境,不是簡單地“學(xué)”數(shù)學(xué),而是深入地“做”數(shù)學(xué)。
3.課堂氛圍的轉(zhuǎn)變
整節(jié)課以“流暢、開放、合作、隱導(dǎo)”為基本特征,教師對學(xué)生的思維活動減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學(xué)生與學(xué)生、學(xué)生與教師之間以“對話”“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學(xué)生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
總之,在數(shù)學(xué)教學(xué)的花園里,教師只要為學(xué)生布置好和諧的場景和明晰的路標(biāo),然后就讓他們自由地快活地去跳舞吧!
萬能初中數(shù)學(xué)教案模板篇9
一、說課內(nèi)容:
人教版九年級數(shù)學(xué)下冊的二次函數(shù)的概念及相關(guān)習(xí)題
二、教材分析:
1、教材的地位和作用
這節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了一次函數(shù)、正比例函數(shù)、反比例函數(shù)的基礎(chǔ)上,來學(xué)習(xí)二次函數(shù)的概念。二次函數(shù)是初中階段研究的最后一個具體的函數(shù),也是最重要的,在歷年來的中考題中占有較大比例。同時,二次函數(shù)和以前學(xué)過的一元二次方程、一元二次不等式有著密切的聯(lián)系。進一步學(xué)習(xí)二次函數(shù)將為它們的解法提供新的方法和途徑,并使學(xué)生更為深刻的理解數(shù)形結(jié)合的重要思想。而本節(jié)課的二次函數(shù)的概念是學(xué)習(xí)二次函數(shù)的基礎(chǔ),是為后來學(xué)習(xí)二次函數(shù)的圖象做鋪墊。所以這節(jié)課在整個教材中具有承上啟下的重要作用。
2、教學(xué)目標(biāo)和要求:
(1)知識與技能:使學(xué)生理解二次函數(shù)的概念,掌握根據(jù)實際問題列出二次函數(shù)關(guān)系式的方法,并了解如何根據(jù)實際問題確定自變量的取值范圍。
(2)過程與方法:復(fù)習(xí)舊知,通過實際問題的引入,經(jīng)歷二次函數(shù)概念的探索過程,提高學(xué)生解決問題的能力.
(3)情感、態(tài)度與價值觀:通過觀察、操作、交流歸納等數(shù)學(xué)活動加深對二次函數(shù)概念的理解,發(fā)展學(xué)生的數(shù)學(xué)思維,增強學(xué)好數(shù)學(xué)的愿望與信心.
3、教學(xué)重點:對二次函數(shù)概念的理解。
4、教學(xué)難點:由實際問題確定函數(shù)解析式和確定自變量的取值范圍。
三、教法學(xué)法設(shè)計:
1、從創(chuàng)設(shè)情境入手,通過知識再現(xiàn),孕伏教學(xué)過程
2、從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程
3、利用探索、研究手段,通過思維深入,領(lǐng)悟教學(xué)過程
四、教學(xué)過程:
(一)復(fù)習(xí)提問
1.什么叫函數(shù)?我們之前學(xué)過了那些函數(shù)?
(一次函數(shù),正比例函數(shù),反比例函數(shù))
2.它們的形式是怎樣的?
(y=kx+b,ky=kx,ky=,k0)
3.一次函數(shù)(y=kx+b)的自變量是什么?函數(shù)是什么?常量是什么?為什么要有k0的條件?k值對函數(shù)性質(zhì)有什么影響?
【設(shè)計意圖】復(fù)習(xí)這些問題是為了幫助學(xué)生弄清自變量、函數(shù)、常量等概念,加深對函數(shù)定義的理解.強調(diào)k0的條件,以備與二次函數(shù)中的a進行比較.
(二)引入新課
函數(shù)是研究兩個變量在某變化過程中的相互關(guān)系,我們已學(xué)過正比例函數(shù),反比例函數(shù)和一次函數(shù)。看下面三個例子中兩個變量之間存在怎樣的關(guān)系。(電腦演示)
例1、(1)圓的半徑是r(cm)時,面積s(cm2)與半徑之間的關(guān)系是什么?
解:s=0)
例2、用周長為20m的籬笆圍成矩形場地,場地面積y(m2)與矩形一邊長x(m)之間的關(guān)系是什么?
解:y=x(20/2-x)=x(10-x)=-x2+10x(0
例3、設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利息自動按一年定期儲蓄轉(zhuǎn)存。如果存款額是100元,那么請問兩年后的本息和y(元)與x之間的關(guān)系是什么(不考慮利息稅)?
解:y=100(1+x)2
=100(x2+2x+1)
=100x2+200x+100(0
教師提問:以上三個例子所列出的函數(shù)與一次函數(shù)有何相同點與不同點?
【設(shè)計意圖】通過具體事例,讓學(xué)生列出關(guān)系式,啟發(fā)學(xué)生觀察,思考,歸納出二次函數(shù)與一次函數(shù)的聯(lián)系:(1)函數(shù)解析式均為整式(這表明這種函數(shù)與一次函數(shù)有共同的特征)。(2)自變量的最高次數(shù)是2(這與一次函數(shù)不同)。
(三)講解新課
以上函數(shù)不同于我們所學(xué)過的一次函數(shù),正比例函數(shù),反比例函數(shù),我們就把這種函數(shù)稱為二次函數(shù)。
二次函數(shù)的定義:形如y=ax2+bx+c(a0,a,b,c為常數(shù))的函數(shù)叫做二次函數(shù)。
鞏固對二次函數(shù)概念的理解:
1、強調(diào)形如,即由形來定義函數(shù)名稱。二次函數(shù)即y是關(guān)于x的二次多項式(關(guān)于的x代數(shù)式一定要是整式)。
2、在y=ax2+bx+c中自變量是x,它的取值范圍是一切實數(shù)。但在實際問題中,自變量的取值范圍是使實際問題有意義的值。(如例1中要求r0)
3、為什么二次函數(shù)定義中要求a?
(若a=0,ax2+bx+c就不是關(guān)于x的二次多項式了)
4、在例3中,二次函數(shù)y=100x2+200x+100中,a=100,b=200,c=100.
5、b和c是否可以為零?
由例1可知,b和c均可為零.
若b=0,則y=ax2+c;
若c=0,則y=ax2+bx;
若b=c=0,則y=ax2.
注明:以上三種形式都是二次函數(shù)的特殊形式,而y=ax2+bx+c是二次函數(shù)的一般形式.
【設(shè)計意圖】這里強調(diào)對二次函數(shù)概念的理解,有助于學(xué)生更好地理解,掌握其特征,為接下來的判斷二次函數(shù)做好鋪墊。
判斷:下列函數(shù)中哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a、b、c.
(1)y=3(x-1)2+1(2)
(3)s=3-2t2(4)y=(x+3)2-x2
(5)s=10r2(6)y=22+2x
(8)y=x4+2x2+1(可指出y是關(guān)于x2的二次函數(shù))
【設(shè)計意圖】理論學(xué)習(xí)完二次函數(shù)的概念后,讓學(xué)生在實踐中感悟什么樣的函數(shù)是二次函數(shù),將理論知識應(yīng)用到實踐操作中。
(四)鞏固練習(xí)
1.已知一個直角三角形的兩條直角邊長的和是10cm。
(1)當(dāng)它的一條直角邊的長為4.5cm時,求這個直角三角形的面積;
(2)設(shè)這個直角三角形的面積為Scm2,其中一條直角邊為xcm,求S關(guān)
于x的函數(shù)關(guān)系式。
【設(shè)計意圖】此題由具體數(shù)據(jù)逐步過渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過程,從而降低學(xué)生學(xué)習(xí)的難度。
2.已知正方體的棱長為xcm,它的表面積為Scm2,體積為Vcm3。
(1)分別寫出S與x,V與x之間的函數(shù)關(guān)系式子;
(2)這兩個函數(shù)中,那個是x的二次函數(shù)?
【設(shè)計意圖】簡單的實際問題,學(xué)生會很容易列出函數(shù)關(guān)系式,也很容易分辨出哪個是二次函數(shù)。通過簡單題目的練習(xí),讓學(xué)生體驗到成功的歡愉,激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
3.設(shè)圓柱的高為h(cm)是常量,底面半徑為rcm,底面周長為Ccm,圓柱的體積為Vcm3
(1)分別寫出C關(guān)于r;V關(guān)于r的函數(shù)關(guān)系式;
(2)兩個函數(shù)中,都是二次函數(shù)嗎?
【設(shè)計意圖】此題要求學(xué)生熟記圓柱體積和底面周長公式,在這兒相當(dāng)于做了一次復(fù)習(xí),并與今天所學(xué)知識聯(lián)系起來。
4.籬笆墻長30m,靠墻圍成一個矩形花壇,寫出花壇面積y(m2)與長x之間的函數(shù)關(guān)系式,并指出自變量的取值范圍.
【設(shè)計意圖】此題較前面幾題稍微復(fù)雜些,旨在讓學(xué)生能夠開動腦筋,積極思考,讓學(xué)生能夠跳一跳,夠得到。
(五)拓展延伸
1.已知二次函數(shù)y=ax2+bx+c,當(dāng)x=0時,y=0;x=1時,y=2;x=-1時,y=1.求a、b、c,并寫出函數(shù)解析式.
【設(shè)計意圖】在此稍微滲透簡單的用待定系數(shù)法求二次函數(shù)解析式的問題,為下節(jié)課的教學(xué)做個鋪墊。
2.確定下列函數(shù)中k的值
(1)如果函數(shù)y=xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______
(2)如果函數(shù)y=(k-3)xk^2-3k+2+kx+1是二次函數(shù),則k的值一定是______
【設(shè)計意圖】此題著重復(fù)習(xí)二次函數(shù)的特征:自變量的最高次數(shù)為2次,且二次項系數(shù)不為0.
(六)小結(jié)思考:
本節(jié)課你有哪些收獲?還有什么不清楚的地方?
【設(shè)計意圖】讓學(xué)生來談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識進行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補充。
(七)作業(yè)布置:
必做題:
1.正方形的邊長為4,如果邊長增加x,則面積增加y,求y關(guān)于x的函數(shù)關(guān)系式。這個函數(shù)是二次函數(shù)嗎?
2.在長20cm,寬15cm的矩形木板的四角上各鋸掉一個邊長為xcm的正方形,寫出余下木板的面積y(cm2)與正方形邊長x(cm)之間的函數(shù)關(guān)系,并注明自變量的取值范圍。
選做題:
1.已知函數(shù)是二次函數(shù),求m的值。
2.試在平面直角坐標(biāo)系畫出二次函數(shù)y=x2和y=-x2圖象
【設(shè)計意圖】作業(yè)中分為必做題與選做題,實施分層教學(xué),體現(xiàn)新課標(biāo)人人學(xué)有價值的.數(shù)學(xué),不同的人得到不同的發(fā)展。另外補充第4題,旨在激發(fā)學(xué)生繼續(xù)學(xué)習(xí)二次函數(shù)圖象的興趣。
五、教學(xué)設(shè)計思考
以實現(xiàn)教學(xué)目標(biāo)為前提
以現(xiàn)代教育理論為依據(jù)
以現(xiàn)代信息技術(shù)為手段
貫穿一個原則以學(xué)生為主體的原則
突出一個特色充分鼓勵表揚的特色
滲透一個意識應(yīng)用數(shù)學(xué)的意識
萬能初中數(shù)學(xué)教案模板篇10
學(xué)習(xí)目標(biāo)
1、學(xué)會用公式法因式法分解
2、綜合運用提取公式法、公式法分解因式
學(xué)習(xí)重難點重點:
完全平方公式分解因式.
難點:綜合運用兩種公式法因式分解
自學(xué)過程設(shè)計
完全平方公式:
完全平方公式的逆運用:
做一做:
1.(1)16x2-8x+_______=(4x-1)2;
(2)_______+6x+9=(x+3)2;
(3)16x2+_______+9y2=(4x+3y)2;
(4)(a-b)2-2(a-b)+1=(______-1)2.
2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)
3.下列因式分解正確的是()
A.x2+y2=(x+y)2B.x2-xy+x2=(x-y)2
C.1+4x-4x2=(1-2x)2D.4-4x+x2=(x-2)2
4.分解因式:(1)x2-22x+121(2)-y2-14y-49(3)(a+b)2+2(a+b)+1
5.計算:20062-40102006+20052=___________________.
6.若x+y=1,則x2+xy+y2的值是_________________.
想一想
你還有哪些地方不是很懂?請寫出來。
____________________________________________________________________________________預(yù)習(xí)展示一:
1.判別下列各式是不是完全平方式.
2、把下列各式因式分解:
(1)-x2+4xy-4y2
(2)3ax2+6axy+3ay2
(3)(2x+y)2-6(2x+y)+9
應(yīng)用探究:
1、用簡便方法計算
49.92+9.98+0.12
拓展提高:
(1)(a2+b2)(a2+b210)+25=0求a2+b2
(2)4x2+y2-4xy-12x+6y+9=0
求x、y關(guān)系
(3)分解因式:m4+4
教后反思 考察利用公式法因式分解的題目不會很難,但是需要學(xué)生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對學(xué)生來說會難一些。
萬能初中數(shù)學(xué)教案模板篇11
預(yù)習(xí)要求:看教科書第2—3頁,做一做練習(xí)一第1-3題。
教學(xué)目標(biāo):
1.通過把長方形或正方形折、剪、拼等活動,直觀認(rèn)識三角形和平行四邊形,知道這兩個圖形的名稱;并能識別三角形和平行四邊形,初步知道它們在日常生活中的應(yīng)用。
2.在折圖形、剪圖形、拼圖形等活動中,體會圖形的變換,發(fā)展對圖形的空間想象能力。
3.在學(xué)習(xí)活動中積累對數(shù)學(xué)的興趣,增強與同學(xué)交往、合作的意識。
教學(xué)重點:
直觀認(rèn)識三角形和平行四邊形,知道它們的名稱,并能識別這些圖形,知道它們在日常生活中的應(yīng)用。
教學(xué)難點:
讓學(xué)生動手在釘子板上圍、用小棒拼平行四邊形。
教學(xué)用具:
長方形模型、長方形和正方形的紙、課件、小棒。
教學(xué)過程:
一、復(fù)習(xí)鋪墊
出示長方形問“小朋友們,誰愿意來介紹一下這位老朋友?他介紹得對嗎?”接著出示第二個圖形(正方形),問:“這個老朋友又是誰呢?”再出示圓:“它叫什么名字?這是我們已經(jīng)認(rèn)識的長方形、正方形和圓三位老朋友。我發(fā)現(xiàn)你們很喜歡折紙,是嗎?今天我特意為大家準(zhǔn)備了一個折紙的游戲,高興嗎?
二、啟發(fā)思維、引出新知
1.認(rèn)識三角形
(1)教師出示一張正方形紙,提問:這是什么圖形?
學(xué)生回答:這是正方形。
師:你能把一張正方形紙對折成一樣的兩部分嗎?
學(xué)生活動,教師巡視,了解學(xué)生折紙的情況。
組織學(xué)生交流你是怎樣折的,折出了什么圖形?
師:我們現(xiàn)在折出來的是一個什么圖形呢?
生答:三角形。
師:小朋友們一下就認(rèn)識了我們的新朋友。對了,這就是三角形。出示并貼上三角形。
板書:三角形
(2)提問:這樣的圖形好像在哪兒也看到過?想一想?
先在小組里交流。學(xué)生回答。
老師也帶來了幾個三角形。
師小結(jié):在我們的生活中有許多物體的面是三角形面,只要小朋友多觀察,就會有更多的發(fā)現(xiàn)。
2.認(rèn)識平行四邊形
(1)這是一張什么形狀的紙?(演示長方形紙)怎樣折一下,把它折成兩個完全一樣的三角形?
(2)學(xué)生先想一想,然后同桌商量著試折。教師巡視
(3)交流。你們會像他一樣折嗎?
(4)折好后把兩個三角形剪下來。要想知道這兩個三角形是不是完全一樣,你能有什么辦法?(把它們疊在一起)這就是完全一樣。
(5)現(xiàn)在我們手里都有這樣兩個一樣的三角形,用它們拼一拼,看看能拼出什么圖形?學(xué)生分組活動,教師巡視。
交流探討。同學(xué)們可能拼出以下幾種圖形:三角形、長方形、四邊形、平行四邊形。每出現(xiàn)一種拼法,請一位同學(xué)在投影儀上向大家展示。
師:這個圖形真漂亮,它叫什么名字呀!這個圖形就是我們要認(rèn)識的另一個新朋友——平行四邊形。(出示圖形,并板書:平行四邊形)(板書)
出示一個長方形的模型,提問:“這個圖形的面是一個什么圖形?”學(xué)生回答后,老師將這個長方形輕輕拉動,這時出現(xiàn)的是一個平行四邊形。提問:“現(xiàn)在這個圖形的面變成了一個什么圖形?”
小結(jié):我們已經(jīng)認(rèn)識了長方形,其實只要把它稍微變一變,就是一個平行四邊形了,你看:(演示長方形變平行四邊形)。對我們生活中有很多地方就利用了平行四邊形可以變的特點制作了很多東西,如:籬笆、樓梯、伸縮門、可拉伸的衣架等。
三、體驗深化
(P3做一做2)畫出自己喜歡的圖形
三、練習(xí)鞏固
(1)練習(xí)一第1題。教師在大屏幕上出示練習(xí)一第1題圖,學(xué)生分組找學(xué)過的平面圖形并涂一涂,最后全班交流;
(2)練習(xí)一第2、3題。學(xué)生獨立完成。
板書設(shè)計
萬能初中數(shù)學(xué)教案模板篇12
一、教材分析
1、教材的地位和作用
本課位于人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書七年級下冊第五章第二節(jié)第一課時。主要內(nèi)容是讓學(xué)生在充分感性認(rèn)識的基礎(chǔ)上體會平行線的三種判定方法,它是空間與圖形領(lǐng)域的基礎(chǔ)知識,是《相交線與平行線》的重點,學(xué)習(xí)它會為后面的學(xué)行線性質(zhì)、三角形、四邊形等知識打下堅實的“基石”。同時,本節(jié)學(xué)習(xí)將為加深“角與平行線”的認(rèn)識,建立空間觀念,發(fā)展思維,并能讓學(xué)生在活動的過程中交流分享探索的成果,體驗成功的樂趣,提高運用數(shù)學(xué)的能力。
2、教學(xué)重難點
重 點 三種位置關(guān)系的角的特征;會根據(jù)三種位置關(guān)系的角來判斷兩直線平行的方法。
難 點 “轉(zhuǎn)化”的數(shù)學(xué)思想的培養(yǎng)。
由“說點兒理”到“用符號表示推理”的逐層加深。
二、教學(xué)目標(biāo)
知識目標(biāo) 了解同位角、內(nèi)錯角、同旁內(nèi)角等角的特征,認(rèn)識“直線平行”的三個充分條件及在實際生活中的應(yīng)用。
能力目標(biāo) ①通過觀察、思考探索等活動歸納出三種判定方法,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想,培養(yǎng)學(xué)生動手、分析、解決實際問題的能力。
②通過活動及實際問題的研究引導(dǎo)學(xué)生從數(shù)學(xué)角度發(fā)現(xiàn)和提出問題,并用數(shù)學(xué)方法探索、研究和解決問題。
情感目標(biāo) ①感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的價值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)敢想、敢說、敢解決實際問題的學(xué)習(xí)習(xí)慣。
通過學(xué)生體驗、猜想并證明,讓學(xué)生體會數(shù)學(xué)充滿著探索和創(chuàng)造,培養(yǎng)學(xué)生團結(jié)協(xié)作,勇于創(chuàng)新的精神。
②通過“轉(zhuǎn)化”數(shù)學(xué)思想方法的運用,讓學(xué)生認(rèn)識事物之間是普遍聯(lián)系,相互轉(zhuǎn)化的辯證唯物主義思想。
三、教學(xué)方法
1、采用指導(dǎo)探究法進行教學(xué),主要通過二個師生雙邊活動:①動——師生互動,共同探索。②導(dǎo)——知識類比,合理引導(dǎo)等突出學(xué)生主體地位,讓教師成為學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者,讓學(xué)生親自動手、動腦、動口參與數(shù)學(xué)活動,經(jīng)歷問題的發(fā)生、發(fā)展和解決過程,在解決問題的過程中完成教學(xué)目標(biāo)。
2、根據(jù)學(xué)生實際情況,整堂課圍繞“情景問題——學(xué)生體驗——合作交流”模式,鼓勵學(xué)生積極合作,充分交流,既滿足了學(xué)生對新知識的強烈探索欲望,又排除學(xué)生學(xué)習(xí)幾何方法的缺乏,和學(xué)無所用的思想顧慮。對學(xué)習(xí)有困難的學(xué)生及時給予幫助,讓他們在學(xué)習(xí)的過程中獲得愉快和進步。
3、利用課件輔助教學(xué),突破教學(xué)重難點,擴大學(xué)生知識面,使每個學(xué)生穩(wěn)步提高。
四、教學(xué)流程:
我的教學(xué)流程設(shè)計是:從創(chuàng)設(shè)情境,孕育新知開始,經(jīng)歷探索新知,構(gòu)建模式;解釋新知,落實新知;總結(jié)新知,布置作業(yè)等過程來完成教學(xué)。
創(chuàng)設(shè)情境,孕育新知:
①師生欣賞三幅圖片,讓學(xué)生觀察、思考從幾何圖形上看有什么共同點。
②從學(xué)生經(jīng)歷過的事入手,讓學(xué)生比較兩張獎狀粘貼的好壞,并說明理由,讓學(xué)生留心實際生活,欣賞木工畫平行線的方法。
③落實到學(xué)生是否會畫平行線?本環(huán)節(jié)教師展示圖片,學(xué)生觀察思考,交流回答問題,了解實際生活中平行線的廣泛應(yīng)用。
設(shè)計意圖:通過圖片和動畫展示,貼近學(xué)生生活,激發(fā)學(xué)生的學(xué)習(xí)興趣。從學(xué)生經(jīng)歷過的事入手。讓學(xué)生知道數(shù)學(xué)知識無處不在,應(yīng)用數(shù)學(xué)無時不有。符合“數(shù)學(xué)教學(xué)應(yīng)從生活經(jīng)驗出發(fā)”的新課程標(biāo)準(zhǔn)要求。
2、實驗操作,探索新知1
①由學(xué)生是否會畫平行線導(dǎo)入,用小學(xué)學(xué)過的方法過點P畫直線AB的平行線CD,學(xué)生動手畫并展示。
②學(xué)生思考三角尺起什么作用(教師點撥)?
③學(xué)生動手操作:用學(xué)具塑料條擺兩條平行線被第三條直線所截的模型,并探討圖中角的關(guān)系(同位角)。
④教師把學(xué)生畫平行線的過程和塑料條模型抽象成幾何圖形,指明同位角的位置關(guān)系是截線,被截線的同旁,
歸納:兩直線平行條件1
教師展示一組練習(xí),學(xué)生獨立完成,鞏固新知。
在這一環(huán)節(jié)中,教師應(yīng)關(guān)注:
①學(xué)生能否畫平行線,動手操作是否準(zhǔn)確
②學(xué)生能否獨立探究、參與、合作、交流
設(shè)計意圖:復(fù)習(xí)提問,利用教具、學(xué)具讓學(xué)生動手,提高學(xué)生學(xué)習(xí)興趣,調(diào)動學(xué)生思考和積極性,提高學(xué)生合作交流的能力和質(zhì)量,教師有的放矢,讓學(xué)生掌握重點,培養(yǎng)學(xué)生自主探究的學(xué)習(xí)習(xí)慣和能力。及時練習(xí)鞏固,,體現(xiàn)學(xué)以致用的觀念,消除學(xué)生學(xué)無所用的思想顧慮。
3、大膽猜想,探究新知
⑴學(xué)生分組討論:
①∠2和∠3是什么位置關(guān)系?
∠3和∠4是什么位置關(guān)系?
②直線CD繞O旋轉(zhuǎn)是否還保持上述位置關(guān)系?
③∠2與∠3,∠2與∠4一定相等嗎?猜想,展示討論成果。
⑵學(xué)生探究:
問題:①∠2=∠3能得到AB∥CD嗎?
②∠2+∠4=180可以判定AB∥CD嗎?
學(xué)生用語言表述推理過程,教師深入學(xué)生中并點撥將未知的轉(zhuǎn)化為已知,并規(guī)范推理過程。和學(xué)生一起歸納直線平行的條件2,3。
⑶學(xué)生獨立完成練習(xí)。
本環(huán)節(jié)教師關(guān)注:
①學(xué)生能否主動參與數(shù)學(xué)活動,敢于發(fā)表個人觀點。
②小組團結(jié)協(xié)作程度,創(chuàng)新意識。
③表揚優(yōu)秀小組
設(shè)計意圖:猜想、交流、歸納,符合知識的形成過程,培養(yǎng)學(xué)生轉(zhuǎn)化的數(shù)學(xué)思想,學(xué)會將陌生的轉(zhuǎn)化為熟悉的,將未知的轉(zhuǎn)化為已知的。并用練習(xí)及時鞏固,落實新知與方法,增強學(xué)生運用數(shù)學(xué)的能力。
4、解釋運用,鞏固新知
本環(huán)節(jié)共有五個練習(xí),第一題落實同位角、內(nèi)錯角、同旁內(nèi)角位置特征。第二、三題落實三種判定方法的應(yīng)用。第四、五題是注重學(xué)生動手操作,解決實際問題的訓(xùn)練。
本環(huán)節(jié)教師應(yīng)關(guān)注:
①深入學(xué)生當(dāng)中,對學(xué)習(xí)有困難學(xué)生進行鼓勵,幫助。
②學(xué)生的思維角度是否合理。
設(shè)計意圖:加強學(xué)生運用新知的意識,培養(yǎng)學(xué)生解決實際問題的能力和學(xué)習(xí)數(shù)學(xué)的興趣,讓學(xué)生鞏固所學(xué)內(nèi)容,并進行自我評價,既面向全體學(xué)生,又照顧個別學(xué)有余力的學(xué)生,體現(xiàn)因材施教的原則。
5、總結(jié)新知,布置作業(yè)
通過設(shè)問回答補充的方式小結(jié),學(xué)生自主回答三個問題,教師關(guān)注全體學(xué)生對本節(jié)課知識的程度,學(xué)生是否愿意表達自己的觀點,采用必做題和選做題的方式布置作業(yè)。
設(shè)計意圖:通過提問方式引導(dǎo)學(xué)生進行小結(jié),養(yǎng)成學(xué)習(xí)——總結(jié)——再學(xué)習(xí)的良好習(xí)慣,發(fā)揮自我評價作用,同時可培養(yǎng)學(xué)生的語言表達能力。作業(yè)分層要求,做到面向全體學(xué)生,給基礎(chǔ)好的學(xué)生充分的空間,滿足他們的求知欲。
五、教學(xué)設(shè)計
萬能初中數(shù)學(xué)教案模板篇13
知識技能
會通過“移項”變形求解“ax+b=cx+d”類型的一元一次方程。
數(shù)學(xué)思考
1、經(jīng)歷探索具體問題中的數(shù)量關(guān)系過程,體會一元一次方程是刻畫實際問題的有效數(shù)學(xué)模型。進一步發(fā)展符號意識。
2、通過一元一次方程的學(xué)習(xí),體會方程模型思想和化歸思想。
解決問題
能在具體情境中從數(shù)學(xué)角度和方法解決問題,發(fā)展應(yīng)用意識。
經(jīng)歷從不同角度尋求分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性。
情感態(tài)度
經(jīng)歷觀察、實驗計算、交流等活動,激發(fā)求知欲,體驗探究發(fā)現(xiàn)的快樂。
教學(xué)重點
建立方程解決實際問題,會通過移項解“ax+b=cx+d”類型的一元一次方程。
教學(xué)難點
分析實際問題中的相等關(guān)系,列出方程。
教學(xué)過程
活動一知識回顧
解下列方程:
1、3x+1=4
2、x—2=3
3、2x+0.5x=—10
4、3x—7x=2
提問:解這些方程時,方程的解一般化成什么形式?這些題你采用了那些變形或運算?
教師:前面我們學(xué)習(xí)了簡單的一元一次方程的解法,下面請大家解下列方程。
出示問題(幻燈片)。
學(xué)生:獨立完成,板演2、4題,板演同學(xué)講解所用到的變形或運算,共同講評。
教師提問:(略)
教師追問:變形的依據(jù)是什么?
學(xué)生獨立思考、回答交流。
本次活動中教師關(guān)注:
(1)學(xué)生能否準(zhǔn)確理解運用等式性質(zhì)和合并同列項求解方程。
(2)學(xué)生對解一元一次方程的變形方向(化成x=a的形式)的理解。
通過這個環(huán)節(jié),引導(dǎo)學(xué)生回顧利用等式性質(zhì)和合并同類項對方程進行變形,再現(xiàn)等式兩邊同時加上(或減去)同一個數(shù)、兩邊同時乘以(除以,不為0)同一個數(shù)、合并同類項等運算,為繼續(xù)學(xué)習(xí)做好鋪墊。
活動二問題探究
問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本、這個班有多少學(xué)生?
教師:出示問題(投影片)
提問:在這個問題中,你知道了什么?根據(jù)現(xiàn)有經(jīng)驗?zāi)愦蛩阍趺醋觯?/p>
(學(xué)生嘗試提問)
學(xué)生:讀題,審題,獨立思考,討論交流。
1、找出問題中的已知數(shù)和已知條件。(獨立回答)
2、設(shè)未知數(shù):設(shè)這個班有x名學(xué)生。
3、列代數(shù)式:x參與運算,探索運算關(guān)系,表示相關(guān)量。(討論、回答、交流)
4、找相等關(guān)系:
這批書的總數(shù)是一個定值,表示它的兩個等式相等、(學(xué)生回答,教師追問)
5、列方程:3x+20=4x—25(1)
總結(jié)提問:通過列方程解決實際問題分析時,要經(jīng)歷那些步驟?書寫時呢?
教師提問1:這個方程與我們前面解過的方程有什么不同?
學(xué)生討論后發(fā)現(xiàn):方程的兩邊都有含x的項(3x與4x)和不含字母的常數(shù)項(20與-25)。
教師提問2:怎樣才能使它向x=a的形式轉(zhuǎn)化呢?
學(xué)生思考、探索:為使方程的右邊沒有含x的項,等號兩邊同減去4x,為使方程的左邊沒有常數(shù)項,等號兩邊同減去20。
3x-4x=-25-20(2)
教師提問3:以上變形依據(jù)是什么?
學(xué)生回答:等式的性質(zhì)
歸納:像上面那樣把等式一邊的某項變號后移到另一邊,叫做移項。
師生共同完成解答過程。
設(shè)問4:以上解方程中“移項”起了什么作用?
學(xué)生討論、回答,師生共同整理:
通過移項,含未知數(shù)的項與常數(shù)項分別位于方程左右兩邊,使方程更接近于x=a的形式。
教師提問5:解這個方程,我們經(jīng)歷了那些步驟?列方程時找了怎樣的相等關(guān)系?
學(xué)生思考回答。
教師關(guān)注:
(1)學(xué)生對列方程解決實際問題的一般步驟:設(shè)未知數(shù),列代數(shù)式,列方程,是否清楚?
在參與觀察、比較、嘗試、交流等數(shù)學(xué)活動中,體驗探究發(fā)現(xiàn)成功的快樂。
活動三解法運用
例2解方程
3x+7=32—2x
教師:出示問題
提問:解這個方程時,第一步我們先干什么?
學(xué)生講解,獨立完成,板演。
提問:“移項”是注意什么?
學(xué)生:變號。
教師關(guān)注:學(xué)生“移項”時是否能夠注意變號。
通過這個例題,掌握“ax+b=cx+d”類型的一元一次方程的解法。體驗“移項”這種變形在解方程中的作用,規(guī)范解題步驟。
活動四鞏固提高
1、第91頁練習(xí)(1)(2)
2、某貨運公司要用若干輛汽車運送一批貨物。如果每輛拉6噸,則剩余15噸;如果每輛拉8噸,則差5噸才能將汽車全部裝滿。問運送這批貨物的汽車多少量?
3、小明步行由A地去B地,若每小時走6千米,則比規(guī)定時間遲到1小時;若每小時走8千米,則比規(guī)定時間早到0。5小時。求A、B兩地之間的距離。
教師按順序出示問題。
學(xué)生獨立完成,用實物投影展示部分學(xué)而生練習(xí)。
教師關(guān)注:
1、學(xué)生在計算中可能出現(xiàn)的錯誤。
2、x系數(shù)為分?jǐn)?shù)時,可用乘的辦法,化系數(shù)為1。
3、用實物投影展示學(xué)困生的完成情況,進行評價、鼓勵。
鞏固“ax+b=cx+d”類型的一元一次方程的解法,反饋學(xué)生對解方程步驟的掌握情況和可能出現(xiàn)的計算錯誤。
2、3題的重點是在新情境中引導(dǎo)學(xué)生利用已有經(jīng)驗解決實際問題,達到鞏固提高的目的。
活動五
提問1:今天我們學(xué)習(xí)了解方程的那種變形?它有什么作用、應(yīng)注意什么?
提問2:本節(jié)課重點利用了什么相等關(guān)系,來列的方程?
教師組織學(xué)生就本節(jié)課所學(xué)知識進行小結(jié)。
學(xué)生進行總結(jié)歸納、回答交流,相互完善補充。
教師關(guān)注:學(xué)生能否提煉出本節(jié)課的重點內(nèi)容,如果不能,教師則提出具體問題,引導(dǎo)學(xué)生思考、交流。
引導(dǎo)學(xué)生對本節(jié)所學(xué)知識進行歸納、總結(jié)和梳理,以便于學(xué)生掌握和運用。
萬能初中數(shù)學(xué)教案模板篇14
教學(xué)目標(biāo)
1、經(jīng)歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認(rèn)識。
2、通過驗證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學(xué)知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。
3、通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經(jīng)驗。
4、通過獲得成功的體驗和克服困難的經(jīng)歷,增進數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動增強對數(shù)學(xué)學(xué)習(xí)的興趣。
重點
1、通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認(rèn)識。
2、通過拼圖驗證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗。
難點:利用數(shù)形結(jié)合的方法驗證公式
教學(xué)方法:動手操作,合作探究課型新授課教具投影儀
情景設(shè)置:
你已知道的關(guān)于驗證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨立思考和討論的時間,讓學(xué)生回想前面拼圖。)
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常常可以得到一些有用的式子。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關(guān)公式
提問:還能通過怎樣拼圖來解決以下問題
(1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應(yīng)的等式;
(2)任意寫出一個關(guān)于a、b的二次三項式,如a2+4ab+3b2
試用拼一個長方形的方法,把這個二次三項式因式分解。
這個問題要給予學(xué)生充足的時間和空間進行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時鼓勵學(xué)生在拼圖過程中進行交流合作
了解學(xué)生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
小結(jié):
從這節(jié)課中你有哪些收獲?
(教師應(yīng)給予學(xué)生充分的時間鼓勵學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學(xué)生所說的進行全面的總結(jié)。)
學(xué)生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
學(xué)生拿出準(zhǔn)備好的硬紙板制作
給學(xué)生充分的時間進行拼圖、思考、交流經(jīng)驗,對于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
萬能初中數(shù)學(xué)教案模板篇15
教學(xué)目標(biāo)
1、知識與技能:體會公式的發(fā)現(xiàn)和推導(dǎo)過程,了解公式的幾何背景,理解公式的本質(zhì),會應(yīng)用公式進行簡單的計算.
2、過程與方法:通過讓學(xué)生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.
3、情感態(tài)度價值觀:體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動中獲得成功的體驗與喜悅,樹立學(xué)習(xí)自信心.
教學(xué)重難點
教學(xué)重點:
1、對公式的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點、語言表述(學(xué)生自己的語言)、幾何解釋.
2、會運用公式進行簡單的計算.
教學(xué)難點:
1、完全平方公式的推導(dǎo)及其幾何解釋.
2、完全平方公式的結(jié)構(gòu)特點及其應(yīng)用.
教學(xué)工具
課件
教學(xué)過程
一、復(fù)習(xí)舊知、引入新知
問題1:請說出平方差公式,說說它的結(jié)構(gòu)特點.
問題2:平方差公式是如何推導(dǎo)出來的?
問題3:平方差公式可用來解決什么問題,舉例說明.
問題4:想一想、做一做,說出下列各式的結(jié)果.
(1)(a+b)2(2)(a-b)2
(此時,教師可讓學(xué)生分別說說理由,并且不直接給出正確評價,還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣.)
二、創(chuàng)設(shè)問題情境、探究新知
一塊邊長為a米的正方形實驗田,因需要將其邊長增加b米,形成四塊實驗田,以種植不同的新品種.(如圖)
(1)四塊面積分別為:、、、;
(2)兩種形式表示實驗田的總面積:
①整體看:邊長為的大正方形,S=;
②部分看:四塊面積的和,S=.
總結(jié):通過以上探索你發(fā)現(xiàn)了什么?
問題1:通過以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?
問題2:如果還有同學(xué)不認(rèn)同這個結(jié)果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項式的乘法法則加以驗證.
(教學(xué)過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗證才能得出真知,但還是要鼓勵學(xué)生大膽猜想,發(fā)表見解,但要驗證)
問題3:你能說說(a+b)2=a2+2ab+b2
這個等式的結(jié)構(gòu)特點嗎?用自己的語言敘述.
(結(jié)構(gòu)特點:右邊是二項式(兩數(shù)和)的平方,右邊有三項,是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)
問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點說出(a-b)2等于什么嗎?請你再用多項式的乘法法則加以驗證.
總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.
問題:①這兩個公式有何相同點與不同點?②你能用自己的語言敘述這兩個公式嗎?
語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.
強化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.
三、例題講解,鞏固新知
例1:利用完全平方公式計算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流總結(jié):運用完全平方公式計算的一般步驟
(1)確定首、尾,分別平方;
(2)確定中間系數(shù)與符號,得到結(jié)果.
四、練習(xí)鞏固
練習(xí)1:利用完全平方公式計算
練習(xí)2:利用完全平方公式計算
練習(xí)3:
(練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評價.也可學(xué)生獨立完成后,學(xué)生互相批改,力求使學(xué)生對公式完全掌握,如有學(xué)生出現(xiàn)問題,學(xué)生、教師應(yīng)及時幫助.)
五、變式練習(xí)
六、暢談收獲,歸納總結(jié)
1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式.
2、我們在運用公式時,要注意以下幾點:
(1)公式中的字母a、b可以是任意代數(shù)式;
(2)公式的結(jié)果有三項,不要漏項和寫錯符號;
(3)可能出現(xiàn)①②這樣的錯誤.也不要與平方差公式混在一起.
七、作業(yè)設(shè)置
萬能初中數(shù)學(xué)教案模板篇16
教學(xué)目標(biāo)
(一)知識認(rèn)知要求
1、回顧收集數(shù)據(jù)的方式、
2、回顧收集數(shù)據(jù)時,如何保證樣本的代表性、
3、回顧頻率、頻數(shù)的概念及計算方法、
4、回顧刻畫數(shù)據(jù)波動的統(tǒng)計量:極差、方差、標(biāo)準(zhǔn)差的概念及計算公式、
5、能利用計算器或計算機求一組數(shù)據(jù)的算術(shù)平均數(shù)、
(二)能力訓(xùn)練要求
1、熟練掌握本章的知識網(wǎng)絡(luò)結(jié)構(gòu)、
2、經(jīng)歷數(shù)據(jù)的收集與處理的過程,發(fā)展初步的統(tǒng)計意識和數(shù)據(jù)處理能力、
3、經(jīng)歷調(diào)查、統(tǒng)計等活動,在活動中發(fā)展學(xué)生解決問題的能力、
(三)情感與價值觀要求
1、通過對本章內(nèi)容的回顧與思考,發(fā)展學(xué)生用數(shù)學(xué)的意識、
2、在活動中培養(yǎng)學(xué)生團隊精神、
教學(xué)重點
1、建立本章的知識框架圖、
2、體會收集數(shù)據(jù)的方式,保證樣本的代表性,頻率、頻數(shù)及刻畫數(shù)據(jù)離散程度的統(tǒng)計量在實際情境中的意義和應(yīng)用、
教學(xué)難點
收集數(shù)據(jù)的方式、抽樣時保證樣本的代表性、頻率、頻數(shù)、刻畫數(shù)據(jù)離散程度的統(tǒng)計量在不同情境中的應(yīng)用、
教學(xué)過程
一、導(dǎo)入新課
本章的內(nèi)容已全部學(xué)完、現(xiàn)在如何讓你調(diào)查一個情況、并且根據(jù)你獲得數(shù)據(jù),分析整理,然后寫出調(diào)查報告,我想大家現(xiàn)在心里應(yīng)該有數(shù)、
例如,我們要調(diào)查一下“上網(wǎng)吧的人的年齡”這一情況,我們應(yīng)如何操作?
先選擇調(diào)查方式,當(dāng)然這個調(diào)查應(yīng)采用抽樣調(diào)查的方式,因為我們不可能調(diào)查到所有上網(wǎng)吧的人,何況也沒有必要、
同學(xué)們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調(diào)查,然后再作統(tǒng)計分析,然后把調(diào)查結(jié)果匯報上來,我們可以比一比,哪一個組表現(xiàn)最好?
二、講授新課
1、舉例說明收集數(shù)據(jù)的方式主要有哪幾種類型、
2、抽樣調(diào)查時,如何保證樣本的代表性?舉例說明、
3、舉出與頻數(shù)、頻率有關(guān)的幾個生活實例?
4、刻畫數(shù)據(jù)波動的統(tǒng)計量有哪些?它們有什么作用?舉例說明、
針對上面的幾個問題,同學(xué)們先獨立思考,然后可在小組內(nèi)交流你的想法,然后我們每組選出代表來回答、
(教師可參與到學(xué)生的討論中,發(fā)現(xiàn)同學(xué)們前面知識掌握不好的地方,及時補上)、
收集數(shù)據(jù)的方式有兩種類型:普查和抽樣調(diào)查、
例如:調(diào)查我校八年級同學(xué)每天做家庭作業(yè)的時間,我們就可以用普查的形式、
在這次調(diào)查中,總體:我校八年級全體學(xué)生每天做家庭作業(yè)的時間;個體:我校八年級每個學(xué)生每天做家庭作業(yè)的時間、
用普查的方式可以直接獲得總體情況、但有時總體中個體數(shù)目太多,普查的工作量較大;有時受客觀條件的限制,無法對所有個體進行普查;有時調(diào)查具有破壞性,不允許普查,此時可用抽樣調(diào)查、
例如把上面問題改成“調(diào)查全國八年級同學(xué)每天做家庭作業(yè)的時間”,由于個體數(shù)目太多,普查的工作量也較大,此時就采取抽樣調(diào)查,從總體中抽取一個樣本,通過樣本的特征數(shù)字來估計總體,例如平均數(shù)、中位數(shù)、眾數(shù)、極差、方差等、
上面我們回顧了為了了解某種情況而采取的調(diào)查方式:普查和抽樣調(diào)查,但抽樣調(diào)查必須保證數(shù)據(jù)具有代表性,因為只有這樣,你抽取的樣本才能體現(xiàn)出總體的情況,不然,就會失去可靠性和準(zhǔn)確性、
例如對我們班里某門學(xué)科的成績情況,有時不僅知道平均成績,還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時,我們只要看一下每個學(xué)生的成績落在哪一個分?jǐn)?shù)段,落在這個分?jǐn)?shù)段的分?jǐn)?shù)有幾個,表明數(shù)據(jù)落在這個小組的頻數(shù)就是多少,數(shù)據(jù)落在這個小組的頻率就是頻數(shù)與數(shù)據(jù)總個數(shù)的商、
刻畫數(shù)據(jù)波動的統(tǒng)計量有極差、方差、標(biāo)準(zhǔn)差、它們是用來描述一組數(shù)據(jù)的穩(wěn)定性的、一般而言,一組數(shù)據(jù)的`極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定、
例如:某農(nóng)科所在8個試驗點,對甲、乙兩種玉米進行對比試驗,這兩種玉米在各試驗點的畝產(chǎn)量如下(單位:千克)
甲:450460450430450460440460
乙:440470460440430450470440
在這個試驗點甲、乙兩種玉米哪一種產(chǎn)量比較穩(wěn)定?
我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩(wěn)定、
還可以用方差來比較哪一種玉米穩(wěn)定、
s甲2=100,s乙2=200、
s甲2<s乙2,所以甲種玉米的產(chǎn)量較穩(wěn)定、
三、建立知識框架圖
通過剛才的幾個問題回顧思考了我們這一章的重點內(nèi)容,下面構(gòu)建本章的知識結(jié)構(gòu)圖、
四、隨堂練習(xí)
例1一家電腦生產(chǎn)廠家在某城市三個經(jīng)銷本廠產(chǎn)品的大商場調(diào)查,產(chǎn)品的銷量占這三個大商場同類產(chǎn)品銷量的40%、由此在廣告中宣傳,他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的銷售量占40%、請你根據(jù)所學(xué)的統(tǒng)計知識,判斷該宣傳中的數(shù)據(jù)是否可靠:________,理由是________、
分析:這是一道判斷說理型題,它要求借助于統(tǒng)計知識,作出科學(xué)的判斷,同時運用統(tǒng)計原理給予準(zhǔn)確的解釋、因此,該電腦生產(chǎn)廠家憑借挑選某城市經(jīng)銷本產(chǎn)品情況,斷然說他們的產(chǎn)品在國內(nèi)同類產(chǎn)品的銷量占40%,宣傳中的數(shù)據(jù)是不可靠的,其理由有二:第一,所取樣本容量太小;第二,樣本抽取缺乏代表性和廣泛性、
例2在舉國上下眾志成城抗擊“非典”的斗爭中,疫情變化牽動著全國人民的心、請根據(jù)下面的疫情統(tǒng)計圖表回答問題:
(1)圖10是5月11日至5月29日全國疫情每天新增數(shù)據(jù)統(tǒng)計走勢圖,觀察后回答:
①每天新增確診病例與新增疑似病例人數(shù)之和超過100人的天數(shù)共有__________天;
②在本題的統(tǒng)計中,新增確診病例的人數(shù)的中位數(shù)是___________;
③本題在對新增確診病例的統(tǒng)計中,樣本是__________,樣本容量是__________、
(2)下表是我國一段時間內(nèi)全國確診病例每天新增的人數(shù)與天數(shù)的頻率統(tǒng)計表、(按人數(shù)分組)
①100人以下的分組組距是________;
②填寫本統(tǒng)計表中未完成的空格;
③在統(tǒng)計的這段時期中,每天新增確診
病例人數(shù)在80人以下的天數(shù)共有_________天、
解:(1)①7②26③5月11日至29日每天新增確診病例人數(shù)19
(2)①10人②11400、1250、325③25
五.課時小結(jié)
這節(jié)課我們通過回顧與思考這一章的重點內(nèi)容,共同建立的知識框架圖,并進一步用統(tǒng)計的思想和知識解決問題,作出決策、
六.課后作業(yè):
七.活動與探究
從魚塘捕得同時放養(yǎng)的草魚240尾,從中任選9尾,稱得每尾魚的質(zhì)量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計這240尾魚的總質(zhì)量大約是
A、300克B、360千克C、36千克D、30千克
萬能初中數(shù)學(xué)教案模板篇17
教學(xué)目標(biāo)
理解平行四邊形的定義,能根據(jù)定義探究平行四邊形的性質(zhì).
教學(xué)思考
1.通過觀察、實驗、猜想、驗證、推理、交流等數(shù)學(xué)活動,發(fā)展學(xué)生合情推理能力和動手操作能力及應(yīng)用數(shù)學(xué)的意識與能力.
2.能夠根據(jù)平行四邊形的性質(zhì)進行簡單的推理和計算.
解決問題
通過平行四邊形性質(zhì)的探索過程,豐富學(xué)生從事數(shù)學(xué)活動的經(jīng)驗與體驗,能運用平行四邊形的性質(zhì)進行有關(guān)的推理和計算,發(fā)展應(yīng)用意識.
情感態(tài)度
在應(yīng)用平行四邊形的性質(zhì)的過程養(yǎng)成獨立思考的習(xí)慣,在數(shù)學(xué)學(xué)習(xí)活動中獲得成功的體驗.
重點
平行四邊形的性質(zhì)的探究和平行四邊形的性質(zhì)的應(yīng)用.
難點
平行四邊形的性質(zhì)的應(yīng)用.
教學(xué)流程安排
活動流程圖
活動內(nèi)容和目的
活動1欣賞圖片,了解生活中的特殊四邊形
活動2剪三角形紙片,拼凸四邊形
活動3理解平行四邊形的概念
活動4探究平行四邊形邊、角的性質(zhì)
活動5平行四邊形性質(zhì)的應(yīng)用
活動6評價反思、布置作業(yè)
熟悉生活中特殊的四邊形,導(dǎo)出課題.
通過用三角形拼四邊形的過程,滲透轉(zhuǎn)化思想,激發(fā)探索精神.
掌握平行四邊形的定義及表示方法.
探究平行四邊形的性質(zhì).
運用平行四邊形的性質(zhì).
學(xué)生交流,內(nèi)化知識,課后鞏固知識.
教學(xué)過程設(shè)計
問題與情景
師生行為
設(shè)計意圖
[活動1]
下面的圖片中,有你熟悉的哪些圖形?
(出示圖片)
演示圖片,學(xué)生欣賞.
教師介紹四邊形與我們生活密切聯(lián)系,學(xué)生可再補充列舉.
從實例圖片中,抽象出的特殊四邊形,培養(yǎng)學(xué)生的抽象思維.通過舉例,讓學(xué)生感受到數(shù)學(xué)與我們的生活緊密聯(lián)系.
問題與情景
師生行為
設(shè)計意圖
[活動2]
拼一拼
將一張紙對折,剪下兩張疊放的三角形紙片.將這兩個三角形相等的一組邊重合,你會得到怎樣的圖形.
(1)你拼出了怎樣的凸四邊形?與同伴交流.
(2)一位同學(xué)拼出了如下圖所示的一個四邊形,這個四邊形的對邊有怎樣的位置關(guān)系?說說你的理由.
學(xué)生經(jīng)過實驗操作,開展獨立思考與合作學(xué)習(xí).
教師深入學(xué)生之中,觀察學(xué)生頻出的方法與過程,接受學(xué)生質(zhì)疑并指導(dǎo)個別學(xué)生探究.
教師待學(xué)生充分探究后,請學(xué)生展示拼圖的方法和不同的圖形.并引導(dǎo)學(xué)生分析(2)中的四邊形的邊的位置特征,從而引出本節(jié)課研究的內(nèi)容
萬能初中數(shù)學(xué)教案模板篇18
教學(xué)目標(biāo)
1、使學(xué)生認(rèn)識字母表示數(shù)的意義,了解字母表示數(shù)是數(shù)學(xué)的一大進步;
2、了解代數(shù)式的概念,使學(xué)生能說出一個代數(shù)式所表示的數(shù)量關(guān)系;
3、通過對用字母表示數(shù)的講解,初步培養(yǎng)學(xué)生觀察和抽象思維的能力;
4、通過本節(jié)課的教學(xué),使學(xué)生深刻體會從特殊到一般的的數(shù)學(xué)思想方法。
教學(xué)建議
1、知識結(jié)構(gòu):本小節(jié)先回顧了小學(xué)學(xué)過的字母表示的兩種實例,一是運算律,二是公式,從中看出字母表示數(shù)的優(yōu)越性,進而引出代數(shù)式的概念。
2、教學(xué)重點分析:教科書,介紹了小學(xué)用字母表示數(shù)的實例,一個是運算律,一個是常用公式,上述兩種例子應(yīng)用廣泛,且能很好地體現(xiàn)用字母表示數(shù)所具有的簡明、普遍的優(yōu)越性,用字母表示是數(shù)學(xué)從算術(shù)到代數(shù)的一大進步,是代數(shù)的顯著特點。運用算術(shù)的方法解決問題,是小學(xué)學(xué)生的思維方法,現(xiàn)在,從具體的數(shù)過渡到用字母表示數(shù),滲透了抽象概括的思維方法,在認(rèn)識上是一個質(zhì)的飛躍。對代數(shù)式的概念課文沒有直接給出,而是用實例形象地說明了代數(shù)式的概念。對代數(shù)式的概念可以從三個方面去理解:
(1)從具體的數(shù)到用字母表示數(shù),是抽象思維的開始,體現(xiàn)了特殊與一般的辨證關(guān)系,用字母表示數(shù)具有簡明、普遍的優(yōu)越性。
(2)代數(shù)式中并不要求數(shù)和表示數(shù)的字母同時出現(xiàn),單獨的一個數(shù)和字母也是代數(shù)式。如:2,m都是代數(shù)式。等都不是代數(shù)式。
3、教學(xué)難點分析:能正確說出一個代數(shù)式的數(shù)量關(guān)系,即用語言表達代數(shù)式的意義,一定要理清代數(shù)式中含有的各種運算及其順序。用語言表達代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不引起誤會為出發(fā)點。
如:說出代數(shù)式7(a—3)的意義。
分析7(a—3)讀成7乘a減3,這樣就產(chǎn)生歧義,究竟是7a—3呢?還是7(a—3)呢?有模棱兩可之感。代數(shù)式7(a—3)的最后運算是積,應(yīng)把a—3作為一個整體。所以,7(a—3)的意義是7與(a—3)的積。
4、書寫代數(shù)式的注意事項:
(1)代數(shù)式中數(shù)字與字母或者字母與字母相乘時,通常把乘號簡寫作“·”或省略不寫,同時要求數(shù)字應(yīng)寫在字母前面。如3×a,應(yīng)寫作3、a或?qū)懽?a,a×b應(yīng)寫作3、a或?qū)懽鱝b。帶分?jǐn)?shù)與字母相乘,應(yīng)把帶分?jǐn)?shù)化成假分?jǐn)?shù),數(shù)字與數(shù)字相乘一般仍用“×”號。
(2)代數(shù)式中有除法運算時,一般按照分?jǐn)?shù)的寫法來寫。
(3)含有加減運算的代數(shù)式需注明單位時,一定要把整個式子括起來。
5、對本節(jié)例題的分析:
例1是用代數(shù)式表示幾個比較簡單的數(shù)量關(guān)系,這些小學(xué)都學(xué)過。比較復(fù)雜一些的數(shù)量關(guān)系的代數(shù)式表示,課文安排在下一節(jié)中專門介紹。
例2是說出一些比較簡單的代數(shù)式的意義。因為代數(shù)式中用字母表示數(shù),所以把字母也看成數(shù),一種特殊的數(shù),就可以像看待原來比較熟悉的數(shù)式一樣,說出一個代數(shù)式所表示的數(shù)量關(guān)系,只是另外還要考慮乘號可能省略等新規(guī)定而已。
6、教法建議
(1)因為這一章知識大部分在小學(xué)學(xué)習(xí)過,講授新課之前要先復(fù)習(xí)小學(xué)學(xué)過的運算律,在學(xué)生原有的認(rèn)知結(jié)構(gòu)上,提出新的問題。這樣即復(fù)習(xí)了舊知識,又引出了新知識,能激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)中,一定要注意發(fā)揮本章承上啟下的作用,搞好小學(xué)數(shù)學(xué)與初中代數(shù)的銜接,使學(xué)生有一個良好的開端。
(2)在本節(jié)的學(xué)習(xí)過程中,要使學(xué)生理解代數(shù)式的概念,首先要給學(xué)生多舉例子(學(xué)生比較熟悉、貼近現(xiàn)實生活的例子),使學(xué)生從感性上認(rèn)識什么是代數(shù)式,理清代數(shù)式中的運算和運算順序,才能正確說出一個代數(shù)式所表示的數(shù)量關(guān)系,從而認(rèn)識字母表示數(shù)的意義——普遍性、簡明性,也為列代數(shù)式做準(zhǔn)備。
(3)條件比較好的學(xué)校,老師可選用一些多媒體課件,激發(fā)學(xué)生的學(xué)習(xí)興趣,增強學(xué)生自主學(xué)習(xí)的能力。
(4)老師在講解第一節(jié)之前,一定要對全章內(nèi)容和課時安排有一個了解,注意前后知識的銜接,只有這樣,我們老師才能教給學(xué)生系統(tǒng)的而不是一些零散的知識,久而久之,學(xué)生頭腦中自然會形成一個完整的知識體系。
(5)因為是新學(xué)期代數(shù)的第一節(jié)課,老師一定要給學(xué)生一個好印象,好的開端等于成功了一半。那么,怎么才能給學(xué)生留下好印象呢?首先,你要盡量在學(xué)生面前展示自己的才華。比,英語口語好的老師,可以用英語做一個自我介紹,然后為學(xué)生說一段祝福語。第二,上課時盡量使用多種語言與學(xué)生交流,其中包括情感語言(眉目語言、手勢語言等),讓學(xué)生感受到老師對他的關(guān)心。
7、教學(xué)重點、難點:
重點:用字母表示數(shù)的意義
難點:學(xué)會用字母表示數(shù)及正確說出一個代數(shù)式所表示的數(shù)量關(guān)系。
教學(xué)設(shè)計示例
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1在小學(xué)我們曾學(xué)過幾種運算律?都是什么?如可用字母表示它們?
(通過啟發(fā)、歸納最后師生共同得出用字母表示數(shù)的五種運算律)
(1)加法交換律a+b=b+a;
(2)乘法交換律a·b=b·a;
(3)加法結(jié)合律(a+b)+c=a+(b+c);
(4)乘法結(jié)合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac
指出:(1)“×”也可以寫成“·”號或者省略不寫,但數(shù)與數(shù)之間相乘,一般仍用“×”;
(2)上面各種運算律中,所用到的字母a,b,c都是表示數(shù)的字母,它代表我們過去學(xué)過的一切數(shù)
2(投影)從甲地到乙地的路程是15千米,步行要3小時,騎車要1小時,乘汽車要0。25小時,試問步行、騎車、乘汽車的速度分別是多少?
3若用s表示路程,t表示時間,ν表示速度,你能用s與t表示ν嗎?
4(投影)一個正方形的邊長是a厘米,則這個正方形的周長是多少?面積是多少?
(用I厘米表示周長,則I=4a厘米;用S平方厘米表示面積,則S=a2平方厘米)
此時,教師應(yīng)指出:
(1)用字母表示數(shù)可以把數(shù)或數(shù)的關(guān)系,簡明的表示出來;
(2)在公式與中,用字母表示數(shù)也會給運算帶來方便;
(3)像上面出現(xiàn)的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代數(shù)式。那么究竟什么叫代數(shù)式呢?代數(shù)式的意義又是什么呢?這正是本節(jié)課我們將要學(xué)習(xí)的內(nèi)容。
三、講授新課
1、代數(shù)式
單獨的一個數(shù)字或單獨的一個字母以及用運算符號把數(shù)或表示數(shù)的字母連接而成的式子叫代數(shù)式。學(xué)習(xí)代數(shù),首先要學(xué)習(xí)用代數(shù)式表示數(shù)量關(guān)系,明確代數(shù)上的意義
2、舉例說明
例1填空:
(1)每包書有12冊,n包書有__________冊;
(2)溫度由t℃下降到2℃后是_________℃;
(3)棱長是a厘米的正方體的體積是_____立方厘米;
(4)產(chǎn)量由m千克增長10%,就達到_______千克
(此例題用投影給出,學(xué)生口答完成)
解:
(1)12n;
(2)(t—2);
(3)a3;(4)(1+10%)m
例2說出下列代數(shù)式的意義:
解:
(1)2a+3的意義是2a與3的和;
(2)2(a+3)的意義是2與(a+3)的積;
(3)a2+b2的意義是a,b的平方的和;
(4)(a+b)2的意義是a與b的和的平方
說明:
(1)本題應(yīng)由教師示范來完成;
(2)對于代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不致引起誤會為出發(fā)點如第(1)小題也可以說成“a的2倍加上3”或“a的2倍與3的和”等等
例3用代數(shù)式表示:
(1)m與n的和除以10的商;
(2)m與5n的差的平方;
(3)x的2倍與y的和;
(4)ν的立方與t的3倍的積
分析:用代數(shù)式表示用語言敘述的數(shù)量關(guān)系要注意:①弄清代數(shù)式中括號的使用;②字母與數(shù)字做乘積時,習(xí)慣上數(shù)字要寫在字母的前面
四、課堂練習(xí)
1填空:(投影)
(1)n箱蘋果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高為_____厘米;
(3)底為a,高為h的三角形面積是______;
(4)全校學(xué)生人數(shù)是x,其中女生占48%?則女生人數(shù)是____,男生人數(shù)是____
2說出下列代數(shù)式的意義:(投影)
3用代數(shù)式表示:(投影)
(1)x與y的和;
(2)x的平方與y的立方的差;
(3)a的60%與b的2倍的和;
(4)a除以2的商與b除3的商的和
五、師生共同小結(jié)
首先,提出如下問題:
1本節(jié)課學(xué)習(xí)了哪些內(nèi)容?2用字母表示數(shù)的意義是什么?
3什么叫代數(shù)式?
教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:
①代數(shù)式實際上就是算式,字母像數(shù)字一樣也可以進行運算;
②在代數(shù)式和運算結(jié)果中,如有單位時,要正確地使用括號
六、作業(yè)
1、一個三角形的三條邊的長分別的a,b,c,求這個三角形的周長
2、張強比王華大3歲,當(dāng)張強a歲時,王華的年齡是多少?
3、飛機的速度是汽車的40倍,自行車的速度是汽車的1/3,若汽車的速度是ν千米/時,那么,飛機與自行車的速度各是多少?
4、a千克大米的售價是6元,1千克大米售多少元?
5、圓的半徑是R厘米,它的面積是多少?
6、用代數(shù)式表示:
(1)長為a,寬為b米的長方形的周長;
(2)寬為b米,長是寬的2倍的長方形的周長;
(3)長是a米,寬是長的1/3的長方形的周長;
(4)寬為b米,長比寬多2米的長方形的周長