初中數學教案反思簡短模板
教案可以幫助教師有計劃地安排教學內容和方法,確保課堂上教學活動的有序進行,避免出現混亂和無效性。怎樣寫初中數學教案反思簡短模板?這里提供初中數學教案反思簡短模板分享,供大家參考。
初中數學教案反思簡短模板篇1
教學目標
(一)知識認知要求
1、回顧收集數據的方式、
2、回顧收集數據時,如何保證樣本的代表性、
3、回顧頻率、頻數的概念及計算方法、
4、回顧刻畫數據波動的統計量:極差、方差、標準差的概念及計算公式、
5、能利用計算器或計算機求一組數據的算術平均數、
(二)能力訓練要求
1、熟練掌握本章的知識網絡結構、
2、經歷數據的收集與處理的過程,發展初步的統計意識和數據處理能力、
3、經歷調查、統計等活動,在活動中發展學生解決問題的能力、
(三)情感與價值觀要求
1、通過對本章內容的回顧與思考,發展學生用數學的意識、
2、在活動中培養學生團隊精神、
教學重點
1、建立本章的知識框架圖、
2、體會收集數據的方式,保證樣本的代表性,頻率、頻數及刻畫數據離散程度的統計量在實際情境中的意義和應用、
教學難點
收集數據的方式、抽樣時保證樣本的代表性、頻率、頻數、刻畫數據離散程度的統計量在不同情境中的應用、
教學過程
一、導入新課
本章的內容已全部學完、現在如何讓你調查一個情況、并且根據你獲得數據,分析整理,然后寫出調查報告,我想大家現在心里應該有數、
例如,我們要調查一下“上網吧的人的年齡”這一情況,我們應如何操作?
先選擇調查方式,當然這個調查應采用抽樣調查的方式,因為我們不可能調查到所有上網吧的人,何況也沒有必要、
同學們感興趣的話,下去以后可以以小組為單位,選擇自己感興趣的事情做調查,然后再作統計分析,然后把調查結果匯報上來,我們可以比一比,哪一個組表現最好?
二、講授新課
1、舉例說明收集數據的方式主要有哪幾種類型、
2、抽樣調查時,如何保證樣本的代表性?舉例說明、
3、舉出與頻數、頻率有關的幾個生活實例?
4、刻畫數據波動的統計量有哪些?它們有什么作用?舉例說明、
針對上面的幾個問題,同學們先獨立思考,然后可在小組內交流你的想法,然后我們每組選出代表來回答、
(教師可參與到學生的討論中,發現同學們前面知識掌握不好的地方,及時補上)、
收集數據的方式有兩種類型:普查和抽樣調查、
例如:調查我校八年級同學每天做家庭作業的時間,我們就可以用普查的形式、
在這次調查中,總體:我校八年級全體學生每天做家庭作業的時間;個體:我校八年級每個學生每天做家庭作業的時間、
用普查的方式可以直接獲得總體情況、但有時總體中個體數目太多,普查的工作量較大;有時受客觀條件的限制,無法對所有個體進行普查;有時調查具有破壞性,不允許普查,此時可用抽樣調查、
例如把上面問題改成“調查全國八年級同學每天做家庭作業的時間”,由于個體數目太多,普查的工作量也較大,此時就采取抽樣調查,從總體中抽取一個樣本,通過樣本的特征數字來估計總體,例如平均數、中位數、眾數、極差、方差等、
上面我們回顧了為了了解某種情況而采取的調查方式:普查和抽樣調查,但抽樣調查必須保證數據具有代表性,因為只有這樣,你抽取的樣本才能體現出總體的情況,不然,就會失去可靠性和準確性、
例如對我們班里某門學科的成績情況,有時不僅知道平均成績,還要知道90分以上占多少,80到90分之間占多少,……,不及格的占多少等,這時,我們只要看一下每個學生的成績落在哪一個分數段,落在這個分數段的分數有幾個,表明數據落在這個小組的頻數就是多少,數據落在這個小組的頻率就是頻數與數據總個數的商、
刻畫數據波動的統計量有極差、方差、標準差、它們是用來描述一組數據的穩定性的、一般而言,一組數據的`極差、方差或標準差越小,這組數據就越穩定、
例如:某農科所在8個試驗點,對甲、乙兩種玉米進行對比試驗,這兩種玉米在各試驗點的畝產量如下(單位:千克)
甲:450460450430450460440460
乙:440470460440430450470440
在這個試驗點甲、乙兩種玉米哪一種產量比較穩定?
我們可以算極差、甲種玉米極差為460-430=30千克;乙種玉米極差為470-430=40千克、所以甲種玉米較穩定、
還可以用方差來比較哪一種玉米穩定、
s甲2=100,s乙2=200、
s甲2<s乙2,所以甲種玉米的產量較穩定、
三、建立知識框架圖
通過剛才的幾個問題回顧思考了我們這一章的重點內容,下面構建本章的知識結構圖、
四、隨堂練習
例1一家電腦生產廠家在某城市三個經銷本廠產品的大商場調查,產品的銷量占這三個大商場同類產品銷量的40%、由此在廣告中宣傳,他們的產品在國內同類產品的銷售量占40%、請你根據所學的統計知識,判斷該宣傳中的數據是否可靠:________,理由是________、
分析:這是一道判斷說理型題,它要求借助于統計知識,作出科學的判斷,同時運用統計原理給予準確的解釋、因此,該電腦生產廠家憑借挑選某城市經銷本產品情況,斷然說他們的產品在國內同類產品的銷量占40%,宣傳中的數據是不可靠的,其理由有二:第一,所取樣本容量太小;第二,樣本抽取缺乏代表性和廣泛性、
例2在舉國上下眾志成城抗擊“非典”的斗爭中,疫情變化牽動著全國人民的心、請根據下面的疫情統計圖表回答問題:
(1)圖10是5月11日至5月29日全國疫情每天新增數據統計走勢圖,觀察后回答:
①每天新增確診病例與新增疑似病例人數之和超過100人的天數共有__________天;
②在本題的統計中,新增確診病例的人數的中位數是___________;
③本題在對新增確診病例的統計中,樣本是__________,樣本容量是__________、
(2)下表是我國一段時間內全國確診病例每天新增的人數與天數的頻率統計表、(按人數分組)
①100人以下的分組組距是________;
②填寫本統計表中未完成的空格;
③在統計的這段時期中,每天新增確診
病例人數在80人以下的天數共有_________天、
解:(1)①7②26③5月11日至29日每天新增確診病例人數19
(2)①10人②11400、1250、325③25
五.課時小結
這節課我們通過回顧與思考這一章的重點內容,共同建立的知識框架圖,并進一步用統計的思想和知識解決問題,作出決策、
六.課后作業:
七.活動與探究
從魚塘捕得同時放養的草魚240尾,從中任選9尾,稱得每尾魚的質量分別是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(單位:千克)、依此估計這240尾魚的總質量大約是
A、300克B、360千克C、36千克D、30千克
初中數學教案反思簡短模板篇2
教學目標
1.經歷不同的拼圖方法驗證公式的過程,在此過程中加深對因式分解、整式運算、面積等的認識。
2.通過驗證過程中數與形的結合,體會數形結合的思想以及數學知識之間內在聯系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經歷觀察、比較、拼圖、計算、推理交流等過程,發展空間觀念和有條理地思考和表達的能力,獲得一些研究問題與合作交流方法與經驗。
4.通過獲得成功的體驗和克服困難的經歷,增進數學學習的信心。通過豐富有趣拼的圖活動增強對數學學習的興趣。
重點1.通過綜合運用已有知識解決問題的過程,加深對因式分解、整式運算、面積等的認識。
2.通過拼圖驗證公式的過程,使學習獲得一些研究問題與合作交流的方法與經驗。
難點利用數形結合的方法驗證公式
教學方法動手操作,合作探究課型新授課教具投影儀
教師活動學生活動
情景設置:
你已知道的關于驗證公式的拼圖方法有哪些?(教師在此給予學生獨立思考和討論的時間,讓學生回想前面拼圖。)
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計算,常常可以得到一些有用的式子。美國第二十任總統伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數學史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關公式
提問:還能通過怎樣拼圖來解決以下問題
(1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計算它的面積,并寫出相應的等式;
(2)任意寫出一個關于a、b的二次三項式,如a2+4ab+3b2
試用拼一個長方形的方法,把這個二次三項式因式分解。
這個問題要給予學生充足的時間和空間進行討論和拼圖,教師在這要引導適度,不要限制學生思維,同時鼓勵學生在拼圖過程中進行交流合作
了解學生拼圖的情況及利用自己的拼圖驗證的情況。教師在巡視過程中,及時指導,并讓學生展示自己的拼圖及讓學生講解驗證公式的方法,并根據不同學生的不同狀況給予適當的引導,引導學生整理結論。
小結:
從這節課中你有哪些收獲?
(教師應給予學生充分的時間鼓勵學生暢所欲言,只要是學生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學生所說的進行全面的總結。)
學生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
學生拿出準備好的硬紙板制作
給學生充分的時間進行拼圖、思考、交流經驗,對于有困難的學生教師要給予適當引導。
作業第95頁第3題
板書設計
復習例1板演
………………
………………
……例2……
………………
………………
教學后記
初中數學教案反思簡短模板篇3
總體說明:
完全平方公式則是對多項式乘法中出現的較為特殊的算式的一種歸納、總結.同時,完全平方公式的推導是初中數學中運用推理方法進行代數式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、培養學生的求簡意識有較大好處.而且完全平方公式是后繼學習的必備基礎,不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數的恒等變形的重要基礎,同時也具有培養學生逐漸養成嚴密的邏輯推理能力的作用.因此學好完全平方公式對于代數知識的后繼學習具有相當重要的意義.
本節是北師大版七年級數學下冊第一章《整式的運算》的第8小節,占兩個課時,這是第一課時,它主要讓學生經歷探索與推導完全平方公式的過程,培養學生的符號感與推理能力,讓學生進一步體會數形結合的思想在數學中的作用.
一、學生學情分析
學生的技能基礎:學生通過對本章前幾節課的學習,已經學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節課的學習奠定了基礎.
學生活動經驗基礎:在平方差公式一節的學習中,學生已經經歷了探索和應用的過程,獲得了一些數學活動的經驗,培養了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.
二、教學目標
知識與技能:
(1)讓學生會推導完全平方公式,并能進行簡單的應用.
(2)了解完全平方公式的幾何背景.
數學能力:
(1)由學生經歷探索完全平方公式的過程,進一步發展學生的符號感與推理能力.
(2)發展學生的數形結合的數學思想.
情感與態度:
將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.
三、教學重難點
教學重點:1、完全平方公式的推導;
2、完全平方公式的應用;
教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;
2、完全平方公式結構的認知及正確應用.
四、教學設計分析
本節課設計了十一個教學環節:學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.
第一環節:學生練習、暴露問題
活動內容:計算:(a+2)2
設想學生的做法有以下幾種可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正確做法;
針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?
活動目的:在很多學生的頭腦中,認為兩數和的完全平方與兩數的平方和等同,即:
(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環節的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.
第二環節:驗證(a+2)2=a2–4a+22
活動內容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22
活動目的:在前一環節已經打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.
第三環節:推廣到一般情況,形成公式
活動內容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活動目的:讓學生經歷從特殊到一般的探究過程,體驗到發現的快樂.
第四環節:數形結合
活動內容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?
展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.
學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)
活動目的:讓學生進一步認識到數與形都不是孤立存在的,數與形是可以有機地結合在一起,從而發展學生的數形結合的數學思想.
第五環節:進一步拓廣
活動內容:推導兩數差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活動目的:讓學生經歷由兩數和的完全平方公式拓廣到兩數差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數差的完全平方公式是兩數和的完全平方公式的應用.
第六環節:總結口訣、認識特征
活動內容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;
②公式中的a、b可以是任意一個代數式(數、字母、單項式、多項式)
口訣:首平方,尾平方,首尾相乘的兩倍在中央.
活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現錯誤.
第七環節:公式應用
活動內容:例:計算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9
②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+
活動目的:在前幾個環節中,學生對完全平方公式已經有了感性認識,通過本環節的講解以及下一環節的練習,使學生逐步經歷認識——模仿——再認識.從而上升到理性認識的階段.
第八環節:隨堂練習
活動內容:計算:①;②;③(n+1)2–n2
活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.
第九環節:學生PK
活動內容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.
活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.
第十環節:學生反思
活動內容:通過今天這堂課的學習,你有哪些收獲?
收獲1:認識了完全平方公式,并能簡單應用;
收獲2:了解了兩數和與兩數差的完全平方公式之間的差異;
收獲3:感受到數形結合的數學思想在數學中的作用.
活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數學思想的精妙.
第十一環節:布置作業:
課本P43習題1.13
初中數學教案反思簡短模板篇4
絕對值
一、教學目標 :
1.知識目標:
①能準確理解絕對值的幾何意義和代數意義。
②能準確熟練地求一個有理數的絕對值。
③使學生知道絕對值是一個非負數,能更深刻地理解相反數的概念。
2.能力目標:
①初步培養學生觀察、分析、歸納和概括的思維能力。
②初步培養學生由抽象到具體再到抽象的思維能力。
3.情感目標:
①通過向學生滲透數形結合思想和分類討論的思想,讓學生領略到數學的奧妙,從而激起他們的好奇心和求知欲望。
②通過課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數學的快樂,從而增強他們的自信心。
二、教學重點和難點
教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。
教學難點 :絕對值定義的得出、意義的理解及求一個負數的絕對值。
三、教學方法
啟發引導式、討論式和談話法
四、教學過程
(一)復習提問
問題:相反數6與-6在數軸上與原點的距離各是多少?兩個相反數在數軸上的點有什么特征?
(二)新授
1.引入
結合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。
2.數a的絕對值的意義
①幾何意義
一個數a的絕對值就是數軸上表示數a的點到原點的距離。數a的絕對值記作a。
舉例說明數a的絕對值的幾何意義。(按教材P63的倒數第二段進行講解。)
強調:表示0的點與原點的距離是0,所以0=0。
指出:表示“距離”的數是非負數,所以絕對值是一個非負數。
②代數意義
把有理數分成正數、零、負數,根據絕對值的幾何意義可以得出絕對值的代數意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0。
用字母a表示數,則絕對值的代數意義可以表示為:
指出:絕對值的代數定義可以作為求一個數的絕對值的方法。
3.例題精講
例1.求8,-8,,-的絕對值。
按教材方法講解。
例2.計算:2.5+-3--3。
解:2.5+-3--3=2.5+3-3=6-3=3
例3.已知一個數的絕對值等于2,求這個數。
解:∵2=2,-2=2
∴這個數是2或-2。
五、鞏固練習
練習一:教材P64 1、2,P66習題2.4 A組 1、2。
練習二:
1.絕對值小于4的整數是____。
2.絕對值最小的數是____。
3.已知2x-1+y-2=0,求代數式3x2y的值。
六、歸納小結
本節課從幾何與代數兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數的絕對值都是非負數。絕對值的代數意義可以作為求一個數的絕對值的方法。
七、布置作業
教材P66 習題2.4 A組 3、4、5。
絕對值
一、教學目標 :
1.知識目標:
①能準確理解絕對值的幾何意義和代數意義。
②能準確熟練地求一個有理數的絕對值。
③使學生知道絕對值是一個非負數,能更深刻地理解相反數的概念。
2.能力目標:
①初步培養學生觀察、分析、歸納和概括的思維能力。
②初步培養學生由抽象到具體再到抽象的思維能力。
3.情感目標:
①通過向學生滲透數形結合思想和分類討論的思想,讓學生領略到數學的奧妙,從而激起他們的好奇心和求知欲望。
②通過課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數學的快樂,從而增強他們的自信心。
二、教學重點和難點
教學重點:絕對值的幾何意義和代數意義,以及求一個數的絕對值。
教學難點 :絕對值定義的得出、意義的理解及求一個負數的絕對值。
三、教學方法
啟發引導式、討論式和談話法
四、教學過程
(一)復習提問
問題:相反數6與-6在數軸上與原點的距離各是多少?兩個相反數在數軸上的點有什么特征?
(二)新授
1.引入
結合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。
2.數a的絕對值的意義
①幾何意義
一個數a的絕對值就是數軸上表示數a的點到原點的距離。數a的絕對值記作a。
舉例說明數a的絕對值的幾何意義。(按教材P63的倒數第二段進行講解。)
強調:表示0的點與原點的距離是0,所以0=0。
指出:表示“距離”的數是非負數,所以絕對值是一個非負數。
②代數意義
把有理數分成正數、零、負數,根據絕對值的幾何意義可以得出絕對值的代數意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0。
用字母a表示數,則絕對值的代數意義可以表示為:
指出:絕對值的代數定義可以作為求一個數的絕對值的方法。
3.例題精講
例1.求8,-8,,-的絕對值。
按教材方法講解。
例2.計算:2.5+-3--3。
解:2.5+-3--3=2.5+3-3=6-3=3
例3.已知一個數的絕對值等于2,求這個數。
解:∵2=2,-2=2
∴這個數是2或-2。
五、鞏固練習
練習一:教材P64 1、2,P66習題2.4 A組 1、2。
練習二:
1.絕對值小于4的整數是____。
2.絕對值最小的數是____。
3.已知2x-1+y-2=0,求代數式3x2y的值。
六、歸納小結
本節課從幾何與代數兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數的絕對值都是非負數。絕對值的代數意義可以作為求一個數的絕對值的方法。
七、布置作業
教材P66 習題2.4 A組 3、4、5。
初中數學教案反思簡短模板篇5
一、說教學地位和作用
全等三角形是《三角形》這一章的主線,在知識結構上,等腰三角形,直角三角形,線段的垂直平分線,角的平分線等內容都要通過證明兩個三角形全等來加以解決;在能力培養上,無論是邏輯思維能力,推理論證能力,還是分析問題解決問題的能力,都可在全等三角形的教學中得以培養和提高。因此,全等三角形的教學對全章乃至以后的學習都是至關重要的。為此,我在設計這節課的時候,以學生為主體,讓他們全面地參與到學習過程中來,有意識地培養學生的創新意識和實踐能力,增強他們學習的能力,讓他們充分的掌握該知識點,同時盡量擴充他們的知識范疇。在教學中,采用的是“設疑——實驗——發現——總結”的教學方法,并采用“變式練習”方法來提高學習效率。
二、說教學的目標和要求:
1.知識目標:
(1)知道什么是全等三角形及全等三角形的對應元素;
(2)知道全等三角形的性質,能用符號正確地表示兩個三角形全等;
(3)能熟練找出兩個全等三角形的對應角,對應邊。
2.能力目標:
(1)通過全等三角形有關概念的學習,提高學生數學概念的辨析能力;
(2)通過找出全等三角形的對應元素,培養學生的識圖能力。
3.情感目標:
(1)通過感受全等三角形的對應美激發學生熱愛科學勇于探索的精神;
(2)通過自主學習的發展體驗獲取數學知識的感受,培養學生勇于創新,多方位審視問題的創造技巧。
三、說教學重點:
1.能準確地在圖形中識別出對應邊,對應角;
2.全等三角形的性質和利用其基本性質進行一些簡單的推理和計算。
四、說教學難點:
能在全等變換中準確找到對應邊,對應角。(在對應邊,對應角的識別,查找中運用動畫的展示,使學生能直觀認識該知識點,化難為易,從而突破該難點)
五、說教法與學法:
采用直觀,類比的方法,以多媒體為手段輔助教學,引導學生預習教材內容,養成良好的自學習慣,啟發學生發現問題,思考問題,培養學生的邏輯思維能力。逐步設疑,引導學生積極參與討論,肯定成績,使其具有成就感,提高他們學習的興趣和學習的積極性。
六、說教學用具:
多媒體,剪刀,直尺,硬紙,三角板
七、說教學過程:
(一)復習導入方面
從復習全等圖形方面入手,展示一些直觀的圖形,接著創設一個問題情境:如何翻新一個舊的`三角形的紙樣讓學生動手畫圖,實驗嘗試,從而發現其實解決問題的關鍵是畫一個全等的三角形,從而引出課題。通過以上的環節主要是提高學生數學概念的辨析能力和培養學生的動手實踐能力。(此環節約用時5分鐘)
(二)新課講解方面
1.全等三角形的定義
通過動畫的展示,引導學生觀察,分析得出全等三角形的定義(先展示動畫)。目的主要在于培養學生的觀察分析能力。(此環節學生約用2分鐘進行討論分析)
2.全等三角形的性質
以動畫的形式,介紹全等三角形的對應頂點,對應邊,對應角,并引導學生通過觀察分析全等三角形的對應邊,對應角之間分別有怎樣的關系,從而得出全等三角形的性質。在無形中培養了學生的圖形識別能力和直觀判斷能力。(此環節約用時7分鐘)
3.全等三角形的表示法
介紹全等符號,說明表示兩個三角形全等時,通常把表示對應頂點的字母寫在對應的位置上。(此環節用時約2分鐘)
4.議一議
方法:(1)小組活動,展示部分小組的解決方案
(2)動畫展示解決方案
(3)知識點的擴充:動畫展示全等三角形的變換識別中對應邊,對應角的查找。
以上環節主要趨于培養學生的團結合作精神,認識團隊的力量和開拓學生的思維,擴充學生的知識范疇。(此環節約用時8分鐘)
(三)課堂練習(此環節約用時18分鐘)
用多媒體課件逐一展示練習題目,讓學生一一解答。主要是通過練習讓學生鞏固所學的知識并學會用所學的知識進行推理和解決實際問題。
(四)課堂小結(此環節約用時2分鐘)
經過以上的教學環節,為了幫助學生系統的掌握所學的知識,達到預期的效果,在這一步驟中,我準備利用提問的形式,師生共同進行小結和歸納。
(五)作業布置(約用時1分鐘)
(六)板書設置
初中數學教案反思簡短模板篇6
一、教材分析
1、教材的地位與作用:
有理數乘方是有理數的一種基本運算。從教材編排的結構上看,共需四個課時,本課為第一課時,是在學生學習加、減、乘、除運算的基礎上來學習的,它既是有理數乘法的推廣與延續,又是后面繼續學習有理數混合運算、科學記數法和開方的基礎,起到承前啟后、鋪路架橋的作用。
2、教學目標:
根據新課標的要求及七年級學生的認知水平,我將制定本節課的教學目標如下:
⑴、知識與技能:
讓學生理解并掌握有理數的乘方,冪,底數,指數的概念及意義;能夠正確進行有理數的乘方運算。
⑵、過程與方法:
在生動的情景中讓學生獲得有理數乘方的初步體驗;培養學生觀察、分析、歸納、概括的能力;經歷從乘法到乘方的推導過程,從中感受轉化的數學思想。
⑶、情感、態度和價值觀:
讓學生通過觀察、推理,歸納出有理數乘方的符號法則,增進學生學好數學的自信心;讓學生經歷知識的拓展過程,培養學生的探究能力與動手操作能力,體會與他人合作交流的重要性。
3、教學重點與難點:
有理數乘方的意義及運算是本節課的教學重點,而有理數乘方中冪,指數,底數的概念及其相互間關系的理解是本節課的教學難點。
二、教法學法
1、學情分析:
在知識掌握方面,由于學生剛學完有理數的加、減、乘、除運算,對許多概念、法則的理解不一定很深刻,容易造成知識的遺忘與混淆。所以在本節課的學習中應全面系統的加以講述。
在知識障礙方面,學生對有理數乘方中相關概念的理解及其符號規律的推導、應用方面可能會有模糊現象。所以在本節課的教學中應予以簡單明白,深入淺出的分析。
在學生特征方面:由于七年級學生具有好動、好問、好奇的心理特征。所以在教學中應抓住學生這一特征,一方面要運用直觀生動的形象,引發學生的興趣,使他們的注意力始終在課堂上;另一方面要創造條件與機會,讓學生發表見解,發揮學生學習的主動性。
2、教學策略:
根據本節課的教學目標,教材內容并結合七年級學生的理解能力和思維特征。我將以多媒體為教學平臺,采用啟發式教學法與師生互動式教學模式。通過精心設計的問題與活動,不斷創造思維興奮點,讓學生在學習過程中親自動手操作,探索結論。教給學生多觀察、勤動手、大膽猜、肯鉆研的研討式學習方法,使學生在動腦、動手、動口的過程中獲得充足的體驗與發展,從而調動起學生的學習主動性與積極性。
三、教學過程
1、設置游戲,引入新課:
首先借助多媒體及課前準備好的硬紙片讓全體學生共同做兩個折紙游戲。
游戲一是把面積為1的長方形硬紙片沿中間對折,使兩邊能夠完全重合。引導學生思考:如此折疊五次后所得長方形的面積是多少?得出算式:____;
游戲二是讓學生把長方形紙片對折后再沿折痕剪開,將得到的所有紙片重合放置后再對折、剪開。如此操作五次之后共有多少張硬紙片?得出算式:2×2×2×2×2;
最后引導學生思考這兩個算式的特點,引入新課。
這個環節通過學生動手操作,使其從直觀上理解了乘方運算的特點,并為后續學習起到了導航作用。
2、合作交流,探索新知:
先讓學生分組討論下面算式特點:①____,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)
接著讓學生思考正方形面積與邊長a的關系,正方體體積與棱長a的關系,得出:a·a=a,a·a·a=a。然后讓學生類比出上面四個算式的記法與讀法,最后引導學生猜想:a·a·……·a的結果,總結出冪、底數與指數的概念。
n個a這個環節的設計意圖是讓學生從游戲結果出發,通過正方形面積與正方體體積的表示方法,類比出乘方的表示形式,總結出相關概念。既體現了學生思維的過程,又滲透了轉化思想。
3、遷移訓練,總結規律:
在這個環節中,我首先要求學生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙-﹚×﹙-﹚×﹙-﹚,④﹙-﹚×﹙-﹚寫成乘方的形式,并說出其底數和指數分別是多少?接著評析例1,結合例1的解題結果,總結出負數的冪的&39;正負的規律。然后啟發學生思考將例1各題的底數換為正數或0,結果會怎么樣呢?在學生練習討論的基礎上總結出有理數乘方的符號規律。即:負數的奇次冪是負數,負數的偶次冪是正數。正數的任何次冪都是正數,0的任何正整數次冪都是0。最后結合例2,要求學生掌握計算器的用法,并運用計算器完成課本上的練習,進一步理解有理數乘方的符號規律。
本環節的設計意圖是通過變換例1的條件讓學生加以練習,進而歸納出結論。有利于調動學生學習的興趣,使其初步接觸到數學的奇妙,提高其積極性與主動性。
4、應用新知,嘗試練習:
本環節我主要設計了兩組練習,第一組練習是以運用符號規律為目的,讓學生通過計算﹙-2﹚、-2、﹙﹚,進一步掌握有理數乘方符號規律的運用方法,并使其在對比﹙-2﹚與-2,﹙﹚與的基礎上總結出:當底數為負數和分數時,一定要用括號把底數括起來。
第二組練習是以乘方的實際應用和綜合應用為目的而設計的,共兩個習題。希望借助第一題幫助學生學會運用所學的乘方知識解決實際問題,促使其樹立一個學數學、用數學的思想。而第二題則是乘方與有理數大小比較的綜合應用,可幫助學生提高數學分析能力和綜合解題能力。
5、歸納小結,形成體系:
首先鼓勵學生暢所欲言的總結本節課的收獲與體會;然后幫助學生自主建構知識體系;接著布置本節課的課內與課外作業;最后說一下本節課的板書設計。
初中數學教案反思簡短模板篇7
教學目的:
(一)知識點目標:
了解正數和負數是怎樣產生的。
2.知道什么是正數和負數。
3.理解數0表示的量的意義。
(二)能力訓練目標:
1.體會數學符號與對應的思想,用正、負數表示具有相反意義的量的符號化方法。
2.會用正、負數表示具有相反意義的量。
(三)情感與價值觀要求:
通過師生合作,聯系實際,激發學生學好數學的熱情。
教學重點:知道什么是正數和負數,理解數0表示的量的意義。
教學難點:
理解負數,數0表示的量的意義。
教學方法:
師生互動與教師講解相結合。
教具準備:
地圖冊(中國地形圖)。
教學過程:
引入新課:
活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、?
內容:老師說出指令:
向前兩步,向后兩步;
向前一步,向后三步;
向前兩步,向后一步;
向前四步,向后兩步。
如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[師]其實,在我們的生活中,運用這樣的符號的地方很多,這節課,我們就來學習這種帶有特殊符號、表示具有實際意義的數-----正數和負數。
講授新課:
1、自然數的產生、分數的產生。
2、章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數與排名順序、±0.5、-9的意義。
3、正數、負數的定義:我們把以前學過的0以外的數叫做正數,在這些數的前面帶有“一”時叫做負數。根據需要有時在正數前面也加上“十”(正號)表示正數。
舉例說明:3、2、0.5、等是正數(也可加上“十”)
-3、-2、-0.5、-等是負數
4、數0既不是正,也不是負數,0是正數和負數的分界。
0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。
5、讓學生舉例說明正、負數在實際中的應用。展示圖片(又見教材P5圖1.1-2-3)讓學生觀察地形圖上的標注和記錄支出、存入信息的本地X銀行的存折,說出你知道的信息。
鞏固提高:練習:課本P5練習課時小結:這節課我們學習了哪些知識?你能說一說嗎?
課后作業:課本P7習題1.1的第1、2、4、5題。
活動與探究:在一次數學測驗中,X班的平均分為85分,把高于平均分的高出部分記為正數。
(1)美美得95分,應記為多少?
(2)多多被記作一12分,他實際得分是多少?
初中數學教案反思簡短模板篇8
一、素質教育目標
(一)知識教學點
1、能根據一個數的絕對值表示"距離",初步理解絕對值的概念。
2、給出一個數,能求它的絕對值。
(二)能力訓練點
在把絕對值的代數定義轉化成數學式子的過程中,培養學生運用數學轉化思想指導思維活動的能力。
(三)德育滲透點
1、通過解釋絕對值的幾何意義,滲透數形結合的思想。
2、從上節課學的相反數到本節的絕對值,使學生感知數學知識具有普遍的聯系性。
(四)美育滲透點
通過數形結合理解絕對值的意義和相反數與絕對值的聯系,使學生進一步領略數學的和諧美。
二、學法引導
1、教學方法:采用引導發現法,輔之以講授,學生討論,力求體現"教為主導,學為主體"的教學要求,注意創設問題情境,使學生自得知識,自覓規律。
2、學生學法:研究+6和-6的不同點和相同點→絕對值概念→鞏固練習→歸納小結(絕對值代數意義)
三、重點、難點、疑點及解決辦法
1、重點:給出一個數會求出它的絕對值。
2、難點:絕對值的幾何意義,代數定義的導出。
3、疑點:負數的絕對值是它的相反數。
四、課時安排
2課時
五、教具學具準備
投影儀(電腦)、三角板、自制膠片。
六、師生互動活動設計
教師提出+6和-6有何相同點和不同點,學生研究討論得出絕對值概念;教師出示練習題,學生討論解答歸納出絕對值代數意義。
七、教學步驟
(一)創設情境,復習導入
師:以上我們學習了數軸、相反數。在練習本上畫一個數軸,并標出表示-6,0及它們的相反數的點。
學生活動:一個學生板演,其他學生在練習本上畫。
【教法說明】絕對值的學習是以相反數為基礎的,在學生動手畫數軸的同時,把相反數的知識進行復習,同時也為絕對值概念的引入奠定了基礎,這里老師不包辦代替,讓學生自己練習。
(二)探索新知,導入新課
師:同學們做得非常好!-6與6是相反數,它們只有符號不同,它們什么相同呢?
學生活動:思考討論,很難得出答案。
師:在數軸上標出到原點距離是6個單位長度的點。
學生活動:一個學生板演,其他學生在練習本上做。
師:顯然A點(表示6的點)到原點的距離是6,B點(表示-6的點)到原點距離是6個單位長嗎?
學生活動:產生疑問,討論。
師:+6與-6雖然符號不同,但表示這兩個數的點到原點的距離都是6,是相同的。我們把這個距離叫+6與-6的絕對值。
2、4絕對值(1)
【教法說明】針對"互為相反數的兩數只有符號不同"提出問題:"它們什么相同呢?"在學生頭腦中產生疑問,激發了學生探索知識的欲望,但這時學生很難回答出此問題,這時教師注意引導再提出要求:"找到原點距離是6個單位長度的點"這時學生就有了一個攀登的臺階,自然而然地想到表示+6,-6的點到原點的距離相同,從而引出了絕對值的概念,這樣一環緊扣一環,時而緊張時而輕松,不知不覺學生已獲得了知識。
師:-6的絕對值是表示-6的點到原點的距離,-6的絕對值是6;6的絕對值是表示6的點到原點的距離,6的絕對值是6、
提出問題:
(1)-3的絕對值表示什么?
(2)3的絕對值呢?
(3)a的絕對值呢?
學生活動:(1)(2)題根據教師的引導學生口答,(3)題討論后口答。
一個數a的絕對值是數軸上表示數a的點到原點的距離。
數a的絕對值是a
【教法說明】由-6,6,-3,這些特殊的數的絕對值引出數的絕對值,逐層鋪墊,由學生得出絕對值的幾何意義,既理解了一個數的絕對值的含義也訓練了學生口頭表達能力,突破了難點。
(三)嘗試反饋,鞏固練習
師:字母可以表示任意數,若把a換成,9,0,-1,-0、4觀察數軸,它們的絕對值各是多少?
學生活動:口答:,,,,
師:你在自己畫的數軸上標出五個數,讓同桌指出它們的絕對值。
學生活動:按教師要求自己又當"小老師"又當"學生"、教師找一組學生回答,并及時糾正出現的錯誤。
(出示投影1)
例求8,-8的絕對值。
師:觀察數軸做出此題。
學生活動:口答
師:由此題目你能想到什么規律?
學生活動:討論得出—互為相反數的兩數絕對值相同。
【教法說明】這一環節是對絕對值的幾何定義的鞏固。這里對于絕對值定義的理解不能空談"5的絕對值、-7的絕對值是多少"?而是與數軸相結合,始終利用表示這數的點到原點的距離是這個數的絕對值這一概念。教師先闡明這個字母可表示任意數,再把換成一組數,學生自己又把換成了一些數,指出它們的絕對值,這樣既理解了數所表示的廣泛含義,又鞏固了絕對值的定義。然后,通過例題總結出了互為相反數的兩數的絕對值相等這一規律,既呼應了前面內容,又升華了絕對值的概念。
師:觀察數軸,在原點右邊的點表示的數(正數)的絕對值有什么特點?
在原點左邊的點表示的數(負數)的絕對值呢?
生:思考,不能輕易回答出來。
師:再看前面我們所求的,你能得出什么規律嗎?
學生活動:思考后一學生口答。
教師糾正并板書:
正數的絕對值是它本身。
負數的絕對值是它的相反數。
0的絕對值是0。
師:字母可表示任意的數,可以表示正數,也可以表示負數,也可以表示0。
教師引導學生用數學式子表示正數、負數、0,并再提問:這時的絕對值分別是多少?
學生活動:分組討論,教師加入討論,學生互相補充回答。
教師板書:
師強調:這種表示方法就相當于前面三句話,比較起來后者更通俗易懂。
【教法說明】用字母表示規律是難點。這時教師放手,讓學生有目的地考慮、分析,共同得出結論。
(四)歸納小結
師:這節課我們學習了絕對值。
(1)一個數的絕對值是在數軸上表示這個數的點到原點的距離;(2)求一個數的絕對值必須先判斷是正數還是負數。
回顧反饋:
(出示投影2)
1、-3的絕對值是在_____________上表示-3的點到__________的距離,-3的絕對值是____________。
2、絕對值是3的數有____________個,各是___________;絕對值是2、7的數有___________個,各是___________;絕對值是0的數有____________個,是____________。
絕對值是-2的數有沒有?
八、隨堂練習
1、判斷題
(1)數的絕對值就是數軸上表示數的點與原點的距離()(2)負數沒有絕對值()
(3)絕對值最小的數是0()
(4)如果甲數的絕對值比乙數的絕對值大,那么甲數一定比乙數大()(5)如果數的絕對值等于,那么一定是正數
2、填表
九、布置作業
課本第50頁2、4。
初中數學教案反思簡短模板篇9
一、教材及學情分析
《二次函數的圖像與性質》是北師大版九年級下冊第二章第二節的內容,在學生已經學習過一次函數(包括正比例函數)、反比例函數的圖像與性質,以及會建立二次函數模型和理解二次函數的有關概念的基礎上進行的,它既是前面所學知識的應用、拓展,是對前面所學一次函數、反比例函數圖像與性質的一次升華,又是今后學習《確定二次函數的表達式》《二次函數的應用》、《二次函數與一元二次方程》的預備知識,又是學生高中階段數學學習的基礎知識,它在教材中起著非常重要的作用。另外,本節課最大特點,是結合圖形來研究二次函數的性質,這充分體現了一個很重要的數學思想——數形結合數學思想。因此,這一節課,無論是在知識上,還是對學生動手能力培養上都有著十分重要的作用。
二、教學目標及重、難點分析
通過分析,我們知道,《二次函數的圖像與性質》在整個教材體系中,起著承上啟下的作用,有著廣泛的應用。我認為這節課的重點是:作出函數=ax2+c的圖象,比較函數=ax2和函數=ax2+c的異同,了解它們的性質;函數=ax2+c的圖象與性質的理解,掌握拋物線的上下平移規律是本節課的難點。
知識與技能目標
(1)會做函數=ax2和=ax2+c的圖象,并能比較它們的異同;理解a,c對二次函數圖象的影響,能正確說出兩函數的開口方向,對稱軸和頂點坐標;
(2)了解拋物線=ax2上下平移規律。
過程與方法目標
本節課,過程是由抽象到直觀,再由直觀到抽象(既二次函數=ax2+c的關系式——作出圖像——說出二次函數=ax2+c的圖像與性質),培養學生分析問題、解決問題的能力,培養學生觀察、探討、分析、分類討論的能力。
情感、態度與價值觀
引導學生養成全面看問題、分類討論的學習習慣,通過直觀多媒體演示和學生動手作圖、分析,激發學生學習數學的積極性。
三、教學結構設計
建立以“實施主體性教學,培養學生自主探究的能力”為主的課堂教學結構模式——學教結合式。讓學生先自己動手畫圖,然后由老師來演示,這樣從直觀的看圖觀察,思考,提問,容易激發學生的求知欲望,調動學生學習的興趣。以“學教結合”為模式的課堂結構設計為“三個階段”:
①準備階段教師先從回憶函數=ax2圖象與性質,從而導入二次函數=ax2+c的圖像與性質,進而帶出本節課的學習目標。
②參與階段學生圍繞目標自我表現,相互交流,啟發理解。
③應用與升華階段這一階段是讓學生從“學會”到“會學”的升華。延伸階段要做到“三化”,一是知識的深化,二是知識向能力、技能的轉化,三是學習方法的固化,即演練鞏固,牢固掌握其方法。
初中數學教案反思簡短模板篇10
教學目標:
(一)知識與技能
理解單項式及單項式系數、次數的概念;能準確迅速地確定一個單項式的系數和次數;會用含字母的式子表示實際問題中的數量關系。
(二)過程與方法
1.在經歷用字母表示數量關系的過程中,發展符號感;
2.通過小組討論、合作學習等方式,經歷概念的形成過程,培養學生自主探索知識和合作交流能力
(三)情感態度價值觀
1.通過豐富多彩的現實情景,讓學生經歷從具體問題中抽象出數量關系,在解決問題中了解數學的價值,增長“用數學”的信心.
2.通過用含字母的式子描述現實世界中的數量關系,認識到它是解決實際問題的重要數學工具之一。
教學重、難點:
重點:單項式及單項式系數、次數的概念。
難點:單項式次數的概念;單項式的書寫格式及注意點。
教學方法:
引導——探究式
在感性材料的基礎上,學生自主探究現實情景中用字母表示數的問題,通過觀察、分析、比較,找出材料中個體的共同點,教師引導學生共同抽象、概括單項式及相關的概念.
教具準備:
多媒體課件、小黑板.
教學過程:
一、創設情境,引入新課
出示一張奔馳在青藏鐵路線上的列車照片,并配上歌曲《天路》,邊欣賞邊向學生介紹青藏鐵路所創造的歷史之最。
情境問題:
青藏鐵路西線上,在格爾木到拉薩之間有一段很長的凍土地段。列車在凍土地段的行駛速度是100千米/時,在非凍土地段的行駛速度可以達到120千米/時,請根據這些數據回答:列車在凍土地段行駛時,2小時能行駛多少千米?3小時呢?t小時呢?
設計意圖:從學生熟悉的情境出發,創設情境,讓學生感受青藏鐵路的偉大成就,激發
愛國主義情感,得到一次情感教育。
解:根據路程、速度、時間之間的關系:路程=速度×時間
2小時行駛的路程是:100×2=200(千米)
3小時行駛的路程是:100×3=300(千米)
t小時行駛的路程是:100×t=100t(千米)
注意:在含有字母的式子中若出現乘號,通常將乘號寫作“·”或省略不寫。
如:100×a可以寫成100a或100a。
代數式:用基本的運算符號(運算包括加、減、乘除、乘方等)把數和表示數的字母連接起來的式子。
代數式可以簡明地表示數量和數量的關系,本節我們就來學習最基本也是最重要的一類代數式整式。
設計意圖:從學生已有的數學經驗:路程=速度×時間出發,建立新舊知識之間的聯系
讓學生歷一個從一般到特殊再到一般的認識過程,發展學生的認知觀念。
二、合作交流,探究新知
探究
思考:用含字母的式子填空(獨立完成),并觀察列出的式子有什么共同特點(小組可交流討論)。
1、邊長為a的正方體的表面積是__,體積是__.
2、鉛筆的單價是x元,圓珠筆的單價是鉛筆的2.5倍,則圓珠筆的單價是___元。
3、一輛汽車的速度是v千米∕小時,它t小時行駛的路程為__千米。
4、數n的相反數是__。
解:(1)6a2、a3(2)2.5x(3)vt(4)-n
思考:它們有什么共同的特點?
6a2=6·a·aa3=a·a·a2.5x=2.5·xvt=v·t-n=-1·n
單項式:數與字母、字母與字母的乘積。
注意:單獨的一個數或字母也是單項式。
設計意圖:從熟悉的實際背景出發,充分讓學生自己觀察、自己發現、自己描述,進行自主學習和合作交流,獲得數學猜想和數學經驗,滿足學生的表現欲和探究欲,使學生學得輕松愉快,充分體現課堂教學的開放性。
火眼金睛
下列各代數式中哪些是單項式哪些不是?
(1)a(2)0(3)a2
(4)6a(5)
(6)
(7)3a+2b(8)xy2
設計意圖:加強學生對不同形式的單項式的直觀認識。
解剖單項式
系數:單項式中的數字因數。
如:-3x的系數是,-ab的系數是,的系數是。
次數:一個單項式中的所有字母的指數的和。
如:-3x的次數是,ab的次數是。
小試身手
單項式2a2-1.2hxy2-t2-32x2y
系數
次數
設計意圖:了解學生對單項式系數、次數的概念是否理解,找出存在的問題,從而進一步鞏固概念。
單項式的注意點:
(1)數與字母相乘時,數應寫在字母的___,且乘號可_________;
(2)帶分數作為系數時,應改寫成_______的形式;
(3)式子中若出現相除時,應把除號寫成____的形式;
(4)把“1”或“-1”作為項的系數時,“1”可以__不寫。
行家看門道
①1x②-1x
③a×3④a÷2
⑤⑥m的系數為1,次數為0
⑦的系數為2,次數為2
設計意圖:單項式的書寫和表示有其特有的格式和注意點,通過以上兩個題目讓學生進一步明確注意點。
三、例題講解,鞏固新知
例1:用單項式填空,并指出它們的系數和次數:
(1)每包書有12冊,n包書有冊;
(2)底邊長為a,高為h的三角形的面積;
(3)一個長方體的長和寬都是a,高是h,它的體積是;
(4)一臺電視機原價a元,現按原價的9折出售,這臺電視機現在的售價
為元;
(5)一個長方形的長0.9,寬是a,這個長方形的面積是.
解:(1)12n,它的系數是12,次數是1
(2),它的系數是,次數是2;
(3)a2h,它的系數是1,次數是3;
(4)0.9a,它的系數是0.9,次數是1;
(5)0.9a,它的系數是0.9,次數是1。
設計意圖:學生能用單項式表示簡單的實際問題中的數量關系,并進一步鞏固單項式的系數、次數的概念。
試一試
你還能賦予0.9a一個含義嗎?
設計意圖:同一個式子可以表示不同的含義,通過這個例子讓學生進一步體會式子更具有一般性,而且發散學生思維。
大膽嘗試
寫出一個單項式,使它的系數是2,次數是3.
設計意圖:充分發揮學生的想象力,讓每一個學生都有獲得成功的體驗,為不同程度的學生一個展示自我的機會,激發他們的學習興趣。
四、拓展提高
嘗試應用
用單項式填空,并指出它們的系數和次數:
(1)全校學生總數是x,其中女生占總數48%,則女生人數是,男生人數是;
(2)一輛長途汽車從楊柳村出發,3小時后到達相距s千米的溪河鎮,這輛長途汽車的平均速度是;
(3)產量由m千克增長10%,就達到千克;
設計意圖:讓學生感受單項式在實際生活中的應用,進一步掌握單項式及單項式系數、次數的概念。
能力提升
1、已知-xay是關于x、y的三次單項式,那么a=,b=.
2、若-ax2yb+1是關于x、y的五次單項式,且系數為-3,則a=,b=.
設計意圖:照顧學有余力的學生,拓展學生思維,讓學生體會跳一跳、摘桃子的樂趣。
五、小結:
本節課你感受到了嗎?
生活中處處有數學
本節課我們學了什么?你能說說你的收獲嗎?
1、單項式的概念:數與字母、字母與字母的乘積。
2、單項式的系數、次數的概念。
系數:單項中的數字因數;
次數:單項中所有字母的指數和。
3、會用單項式表示實際問題中的數量關系,注意列式時式子要規范書寫。
設計意圖:通過回顧和反思,讓學生看到自己的進步,激勵學生,使學生相信自己在今后的學習中不斷進步,不斷積累數學活動經驗,促進學生形成良好的心理品質。
結束寄語
悟性的高低取決于有無悟“心”,其實,人與人的差別就在于你是否去思考,去發現!
設計意圖:這是對學生的激勵也是對學生的一種期盼,可以增進師生間的情感交流。
六、板書設計
2.1整式
單項式概念探究例1多
單項式的系數概念觀察交流嘗試應用媒
單項式的次數概念能力提升體
七、作業:
1.作業本(必做)。
2.請下面圖片設計一個故事情境,要求其中包含的數量關系能夠用單項式表示,并且指出它們的系數和次數(選做)。
設計意圖:布置分層作業,既讓學生掌握基礎知識,又使學有余力的學生有所提高。讓學生自行編題是一種創造性的思維活動,它可以改變一味由教師出題的形式,活躍學生思維,使學生能夠透徹理解知識,同時培養同學之間的競爭意識。
八、設計理念:
本節課是研究整式的起始課,它是進一步學習多項式的基礎,因此對單項式有關概念的理解和掌握情況,將直接影響到后續學習。為突出重點,突破難點,教學中要加強直觀性,即為學生提供足夠的感知材料,豐富學生的感性認識,幫助學生認識概念,同時也要注重分析,亦即在剖析單項式結構時,借助反例練習,抓住概念易混淆處和判斷易出錯處,強化認識,幫助學生理解單項式系數、次數,為進一步學習新知做好鋪墊。
針對七年級學生學習熱情高,但觀察、分析、認識問題能力較弱的特點,教學時將提供大量感性材料,以啟發引導為主,同時輔之以討論、練習、合作交流等學習活動,達到掌握知識的目的,并逐步培養起學生觀察、分析、抽象、概括的能力,同時注重培養學生由感性認識上升到理性認識,為進一步學習同類項打下堅實的基礎。
初中數學教案反思簡短模板篇11
一、一次函數
1、問題導入:
問題1:小明暑假第一次去北京、汽車駛上A地的高速公路后,小明觀察里程碑,發現汽車的平均速度是95千米/時、己知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關系,以便根據時間估計自己和北京的距離、
問題2:小張準備將平時的零用錢節約一些儲存起來、他己存有50元,從現在起每個月節存12元、試寫出小張的存款與從現在開始的月份數之間的函數關系式、
請同學們思考后回答:
(1)找出問題中的變量并用字母表示,列出函數關系式、
(2)這兩個函數關系式有什么共同點?自變量的取值范圍各有什么限制?
以上這些問題,請各小組討論一下,派代表回答、引出課題(板書課題)教師最后總結一次函數的概念、(板書)
2、引導學生觀察這兩個函數關系式的結構特征,引出一次函數的一般形式(學生回答,且互相補充)老師最后歸納:一次函數通??梢员硎緸榈男问剑渲袨槌?,特別地,當時,一次函數(常數)也叫做正比例函數、
二、一次函數的圖象是什么形狀呢?
1、做一做:
我們已經學習了用描點法畫函數的圖象,請同學運用描點法畫出下列函數的圖象(老師用多媒體打出題目)。根據學生的動手實踐、觀察與討論,得出結論:一次函數的圖象是一條直線、特別地,正比例函數的圖象是經過原點的一條直線。
2、接下來教師提問:
(1)觀察所畫出的四個一次函數的圖象,比較各對一次函數的圖象有什么共同點,有什么不同點。
(2)能否從中了現一些規律?對于直線(是常數),常數的取值對于直線的位置各有什么影響?
3、組織學生分小組討論,相互交流、相互補充,最后總結出規律:當一樣,不一樣時,直線方向相同(平行),但沒有相同點;當不一樣,一樣時,都經過(0,)點(相交),但直線方向不同、
4、鞏固訓練:
(1)在同一平面直角坐標系中畫出下列函數的圖象
教師提出問題:①畫出圖象,看看是否與上面的討論結果一樣;②你取的是哪幾個點?和同學比較一下,怎樣取比較簡便?
(2)將直線向下平移2個單位,得到直線_______________________、
將直線向上平移5個單位,得到直線_______________________、
(由學生到前板演)、
5、對于教材中第42頁例2處理,教師先用多媒體打出,并提出問題:平面直角坐標系中坐標軸上點的坐標有什么特征?在坐標軸上取點有什么好處?組織學生結合問題去分析,動手嘗試,小組討論交流,最后達成共識、對于教材第43頁例3處理,教師可以提出以下幾個問題討論同學們討論:①這里取的數懸殊較大怎么辦?②這個函數是不是一次函數?③這個函數中自變量的取值范圍是什么?函數的圖象是什么?④在實際問題中,一次函數的圖象除了直線和本題的圖形外,還有沒有其他情形?你能不能找出幾個例子加以說明?
三、一次函數的性質
函數反映了客觀世界中量的變化規律,那么一次函數又有什么性質呢?
1、請同學們來一起觀察大屏幕上函數圖象(教師用多媒體演示函數的圖象),并回答:當一個點在直線上從左右移動時,它的位置如何變化?你能從中得到函數值的變化與自變量的變化規律嗎?(教師運用現代化的教學手段來演示點的移動情況,進一步促進了學生對一次函數的變化規律理解)由學生討論出結果:也就是說,函數值隨自變量的增大而增大、(教師板書)
2、請同學們畫出函數的圖象,然后教師可以提出問題:觀察它們是否也有相應的性質,有什么不同你能否發現什么規律?讓學生帶著老師提出的問題進行分組討論,相互交流,最后歸納出一次函數如下性質:(1)當時,隨的增大而增大,這時函數的圖象從左到右上升;(2)當時,隨的增大而減小,這時函數的圖象從左到右下降;
3、補充性質:(3)時,一次函數的圖象經過一、二、三象限;(4)時,一次函數的圖象經過一、三、四象限;(5)時,一次函數的圖象經過一、二、四象限;(6)時,一次函數的圖象經過二、三、四象限、
4、對于教材中第45頁做一做處理,可以作為例題,引導學生動手操作,分組討論,由學生自己得出結論,教師起著指導作用;對于教材中第45頁例4的處理,教師可以先組織學生審題分析找出題中的己知量,并提示學生:要想求一次函數的關系式,關鍵是要確定和的值,那么,結合題中所給的己知條件,又怎樣來確定和的值呢?組織學生討論,結合學生得出的結論,教師再給出待定系數法的概念,這樣學生馬上就會理解,從而難點得以突破、在這里教師要提醒學生,注意實際問題有關函數的自變量的范圍限制、
初中數學教案反思簡短模板篇12
問題描述:
初中數學教學案例
初中的,隨便那個年級.2000字.案例和反思
1個回答分類:數學2014-11-30
問題解答:
我來補答
2.3平行線的性質
一、教材分析:
本節課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章第3節平行線的性質,它是平行線及直線平行的繼續,是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分.
二、教學目標:
知識與技能:掌握平行線的性質,能應用性質解決相關問題.
數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神.
情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神.
三、教學重、難點:
重點:平行線的性質
難點:“性質1”的探究過程
四、教學方法:
“引導發現法”與“動像探索法”
五、教具、學具:
教具:多媒體課件
學具:三角板、量角器.
六、教學媒體:
大屏幕、實物投影
七、教學過程:
(一)創設情境,設疑激思:
1.播放一組幻燈片.內容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答.①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
引出課題——平行線的性質.
(二)數形結合,探究性質
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數
數量關系
學生活動:畫圖——度量——填表——猜想
結論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?
學生:探究、討論,最后得出結論:仍然成立.
2.教師用《幾何畫板》課件驗證猜想
3.性質1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
(三)引申思考,培養創新
問題三:請判斷內錯角、同旁內角各有什么關系?
學生活動:獨立探究——小組討論——成果展示.
教師活動:引導學生說理.
因為a‖b因為a‖b
所以∠1=∠2所以∠1=∠2
又∠1=∠3又∠1+∠4=180°
所以∠2=∠3所以∠2+∠4=180°
語言敘述:
性質2兩條直線被第三條直線所截,內錯角相等.
(兩直線平行,內錯角相等)
性質3兩條直線被第三條直線所截,同旁內角互補.
(兩直線平行,同旁內角互補)
(四)實際應用,優勢互補
1.(搶答)
(1)如圖,平行線AB、CD被直線AE所截
①若∠1=110°,則∠2=°.理由:.
②若∠1=110°,則∠3=°.理由:.
③若∠1=110°,則∠4=°.理由:.
(2)如圖,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3
(C)∠1=∠4(D)∠3=∠4
(3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
(4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2=.
學生提問,并找出回答問題的同學.
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(小結)
1.平行線的性質1、2、3;
2.用“運動”的觀點觀察數學問題;
3.用數形結合的方法來解決問題.
(六)作業第69頁2、4、7.
八、教學反思:
①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者.在引導學生畫圖、測量、發現結論后,利用幾何畫板直觀地、動態地展示同位角的關系,激發學生自覺地探究數學問題,體驗發現的樂趣.
②學的轉變:學生的角色從學會轉變為會學.本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境.
③課堂氛圍的轉變:整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值.
初中數學教案反思簡短模板篇13
一、教學目標:
1、理解二元一次方程及二元一次方程的解的概念;
2、學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;
3、學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;
4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
二、教學重點、難點:
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
三、教學方法與教學手段:
通過與一元一次方程的比較,加強學生的類比的思想方法;通過“合作學習”,使學生認識數學是根據實際的需要而產生發展的觀點。
四、教學過程:
1、情景導入:
新聞鏈接:x70歲以上老人可領取生活補助。
得到方程:80a+150b=902880、
2、新課教學:
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程。
做一做:
(1)根據題意列出方程:
①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價、設蘋果的單價x元/kg,梨的單價y元/kg;
②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:
(2)課本P80練習2、判定哪些式子是二元一次方程方程。
合作學習:
活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動。
問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人、團支書擬安排8個勞動組,2個文藝組,單從人數上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學生檢驗得出代入方程后,能使方程兩邊相等、得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的&39;一對未知數的值叫做二元一次方程的一個解。
并提出注意二元一次方程解的書寫方法。
3、合作學習:
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換、(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法、提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?
出示例題:已知二元一次方程x+2y=8。
(1)用關于y的代數式表示x;
(2)用關于x的代數式表示y;
(3)求當x=2,0,—3時,對應的y的值,并寫出方程x+2y=8的三個解。
(當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)
4、課堂練習:
(1)已知:5xm—2yn=4是二元一次方程,則m+n=;
(2)二元一次方程2x—y=3中,方程可變形為y=當x=2時,y=;
5、你能解決嗎?
小紅到郵局給遠在農村的爺爺寄掛號信,需要郵資3元8角、小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。
6、課堂小結:
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式。
7、布置作業:
初中數學教案反思簡短模板篇14
學習目標:
1、使學生會用列一元二次方程的方法解決有關增長率的應用題;
2、進一步培養學生分析問題、解決問題的能力。
學習重點:
會列一元二次方程解關于增長率問題的應用題。
學習難點:
如何分析題意,找出等量關系,列方程。
學習過程:
一、復習提問:
列一元二次方程解應用題的一般步驟是什么?
二、探索新知
1.情境導入
問題:“坡耕地退耕還林還草”是國家為了解決西部地區水土流失生態問題、幫助廣大農民脫貧致富的一項戰略措施,某村村長為帶領全村群眾自覺投入“坡耕地退耕還林還草”行動,率先示范.2002年將自家的坡耕地全部退耕,并于當年承包了30畝耕地的還林還草及管理任務,而實際完成的畝數比承包數增加的百分率為x,并保持這一增長率不變,2003年村長完成了36.3畝坡耕地還林還草任務,求①增長率x是多少?②該村有50戶人家,每戶均地村長2003年完成的畝數為準,國家按每畝耕地500斤糧食給予補助,則國家將對該村投入補助糧食多少萬斤?
2.合作探究、師生互動
教師引導學生分析關于環保的情境導入問題,這是一個平均增長率問題,它的基數是30畝,平均增長的百分率為x,那么第一次增長后,即2002年實際完成的畝數是30(1+x),第二次增長后,即2003年實際完成的畝數是30(1+x)2,而這一年村長完成的畝數正好是36.3畝.
教師引導學生運用方程解決問題:
①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增長的百分率為10%.
②全村坡耕地還林還草為50×36.3=1815(畝),國家將補助糧食1815×500=907500(斤)=90.75(萬斤).
三、例題學習
說明:題目中求平均每月增長的百分率,直接設增長的百分率為x,好處在于計算簡便且直接得出所求。
例、某產品原來每件是600元,由于連續兩次降價,現價為384元,如果兩降價的百分率相同,求每次降價百分之幾?
(小組合作交流教師點撥)
時間基數降價降價后價錢
第一次600600x600(1-x)
第二次600(1-x)600(1-x)x600(1-x)2
(由學生寫出解答過程)
四、鞏固練習
一商店1月份的利潤是2500元,3月份的利潤達到3000元,這兩個月的利潤平均增長的百分率是多少(精確到0.1%)?
五、課堂總結:
1、善于將實際問題轉化為數學問題,嚴格審題,弄清各數據間相互關系,正確列出方程。
2、注意解方程中的巧算和方程兩個根的取舍問題。
六、反饋練習:
1.某商品計劃經過兩個月的時間將售價提高20%,設每月平均增長率為x,則列出的方程為()
A.x+(1+x)x=20%B.(1+x)2=20%
C.(1+x)2=1.2D.(1+x%)2=1+20%
2.某工廠計劃兩年內降低成本36%,則平均每年降低成本的百分率是()
3.某種藥劑原售價為4元,經過兩次降價,現在每瓶售價為2.56元,問平均每次降低百分之幾?
初中數學教案反思簡短模板篇15
一、教學目標:
知識與技能:理解掌握有理數的減法法則,會將有理數的減法運算轉化為加法運算。
過程與方法:通過把減法運算轉化為加法運算,向學生滲透轉化思想,通過有理數的減法運算,培養學生的運算能力。
情感態度與價值觀:通過揭示有理數的減法法則,滲透事物間普遍聯系、相互轉化的辯證唯物主義思想。
二、教學重點:運用有理數的減法法則,熟練進行減法運算。
三、教學難點:理解有理數減法法則。
四、教材分析:本節是在學習了正負數、相反數、有理數加法運算之后,以初中代數第一冊第53頁的有理數減法法則及有理數減法運算的例1、例2為課堂教學內容。有理數的減法運算是一種基本的有理數運算,對今后正確熟練地進行有理數的混合運算,并對解決實際問題都有十分重要的作用。
五、教學方法:師生互動法
六、教具:幻燈片
七、課時:1課時
八、教學過程:
1、計算(口答):
(1)1+(-2)
(2)-10+(+3)
(3)+10+(-3)
2、出示幻燈片二:
如圖:
這是20__年11月某天北京的溫度為-3~3℃,它的確切含義是什么?這一天北京的溫差是多少?
教師引導觀察
教師總結:這就是我們今天要學習的內容(引入新課,板書課題)
1、師:誰能把10-3=7這個式子中的性質符號補出來呢?
(+10)-(+3)=7
再計算:(+10)+(-3),師讓學生觀察兩式結果,由此得到:
(+10)-(+3)=(+10)+(-3)
觀察減法是否可以轉化為加法計算呢?是如何轉化的呢?
(教師發揮主導作用,注意學生的參與意識)
2、再看一題:
計算:(-10)-(-3)
教師啟發:要解決這個問題,根據有理數減法的意義,這就是要求一個數使它與-3相加會得到-10,那么這個數是多少?
問題:計算:(-10)+(+3)
教師引導,學生觀察上述兩題結果,由此得到
(-10)-(-3)=(-10)+(+3)
教師進一步引導學生觀察式子,你能得到什么結論呢?
教師總結:由以上兩式可以看出減法運算可以轉化成加法運算。
教師提問:通過以上的學習,同學們想一想兩個有理數相減的法則是什么?
教師對學生回答給予點評,總結有理數減法法則:減去一個數,等于加上這個數的相反數。
強調法則:(1)減法轉化為加法,減數要變成相反數(2)法則適用于任何兩個有理數相減(3)用字母表示一般形式為a-b=a+(-b)
3、例題講解:
出示幻燈片三(例1和例2)
例1計算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教師板書做示范,強調解題的規范性,然后師生共同總結解題步驟,(1)轉化(2)進行加法運算。
例2:小明家蔬菜大棚的氣溫是24℃,此時棚外的氣溫是-13℃,棚內氣溫比棚外氣溫高多少攝氏度?
師巡視指導,最后師生講評兩個學生的解題過程。
課后練習1、2
教師巡視指導
師組織學生自己編題
1、談談本節課你有哪些收獲和體會?[
2、本節課涉及的數學思想和數學方法是什么
教師點評:有理數減法法則是一個轉化法則,要求同學們掌握并能應用進行計算。
課堂檢測(包括基礎題和能力提高題)
1、-9-(-11)
2、3-15
3、-37-12
4、水銀的凝固點是-38.87℃,酒精的凝固點是-117.3℃。水銀的凝固點比酒精的凝固點高多少攝氏度?
學生思考后搶答,盡量照顧不同層次的學生參與的積極性。
學生觀察思考如何計算
學生觀察思考
互相討論
學生口述解題過程
由兩個學生板演,其他學生在練習本上做
第1小題學生搶答
第2小題找兩個學生板演。
學生回答
學生相互交流自己的收獲和體會,教師參與互動并給予鼓勵性評價。
綜合考查學以致用
既復習鞏固有理數加法法則,同時為進行有理數減法運算打下基礎
創設問題情境,激發學生的認知興趣。
讓學生通過嘗試,自己認識減法可以轉化為加法計算。
學生通過一個問題易于充分發揮學習的主動性,同時也培養了學生分析問題的能力
可以培養學生嚴謹的學風和良好的學習習慣,同時鍛煉學生的表達能力
可以照顧不層次的學生,調動學生學習積極性。
通過練習讓學生進一步鞏固新知,體驗知識的應用性。
能增強學生學習的&39;主動性和參與意識。
學生嘗試小結,疏理知識,自由發表學習心得,能鍛煉學生的語言表達能力和歸納概括能力。
鍛煉學生綜合運用知識,獨立解題的能力
板書設計:
2.6有理數的減法
有理數減法法則:
(+10)-(+3)=(+10)+(-3)
(-10)-(-3)=(-10)+(+3)
減去一個數等于加上這個數的相反數.例1:
例2:
練習:
教學反思:
本節課我在問題探索過程中,以提問的形式展現新問題,激發學生的好奇心,學生學習的積極性很高,討論交流的氣氛很熱烈,解決問題后有一種成就感,從而使學生更積極主動的學習,并且營造了良好的學習氛圍,從而收到較好的學習效果。
初中數學教案反思簡短模板篇16
一、教學目標
1、了解推理、證明的格式,理解判定定理的證法、
2、掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證、
3、通過第二個判定定理的推導,培養學生分析問題、進行推理的能力、
4、使學生了解知識來源于實踐,又服務于實踐,只有學好文化知識,才有解決實際問題的本領,從而對學生進行學習目的的&39;教育、
二、學法引導
1、教師教法:啟發式引導發現法、
2、學生學法:積極參與、主動發現、發展思維、
三、重點、難點及解決辦法
(一)重點
判定定理的推導和例題的解答、
(二)難點
使用符號語言進行推理、
(三)解決辦法
1、通過教師正確引導,學生積極思維,發現定理,解決重點、
2、通過教師指導,學生自行完成推理過程,解決難點及疑點、
四、課時安排
1課時
五、教具學具準備
三角板、投影儀、自制膠片、
六、師生互動活動設計
1、通過設計練習,復習基礎,創造情境,引入新課、
2、通過教師指導,學生探索新知,練習鞏固,完成新授、
3、通過學生自己總結完成小結、
七、教學步驟
(一)明確目標
掌握平行線的第二個定理的推理,并能運用其進行簡單的證明,培養學生的邏輯思維能力、
(二)整體感知
以情境創設,設計懸念,引出課題,以引導學生的思維,發現新知,以變式訓練鞏固新知、
(三)教學過程
創設情境,復習引入
師:上節課我們學習了平行線的判定公理和一種判定方法,根據所學看下面的問題(出示投影)、
學生活動:學生口答第1、2題、
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學生活動:由第l、2題,學生思考分析,只要有同位角相等或內錯角相等,就可以判定兩條直線平行、
教師將第3題圖形畫在黑板上、
學生活動:學生口答理由,同角的補角相等、
師:要求學生寫出符號推理過程,并板書、
教法說明:本節課是前一節課的繼續,是在前一節課的基礎上進行學習的,所以通過第1、2兩題復習上節課所學平行線判定的兩個方法,使學生明確,只要有同位角相等或內錯角相等,就可以判定兩條直線平行、第3題是為推導本節到定定理做鋪墊,即如果同旁內角互補,則可以推出同位角相等,也可以推出內錯角相等,為定理的推理論證,分散了難點、
師:第4題是一個實際問題,題目中已知的兩個角是什么位置關系角?
學生活動:同分內角、
師:它們有什么關系、
學生活動:互補、
師:這個問題就是知道同分內角互補了,那么兩條直線是不是平行的呢?這就是這節課我們要研究的問題、
初中數學教案反思簡短模板篇17
教學設計思想:本節安排1課時講授;影子是生活中常見的現象,教學中引用太陽光照射下的影子種種生活中的實例,目的是讓學生體會影子在生活中的存在,激發學習的興趣。課前布置作業讓學生觀察不同時刻物體影子的變化,親自感受變化的情況,再通過教師講授逐步加深對投影相關概念的理解,并掌握其應用。
教學目標:
1.知識與技能
經歷實踐、探索的過程,知道平行投影、正投影的含義;
能夠確定物體在太陽光下的影子的特征;
知道在不同時刻物體在太陽光下形成的影子的大小和方向是不同的。
2.過程與方法
通過觀察、想象、實踐形成一定的空間想象能力,發展空間觀念;
探索不同時刻不同物體的影子的變化規律:影子長的比等于物體高度的比。
3.情感、態度與價值觀
通過理論研究自然現象,引發對大自然和社會生活探索的欲望,提高學習興趣,增進數學的應用意識。
教學重點:理解平行投影的含義。
教學難點:通過對平行投影的認識進行物體與投影之間的相互轉化。
教學方法:啟發式。
教學安排:1課時。
教學媒體:幻燈片。
教學過程:
課前準備:讓學生在課前觀察物體在陽光下的影子,自己總結出一些結論。
一、創設情景
問題1:
師:請看這幅圖片,哪位同學知道這是什么?(提出問題,激發學生的興趣)
教師陳述:日晷是我國古代利用日影測定時刻的儀器,它由“晷面”和“晷針”組成。
當太陽光照在日晷上時,晷針的影子就會投向晷面。隨著時間的推移,晷針的影子在晷面上慢慢地移動。以此來顯示時刻。(看下圖)
設疑激趣:利用古代顯示時刻的物體來引起學生的興趣。
二、引出課題
問題2:
師:太陽光可看成平行的直線,在陽光下,我們經??匆娢矬w的影子,那同學們你們知道影子的長短和方向在一天中是怎樣變化的嗎?
下面我們來看幾副圖片:(幻燈顯示)
(1)(2)(3)
上面的三幅圖是在我國北方某地某天上午不同時刻的同一位置拍攝的,請根據樹的影子,判斷拍攝的先后順序,并說明理由。
生:通過這幾天觀察,如果上午觀察物體的影子,都是逐漸變短的一個過程,所以拍攝的先后順序是:(3)→(2)→(1)。
師:這位同學回答的很正確;但是哪位同學能解釋一下呢?
生:上午太陽從東方地平線上升起,逐漸升高,這里我們把太陽光線看成平行的直線,根據以前我們學過的幾何知識,通過畫圖,顯而易見影子隨著太陽的升高逐漸變短的。
師:回答的很好;根據上面的總結,我們觀看下面的圖片,觀察有什么變化?
在我國北方地區,人們居住的房屋窗戶大多是朝南的,中午某時刻室內的窗影在一年四季里會有什么變化呢?
學生相互討論,交流。
生:夏天的時候影子是最短的,冬天是最長的,春秋次之。
活動:學生有豐富的關于影子的生活經驗,讓他們結合經驗想象自己的影子從早到晚是如何變化的(包括大小和方向)?并叫三個學生代表太陽、物體、影子,模擬太陽東升西落。得出結論:大——小——大;西——北偏西——正北——北偏東——東。
教師總結:物體在光線的照射下,會在地面或墻面上留下它的影子,這種現象就是投影(projection)。
太陽的光線可看做平行線的,像這樣的光線照射在物體上,所形成的投影叫做平行投影。光線是投影線,地面或墻面是投影面。
如上圖,用一束平行光線豎直照射水平放置的三角尺上,投影線、三角尺在水平面上的投影是平行投影。在這種平行投影中,光線是豎直照射在水平面上的。像這種平行投影又叫做正投影。
現在大家對投影有了一定的了解,再看下面這個圖形,思考問題:[
如圖,正方體正面(R面)在V面上的正投影。
1.R面的正投影是什么圖形?與R面相對的面的在正投影是什么圖形?
2.Q面的正投影是什么圖形?與Q面相對的面的正投影是什么圖形?
3.P面及與它相對的面的正投影分別是什么圖形?
學生相應回答上面的問題。
師:我們學習了投影的相關概念,也觀看了許多投影的圖片,那同學們思考這樣的問題:
(1)一個物體的正投影是立體圖形還是平面圖形?
(2)點、線段和多邊形的正投影可能分別是什么圖形?
第一問顯而易見,教師可以找中下等學生回答。
第二問教師可以通過課件演示,學生觀看,回答問題。(參看課件:點、線、面的投影)
師生互動:
例:旗桿直立在A處,它的平行投影如圖所示。
(1)請畫出小明站在B處時的投影(用線段表示)。并說明你這樣畫的理由。
(2)如果小明站在C處,請畫出他的投影(用線段表示),并比較小明站在B、C兩處投影的長短。
(3)旗桿的高度與它投影長的比和小明的身高與他投影長的比有什么關系?為什么?
學生在教師的引導下,自主完成這道例題,教師再進行講解。
教師總結:一般地,兩個直立于地面的物體在陽光下的投影,或平行或在同一條直線上,兩個物體、他們的平行投影及過物體頂端的投影線,分別組成直角三角形,這兩個三角形相似。
三、練習
1.大致說出我國北方的確一天中(早晨、中午、傍晚),人在陽光下的投影的方向和長短。
2.下圖是一棵大樹在陽光下的投影,請畫出另一棵樹的投影(用線段表示)。
3.結合地理知識,談談在我國哪些地區會有太陽直射現象。這時人的投影是什么樣的?
四、課堂總結
板書設計:
平行投影
一、導入平行投影
問題1:正投影
二、新授例:
問題2:
三、練習
投影:
四、總結