初中數(shù)學(xué)教案的范文
優(yōu)秀的教案能夠幫助教師更好地把握教學(xué)目標(biāo)和教學(xué)內(nèi)容,提高教學(xué)質(zhì)量和效果。如何才能寫出優(yōu)秀的初中數(shù)學(xué)教案的范文?這里給大家分享初中數(shù)學(xué)教案的范文供大家參考。
初中數(shù)學(xué)教案的范文篇1
一、例題的意圖分析
例1(P83例2)讓學(xué)生養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識。
例2(補(bǔ)充)培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識。
二、課堂引入
創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法。
三、例習(xí)題分析
例1(P83例2)
分析:⑴了解方位角,及方位名詞;
⑵依題意畫出圖形;
⑶依題意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;
⑷因?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;
⑸∠PRS=∠QPR-∠QPS=45°。
小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識。
例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。
分析:⑴若判斷三角形的形狀,先求三角形的三邊長;
⑵設(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;
⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形。
解略。
四、課堂練習(xí)
1。小強(qiáng)在操場上向東走80m后,又走了60m,再走100m回到原地。小強(qiáng)在操場上向東走了80m后,又走60m的方向是。
2。如圖,在操場上豎直立著一根長為2米的測影竿,早晨測得它的影長為4米,中午測得它的影長為1米,則A、B、C三點(diǎn)能否構(gòu)成直角三角形?為什么?
3。如圖,在我國沿海有一艘不明國籍的輪船進(jìn)入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個基地前去攔截,六分鐘后同時(shí)到達(dá)C地將其攔截。已知甲巡邏艇每小時(shí)航行120海里,乙巡邏艇每小時(shí)航行50海里,航向?yàn)楸逼?0°,問:甲巡邏艇的航向
初中數(shù)學(xué)教案的范文篇2
【教材分析】
一元二次方程是中學(xué)數(shù)學(xué)的主要內(nèi)容之一,在初中數(shù)學(xué)中占有重要地位。通過一元二次方程的學(xué)習(xí),可以對已學(xué)過實(shí)數(shù)、一元一次方程、因式分解、二次根式等知識加以鞏固,同時(shí)又是今后學(xué)習(xí)可化為一元二次方程的其它高元方程、一元二次不等式、二次函數(shù)等知識的基礎(chǔ)。此外,學(xué)習(xí)一元二次方程對其它學(xué)科有重要意義。本節(jié)課是一元二次方程的概念,是通過豐富的實(shí)例,讓學(xué)生建立一元二次方程,并通過觀察歸納出一元二次方程的概念。
【教學(xué)目標(biāo)】
1、理解一元二次方程的概念,能熟練地把一元二次方程整理成一般形式(≠0)并知道各項(xiàng)及其系數(shù)。
2、在分析、揭示實(shí)際問題的數(shù)量關(guān)系并把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型(一元二次方程)的過程中使學(xué)生感受方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具,增加對一元二次方程的進(jìn)一步認(rèn)識。
【教學(xué)重點(diǎn)與難點(diǎn)】
理解一元二次方程的概念及一般形式,會正確識別一般式中的“項(xiàng)”及“系數(shù)”。
【教法、學(xué)法】
因?yàn)閷W(xué)生已經(jīng)學(xué)習(xí)了一元一次方程及相關(guān)概念,所以本節(jié)課我主要采用啟發(fā)式、類比法教學(xué)。教學(xué)中力求體現(xiàn)“問題情景---數(shù)學(xué)模型-----概念歸納”的模式。本節(jié)課借助多媒體輔助教學(xué),指導(dǎo)學(xué)生從具體的問題情景中抽象出數(shù)學(xué)問題,建立數(shù)學(xué)方程,從而突破難點(diǎn)。同時(shí)學(xué)生在現(xiàn)實(shí)的生活情景中,經(jīng)歷數(shù)學(xué)建模,經(jīng)過自主探索和合作交流的學(xué)習(xí)過程,產(chǎn)生積極的情感體驗(yàn),進(jìn)而創(chuàng)造性地解決問題,有效發(fā)揮學(xué)生的思維能力。
【教學(xué)過程】
一、復(fù)習(xí)舊知,類比新知
1、一元一次方程的概念
像這樣的等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的次數(shù)是1(一次)的方程叫做一元一次方程
2、一般形式:
是常數(shù)且
設(shè)計(jì)意圖:復(fù)習(xí)一元一次方程,讓學(xué)生回憶起一元一次方程的概念,回憶起“項(xiàng)”及“系數(shù)”的概念,通過類比,讓學(xué)生能更好的理解一元二次方程的概念。
二、生活情境,自主學(xué)習(xí)
(1)正方形桌面的面積是2m,設(shè)正方形桌面的邊長是xm,可得方程
(2)矩形花圃一面靠墻,另外三面所圍的柵欄的總長度是19米。如果花圃的面積是24m2,設(shè)花圃的寬是xm則花圃的長是m,可得方程
(3)一張面積是600cm2的長方形紙片,把它的一邊剪短10cm,恰好得到一個正方形。設(shè)這個正方形的邊長是xcm,可得方程
(4)長5米的梯子斜靠在墻上,梯子的底端與墻的距離比梯子的頂端到地面的距離多1m,設(shè)梯子的底端到墻面的距離是xm,可得方程
設(shè)計(jì)意圖:因?yàn)閿?shù)學(xué)來源與生活,所以以學(xué)生的實(shí)際生活背景為素材創(chuàng)設(shè)情景,易于被學(xué)生接受、感知。讓學(xué)生從實(shí)際問題中提煉出數(shù)學(xué)問題,初步培養(yǎng)學(xué)生的空間概念和抽象能力。情景分析中學(xué)生自然會想到用方程來解決問題,但所列的方程不是以前學(xué)過的`,從而激發(fā)學(xué)生的求知欲望,順利地進(jìn)入新課。
三、探究學(xué)習(xí):
1、概念得出
討論交流:以上所列方程有哪些共同特征?
設(shè)計(jì)意圖:英國一位著名的數(shù)學(xué)教育心理學(xué)家曾說:概念的教學(xué)要從大量實(shí)例出發(fā),通過實(shí)例幫助完成定義,而不是教定義。讓學(xué)生充分感受所列方程的特點(diǎn),再通過類比的方法得到定義,從而達(dá)到真正理解定義的目的.
2、鞏固概念
下列方程中那些是一元二次方程。
設(shè)計(jì)意圖:
這組練習(xí)目的在于鞏固學(xué)生對一元二次方程定義中3個特征的理解.題目的設(shè)置,目的在于進(jìn)一步加深學(xué)生對定義的掌握,提高學(xué)生對變式的理解能力.此環(huán)節(jié)采取搶答的形式,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性.
3、一元二次方程的一般形式:
設(shè)計(jì)意圖:此環(huán)節(jié)讓學(xué)生通過自主探究,類比一元一次方程一般形式,得出一元二次方程一般形式和項(xiàng),系數(shù)的概念,從而達(dá)到真正理解并掌握的目的.
4.典型例題
例將下列方程化為一元二次方程的一般形式,并分別指出它們的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)
設(shè)計(jì)意圖:此題設(shè)置的目的在于加深學(xué)生對一般形式的理解。
5.鞏固練習(xí)
把下列方程化成一元二次方程的一般形式,并寫出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)
設(shè)計(jì)意圖:此題設(shè)置的目的在于加深學(xué)生對一般形式的理解
6、拓展應(yīng)用
(1)、若是關(guān)于x的一元二次方程,則()
p為任意實(shí)數(shù)B、p=0C、p≠0D、p=0或1
(2)、若關(guān)于x的方程mx-2x+1=2x(x-1)是一元二次方程,那么m的取值范圍是
(3)、若方程是關(guān)于x的一元二次方程,則m的值為
設(shè)計(jì)意圖:此題讓學(xué)生進(jìn)行思考,討論,讓學(xué)生進(jìn)行講解,教師作適當(dāng)歸納,可留疑,讓學(xué)生課下思考。此題需進(jìn)行分類討論,開拓學(xué)生思維,體現(xiàn)數(shù)學(xué)的嚴(yán)謹(jǐn)性。
7.課堂小結(jié)
設(shè)計(jì)意圖:小結(jié)反思中,不同學(xué)生有不同的體會,要尊重學(xué)生的個體差異,激發(fā)學(xué)生主動參與意識,.為每個學(xué)生都創(chuàng)造了數(shù)學(xué)活動中獲得活動經(jīng)驗(yàn)的機(jī)會。
【課后作業(yè)】
1、下列方程中哪些是一元二次方程?試說明理由。
2、將下列方程化為一般形式,并分別指出它們的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng):
初中數(shù)學(xué)教案的范文篇3
教學(xué)目標(biāo)
1.理解二元一次方程及二元一次方程的解的概念;
2.學(xué)會求出某二元一次方程的幾個解和檢驗(yàn)?zāi)硨?shù)值是否為二元一次方程的解;
3.學(xué)會把二元一次方程中的一個未知數(shù)用另一個未知數(shù)的一次式來表示;
4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):二元一次方程的意義及二元一次方程的解的概念.
難點(diǎn):把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實(shí)質(zhì)是解一個含有字母系數(shù)的方程.
教學(xué)過程
1.情景導(dǎo)入:
新聞鏈接:桐鄉(xiāng)70歲以上老人可領(lǐng)取生活補(bǔ)助,得到方程:80a+150b=902880.2.
2.新課教學(xué):
引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1次的方程叫做二元一次方程.
3.合作學(xué)習(xí):
給定方程x+2y=8,男同學(xué)給出y(x取絕對值小于10的整數(shù))的值,女同學(xué)馬上給出對應(yīng)的x的值;接下來男女同學(xué)互換.(比一比哪位同學(xué)反應(yīng)快)請算的最快最準(zhǔn)確的同學(xué)講他的計(jì)算方法.提問:給出x的值,計(jì)算y的值時(shí),y的系數(shù)為多少時(shí),計(jì)算y最為簡便?
4.課堂練習(xí):
1)已知:5xm-2yn=4是二元一次方程,則m+n=;
2)二元一次方程2x-y=3中,方程可變形為y=當(dāng)x=2時(shí),y=_
5.課堂總結(jié):
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關(guān)性;
(3)會把二元一次方程化為用一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式.
作業(yè)布置
本章的課后的方程式鞏固提高練習(xí)。
初中數(shù)學(xué)教案的范文篇4
一、教學(xué)目標(biāo)
1.掌握相似三角形的性質(zhì)定理2、3.
2.學(xué)生掌握綜合運(yùn)用相似三角形的判定定理和性質(zhì)定理2、3來解決問題.
3.進(jìn)一步培養(yǎng)學(xué)生類比的教學(xué)思想chayi5.com.
4.通過相似性質(zhì)的學(xué)習(xí),感受圖形和語言的和諧美
二、教法引導(dǎo)
先學(xué)后教,達(dá)標(biāo)導(dǎo)學(xué)
三、重點(diǎn)及難點(diǎn)
1.教學(xué)重點(diǎn):是性質(zhì)定理的應(yīng)用.
2.教學(xué)難點(diǎn):是相似三角形的判定與性質(zhì)等有關(guān)知識的綜合運(yùn)用.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀、膠片、常用畫圖工具.
六、教學(xué)步驟
[復(fù)習(xí)提問]
敘述相似三角形的性質(zhì)定理1.
[講解新課]
讓學(xué)生類比“全等三角形的周長相等”,得出性質(zhì)定理2.
性質(zhì)定理2:相似三角形周長的比等于相似比.
同樣,讓學(xué)生類比“全等三角形的面積相等”,得出命題.
“相似三角形面積的比等于相似比”教師對學(xué)生作出的這種判斷暫時(shí)不作否定,待證明后再強(qiáng)調(diào)是“相似比的平方”,以加深學(xué)生的印象.
性質(zhì)定理3:相似三角形面積的比,等于相似比的平方.
注:(1)在應(yīng)用性質(zhì)定理3時(shí)要注意由相似比求面積比要平方,這一點(diǎn)學(xué)生容易掌握,但反過來,由面積比求相似比要開方,學(xué)生往往掌握不好,教學(xué)時(shí)可增加一些這方面的練習(xí).
(2)在掌握相似三角形性質(zhì)時(shí),一定要注意相似前提,如:兩個三角形周長比是,它們的面積之經(jīng)不一定是,因?yàn)闆]有明確指出這兩個三角形是否相似,以此教育學(xué)生要認(rèn)真審題.
例1已知如圖,∽,它們的周長分別是60cm和72cm,且AB=15cm,,求BC、AB、、.
此題學(xué)生一般不會感到有困難.
例2有同一三角形地塊的甲、乙兩地圖,比例尺分別為1:200和1:500,求甲地圖與乙地圖的相似比和面積比.
教材上的解法是用語言敘述的,學(xué)生不易掌握,教師可提供另外一種解法.
解:設(shè)原地塊為,地塊在甲圖上為,在乙圖上為
學(xué)生在運(yùn)用掌握了計(jì)算時(shí),容易出現(xiàn)的錯誤,為了糾正或防止這類錯誤,教師在課堂上可舉例說明,如:,而
[小結(jié)]
1.本節(jié)學(xué)習(xí)了相似三角形的性質(zhì)定理2和定理3.
2.重點(diǎn)學(xué)習(xí)了兩個性質(zhì)定理的應(yīng)用及注意的問題.
七、布置作業(yè)
教材P247中A組4、5、7.
八、板書設(shè)計(jì)
數(shù)學(xué)教案-相似三角形的性質(zhì)
初中數(shù)學(xué)教案的范文篇5
一、教學(xué)目標(biāo)
1、了解推理、證明的格式,理解判定定理的證法、
2、掌握平行線的第二個判定定理,會用判定公理及定理進(jìn)行簡單的推理論證、
3、通過第二個判定定理的推導(dǎo),培養(yǎng)學(xué)生分析問題、進(jìn)行推理的能力、
4、使學(xué)生了解知識來源于實(shí)踐,又服務(wù)于實(shí)踐,只有學(xué)好文化知識,才有解決實(shí)際問題的本領(lǐng),從而對學(xué)生進(jìn)行學(xué)習(xí)目的的&39;教育、
二、學(xué)法引導(dǎo)
1、教師教法:啟發(fā)式引導(dǎo)發(fā)現(xiàn)法、
2、學(xué)生學(xué)法:積極參與、主動發(fā)現(xiàn)、發(fā)展思維、
三、重點(diǎn)、難點(diǎn)及解決辦法
(一)重點(diǎn)
判定定理的推導(dǎo)和例題的解答、
(二)難點(diǎn)
使用符號語言進(jìn)行推理、
(三)解決辦法
1、通過教師正確引導(dǎo),學(xué)生積極思維,發(fā)現(xiàn)定理,解決重點(diǎn)、
2、通過教師指導(dǎo),學(xué)生自行完成推理過程,解決難點(diǎn)及疑點(diǎn)、
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
三角板、投影儀、自制膠片、
六、師生互動活動設(shè)計(jì)
1、通過設(shè)計(jì)練習(xí),復(fù)習(xí)基礎(chǔ),創(chuàng)造情境,引入新課、
2、通過教師指導(dǎo),學(xué)生探索新知,練習(xí)鞏固,完成新授、
3、通過學(xué)生自己總結(jié)完成小結(jié)、
七、教學(xué)步驟
(一)明確目標(biāo)
掌握平行線的第二個定理的推理,并能運(yùn)用其進(jìn)行簡單的證明,培養(yǎng)學(xué)生的邏輯思維能力、
(二)整體感知
以情境創(chuàng)設(shè),設(shè)計(jì)懸念,引出課題,以引導(dǎo)學(xué)生的思維,發(fā)現(xiàn)新知,以變式訓(xùn)練鞏固新知、
(三)教學(xué)過程
創(chuàng)設(shè)情境,復(fù)習(xí)引入
師:上節(jié)課我們學(xué)習(xí)了平行線的判定公理和一種判定方法,根據(jù)所學(xué)看下面的問題(出示投影)、
學(xué)生活動:學(xué)生口答第1、2題、
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學(xué)生活動:由第l、2題,學(xué)生思考分析,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行、
教師將第3題圖形畫在黑板上、
學(xué)生活動:學(xué)生口答理由,同角的補(bǔ)角相等、
師:要求學(xué)生寫出符號推理過程,并板書、
教法說明:本節(jié)課是前一節(jié)課的繼續(xù),是在前一節(jié)課的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,所以通過第1、2兩題復(fù)習(xí)上節(jié)課所學(xué)平行線判定的兩個方法,使學(xué)生明確,只要有同位角相等或內(nèi)錯角相等,就可以判定兩條直線平行、第3題是為推導(dǎo)本節(jié)到定定理做鋪墊,即如果同旁內(nèi)角互補(bǔ),則可以推出同位角相等,也可以推出內(nèi)錯角相等,為定理的推理論證,分散了難點(diǎn)、
師:第4題是一個實(shí)際問題,題目中已知的兩個角是什么位置關(guān)系角?
學(xué)生活動:同分內(nèi)角、
師:它們有什么關(guān)系、
學(xué)生活動:互補(bǔ)、
師:這個問題就是知道同分內(nèi)角互補(bǔ)了,那么兩條直線是不是平行的呢?這就是這節(jié)課我們要研究的問題、
初中數(shù)學(xué)教案的范文篇6
說教學(xué)目標(biāo)
一、知識與技能
1、了解全等形和全等三角形的概念,掌握全等三角形的性質(zhì)。
2、能正確表示兩個全等三角形,能找出全等三角形的對應(yīng)元素。
二、過程與方法
通過觀察、拼圖以及三角形的平移、旋轉(zhuǎn)和翻折等活動,來感知兩個三角形全等,以及全等三角形的性質(zhì)。
三、情感態(tài)度與價(jià)值觀
通過全等形和全等三角形的學(xué)習(xí),認(rèn)識和熟悉生活中的全等圖形,認(rèn)識生活和數(shù)學(xué)的關(guān)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
說教學(xué)重點(diǎn)
1、全等三角形的性質(zhì)。
2、在通過觀察、實(shí)際操作來感知全等形和全等三角形的基礎(chǔ)上,形成理性認(rèn)識,理解并掌握全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
說教學(xué)難點(diǎn)
正確尋找全等三角形的對應(yīng)元素
難點(diǎn)突破
通過拼圖、對三角形進(jìn)行平移、旋轉(zhuǎn)、翻折等活動,讓學(xué)生在動手操作的過程中,感知全等三角形圖形變換中的對應(yīng)元素的變化規(guī)律,以尋找全等三角形的對應(yīng)點(diǎn)、對應(yīng)邊、對應(yīng)角。
說課前準(zhǔn)備:
課件、三角形紙片
說教學(xué)過程
一、出示學(xué)習(xí)目標(biāo)
1、知道什么是全等形、全等三角形及全等三角形的對應(yīng)元素。
2、知道全等三角形的性質(zhì),能用符號正確地表示兩個三角形全等。
二、直觀感知,導(dǎo)入新課
教師演示一些全等的圖形的課件,讓學(xué)生直觀感知圖片并尋找每組圖片的特點(diǎn)。二、合作探究,學(xué)習(xí)新知
1.全等形
我們給這樣的圖形起個名稱----全等形。[板書:全等形]
教師讓學(xué)生們想生活中還有那些圖形是全等形.
2.全等三角形及相關(guān)對應(yīng)元素的定義
教師用多媒體動態(tài)演示兩個能完全重合地三角形。定義全等三角形:能夠完全重合的兩個三角形,叫全等三角形。
[板書課題:12.1全等三角形]
2.全等三角形的對應(yīng)元素及表示
把三角形平移、翻折、旋轉(zhuǎn)后,什么發(fā)生了變化,什么沒有變?
歸納:旋轉(zhuǎn)前后的兩個三角形,位置變化了,但形狀大小都沒有變,它們依然全等。
以多媒體上的圖形為例,全等三角形中的對應(yīng)元素
(1)對應(yīng)的頂點(diǎn)(三個)---重合的頂點(diǎn)
(2)對應(yīng)邊(三條)---重合的邊
(3)對應(yīng)角(三個)---重合的角
歸納:方法一---全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個對應(yīng)角所夾的&39;邊是對應(yīng)邊;方法二:全等三角形對應(yīng)邊所對的角是對應(yīng)角,兩條對應(yīng)邊所夾的角是對應(yīng)角。
另外:有公共邊的,公共邊一定是對應(yīng)邊;有對頂角的,對頂角一定是對應(yīng)角。
.用符號表示全等三角形
抽學(xué)生表示圖一、圖二、三的全等三角形。
3.全等三角形的性質(zhì)
思考:全等三角形的對應(yīng)邊、對應(yīng)角有什么關(guān)系?為什么?
歸納:全等三角形的對應(yīng)邊相等、對應(yīng)角相等。
4.小組活動合作升華
學(xué)生分小組動手操作擺圖形
小組合作完成位置不同的三角形,寫出它們的對應(yīng)邊,對應(yīng)角。強(qiáng)調(diào)其他小組學(xué)生說的時(shí)候,自己一定要注意傾聽,能夠分辨出對錯來。
三、鞏固練習(xí)
四、教師用多媒體展示習(xí)題,學(xué)生做鞏固練習(xí)。
五、小結(jié):本節(jié)課都學(xué)到了什么
六、作業(yè):
必做題課本33頁習(xí)題第1題、2題.
選做題課本第34頁第6題。
初中數(shù)學(xué)教案的范文篇7
一、學(xué)習(xí)目標(biāo):
1、什么是數(shù)軸?數(shù)軸上的點(diǎn)和有理數(shù)的對應(yīng)關(guān)系?
2、你會用數(shù)軸上的點(diǎn)表示給定的有理數(shù)嗎?會根據(jù)數(shù)軸上的點(diǎn)讀出所表示的有理數(shù)嗎?
二、學(xué)習(xí)重點(diǎn):
會說出數(shù)軸上已知點(diǎn)所表示的數(shù),能將已知數(shù)在數(shù)軸上表示出來。
三、學(xué)習(xí)難點(diǎn):
利用數(shù)軸比較有理數(shù)的大小
四、學(xué)習(xí)過程:
(一)自主學(xué)習(xí)課本,回答問題:
1、像這樣規(guī)定了、和的直線叫做數(shù)軸
2、數(shù)軸與溫度計(jì)作類比,真像一個平放的________+3用數(shù)軸上位于原點(diǎn)___邊___個單位的點(diǎn)表示,-4用數(shù)軸上位于原點(diǎn)___邊___個單位的點(diǎn)表示,原點(diǎn)右邊個單位的點(diǎn)表示____,原點(diǎn)左邊1.5個單位的點(diǎn)表示_____.
(二)精講點(diǎn)撥
1、完成例1
2、請畫一條數(shù)軸表示下列有理數(shù)
+4,-1/2,1/2,-1.25,-4,0。
3、完成第10頁第1、2題.
(三)、尋找規(guī)律,探究新知
1.觀察以上數(shù)軸,哪些數(shù)在原點(diǎn)的左邊,哪些數(shù)在原點(diǎn)的右邊,由此你有什么發(fā)現(xiàn)?
2.在數(shù)軸上,表示4與-4的點(diǎn)到原點(diǎn)的距離各是多少?表示-1/2與1/2的點(diǎn)到原點(diǎn)的距離各是多少?由此你又有什么發(fā)現(xiàn)?
3.什么是絕對值?絕對值怎么表示?
(四)、鞏固練習(xí):
1.完成課本第11頁練習(xí)1、2、3兩題
2.在數(shù)軸上,表示數(shù)-3、2.6、+2、0、-1的點(diǎn)中,在原點(diǎn)左邊的點(diǎn)有個。
教學(xué)引入
師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形。現(xiàn)在請同學(xué)們拿出一個長方形紙條,按動畫所示進(jìn)行折疊處理。
動畫演示:
場景一:正方形折疊演示
師:這就是我們得到的正方形。下面請同學(xué)們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質(zhì)—邊、角以及對角線之間的關(guān)系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點(diǎn)到各頂點(diǎn)的長度。
[學(xué)生活動:各自測量。]
鼓勵學(xué)生將測量結(jié)果與鄰近同學(xué)進(jìn)行比較,找出共同點(diǎn)。
講授新課
找一兩個學(xué)生表述其結(jié)論,表述是要注意糾正其語言的規(guī)范性。
動畫演示:
場景二:正方形的性質(zhì)
師:這些性質(zhì)里那些是矩形的性質(zhì)?
[學(xué)生活動:尋找矩形性質(zhì)。]
動畫演示:
場景三:矩形的性質(zhì)
師:同樣在這些性質(zhì)里尋找屬于菱形的性質(zhì)。
[學(xué)生活動;尋找菱形性質(zhì)。]
動畫演示:
場景四:菱形的性質(zhì)
師:這說明正方形具有矩形和菱形的全部性質(zhì)。
及時(shí)提出問題,引導(dǎo)學(xué)生進(jìn)行思考。
師:根據(jù)這些性質(zhì),我們能不能給正方形下一個定義?怎么樣給正方形下一個準(zhǔn)確的定義?
[學(xué)生活動:積極思考,有同學(xué)做躍躍欲試狀。]
師:請同學(xué)們回想矩形與菱形的定義,可以根據(jù)矩形與菱形的定義類似的給出正方形的定義。
學(xué)生應(yīng)能夠向出十種左右的定義方式,其余作相應(yīng)鼓勵,把以下三種板書:
“有一組鄰邊相等的矩形叫做正方形。”
“有一個角是直角的菱形叫做正方形。”
“有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形。”
[學(xué)生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]
師:根據(jù)定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關(guān)系梳理一下。
3.與原點(diǎn)距離等于4的點(diǎn)有個?其表示的數(shù)是。
4.在數(shù)軸上,點(diǎn)A、B分別表示-5和2,則線段AB的長度是。
5.在數(shù)軸上點(diǎn)A表示-4,如果把原點(diǎn)O向負(fù)方向移動1個單位,那么在新數(shù)軸上點(diǎn)A表示的數(shù)是()
A.-5,B.-4C.-3D.-2
6.你覺得數(shù)軸上的點(diǎn)表示數(shù)的大小與點(diǎn)的位置有關(guān)嗎?為什么?
五、談?wù)勀氵@堂課的學(xué)習(xí)體會
六、課后作業(yè):
1、在數(shù)軸上表示-4的點(diǎn)位于原點(diǎn)的___邊,與原點(diǎn)的距離是___個
單位長度。
2、在數(shù)軸上點(diǎn)A表示的數(shù)是-3,與點(diǎn)A相距兩個單位的點(diǎn)表示的數(shù)是
3、數(shù)軸上與原點(diǎn)距離是5的點(diǎn)有___個,表示的數(shù)是___。
4、從數(shù)軸上表示-1的點(diǎn)出發(fā),向左移動兩個單位長度到點(diǎn)B,則點(diǎn)B表示的數(shù)是____,再向右移動兩個單位長度到達(dá)點(diǎn)C,則點(diǎn)C表示的數(shù)
是____。
5、數(shù)軸上的點(diǎn)A表示-3,將點(diǎn)A先向右移動7個單位長度,再向左移
動5個單位長度,那么終點(diǎn)到原點(diǎn)的距離是_____個單位長度
6、在數(shù)軸上P點(diǎn)表示2,現(xiàn)在將P點(diǎn)向右移動兩個單位長度后再向左移
動5個單位長度,這時(shí)P點(diǎn)必須向___移動___個單位到達(dá)表
示-3的點(diǎn)
7.在數(shù)軸上表示-2的點(diǎn)離開原點(diǎn)的距離等于()
A、2B、-2C、±2D、4
8.請畫一條數(shù)軸表示下列有理數(shù)
+3,-4,-3.5,-1.25,2,0。
更多精彩內(nèi)容請點(diǎn)擊:初中>初二>數(shù)學(xué)>初二數(shù)學(xué)教案
正數(shù)與負(fù)數(shù)導(dǎo)學(xué)案
一.學(xué)習(xí)目標(biāo):
1.什么是正負(fù)數(shù)?生活中有哪些相反意義的量?
2.有理數(shù)是怎樣分類的?
二.學(xué)習(xí)重點(diǎn)難點(diǎn):
1.重點(diǎn):會用正負(fù)數(shù)表示實(shí)際生活中具有相反意義的量
2.難點(diǎn):正負(fù)數(shù)的概念,有理數(shù)的分類。
三.學(xué)習(xí)過程
(一)、自學(xué)課本1--5頁,回答以下問題?
1.舉例說明正數(shù)和負(fù)數(shù)概念,寫法及讀法?
2.正數(shù)和負(fù)數(shù)可以表示生活中具有意義的量。例如,又如。
3.0這個數(shù)特別嗎?為什么?
4.完成課本第6頁練習(xí)第1題的1、2、3小題。
5.完成課本第6頁練習(xí)第2題的1、2小題
6.飛機(jī)上升以正數(shù)表示,下降以負(fù)數(shù)表示,若飛機(jī)在1200米高空兩次記錄升降情況是+300米,-600米,這時(shí)飛機(jī)實(shí)際高度是米。
(二)、精講點(diǎn)撥。
1、完成例1
交流你能舉出一些用正負(fù)數(shù)表示數(shù)量的實(shí)例嗎?
2、思考:
有理數(shù)
3、完成例2
初中數(shù)學(xué)教案的范文篇8
教學(xué)目標(biāo)
1.經(jīng)歷不同的拼圖方法驗(yàn)證公式的過程,在此過程中加深對因式分解、整式運(yùn)算、面積等的認(rèn)識。
2.通過驗(yàn)證過程中數(shù)與形的結(jié)合,體會數(shù)形結(jié)合的思想以及數(shù)學(xué)知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。
3.通過豐富有趣的拼圖活動,經(jīng)歷觀察、比較、拼圖、計(jì)算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達(dá)的能力,獲得一些研究問題與合作交流方法與經(jīng)驗(yàn)。
4.通過獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動增強(qiáng)對數(shù)學(xué)學(xué)習(xí)的興趣。
重點(diǎn)1.通過綜合運(yùn)用已有知識解決問題的過程,加深對因式分解、整式運(yùn)算、面積等的認(rèn)識。
2.通過拼圖驗(yàn)證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗(yàn)。
難點(diǎn)利用數(shù)形結(jié)合的方法驗(yàn)證公式
教學(xué)方法動手操作,合作探究課型新授課教具投影儀
教師活動學(xué)生活動
情景設(shè)置:
你已知道的關(guān)于驗(yàn)證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨(dú)立思考和討論的時(shí)間,讓學(xué)生回想前面拼圖。)
新課講解:
把幾個圖形拼成一個新的圖形,再通過圖形面積的計(jì)算,常常可以得到一些有用的式子。美國第二十任總統(tǒng)伽菲爾德就由這個圖(由兩個邊長分別為a、b、c的直角三角形和一個兩條直角邊都是c的直角三角形拼成一個新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:
教師接著在介紹教材第94頁例題的拼法及相關(guān)公式
提問:還能通過怎樣拼圖來解決以下問題
(1)任意選取若干塊這樣的硬紙片,嘗試拼成一個長方形,計(jì)算它的面積,并寫出相應(yīng)的等式;
(2)任意寫出一個關(guān)于a、b的二次三項(xiàng)式,如a2+4ab+3b2
試用拼一個長方形的方法,把這個二次三項(xiàng)式因式分解。
這個問題要給予學(xué)生充足的時(shí)間和空間進(jìn)行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時(shí)鼓勵學(xué)生在拼圖過程中進(jìn)行交流合作
了解學(xué)生拼圖的情況及利用自己的拼圖驗(yàn)證的情況。教師在巡視過程中,及時(shí)指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗(yàn)證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。
小結(jié):
從這節(jié)課中你有哪些收獲?
(教師應(yīng)給予學(xué)生充分的時(shí)間鼓勵學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵、多肯定。最后,教師要對學(xué)生所說的進(jìn)行全面的總結(jié)。)
學(xué)生回答
a(b+c+d)=ab+ac+ad
(a+b)(c+d)=ac+ad+bc+bd
(a+b)2=a2+2ab+b2
學(xué)生拿出準(zhǔn)備好的硬紙板制作
給學(xué)生充分的時(shí)間進(jìn)行拼圖、思考、交流經(jīng)驗(yàn),對于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。
作業(yè)第95頁第3題
板書設(shè)計(jì)
復(fù)習(xí)例1板演
………………
………………
……例2……
………………
………………
教學(xué)后記
初中數(shù)學(xué)教案的范文篇9
教學(xué)目的
1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2. 熟識等邊三角形的性質(zhì)及判定.
2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。
教學(xué)重點(diǎn): 等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn): 簡潔的邏輯推理。
教學(xué)過程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以∠B=∠C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。
2.若等腰三角形的兩邊長為3和4,則其周長為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的知識,通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個角都等于60°。
等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),∠B=30°,求∠1和∠ADC的度數(shù)。
分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
問題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?
問題2:求∠1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對的打“√”,錯的打“×”。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個角是60°的等腰三角形,其它兩個內(nèi)角也為60°( )
2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數(shù)。
3.P54練習(xí)1、2。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個結(jié)論成立,其他兩個結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個結(jié)論成立的條件。
五、作業(yè): 1.課本P57第7,9題。
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數(shù)。
12.3.2 等邊三角形(二)
教學(xué)目標(biāo)
1.掌握等邊三角形的性質(zhì)和判定方法. 2.培養(yǎng)分析問題、解決問題的能力.
教學(xué)重點(diǎn):等邊三角形的性質(zhì)和判定方法.
教學(xué)難點(diǎn):等邊三角形性質(zhì)的應(yīng)用
教學(xué)過程
I創(chuàng)設(shè)情境,提出問題
回顧上節(jié)課講過的等邊三角形的有關(guān)知識
1.等邊三角形是軸對稱圖形,它有三條對稱軸.
2.等邊三角形每一個角相等,都等于60°
3.三個角都相等的三角形是等邊三角形.
4.有一個角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
①在邊AB、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
③過邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
3. P56頁練習(xí)1、2
III課堂小結(jié):1.等腰三角形和性質(zhì);等腰三角形的條件
V布置作業(yè): 1.P58頁習(xí)題12.3第ll題.
2.已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個?
12.3.2 等邊三角形(三)
教學(xué)過程
一、 復(fù)習(xí)等腰三角形的判定與性質(zhì)
二、 新授:
1.等邊三角形的性質(zhì):三邊相等;三角都是60°;三邊上的中線、高、角平分線相等
2.等邊三角形的判定:
三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;
在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半
注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關(guān)系.
3.由學(xué)生解答課本148頁的例子;
4.補(bǔ)充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,
∠ABC=120o, 求證: AB=2BC
分析 由已知條件可得∠ABD=30o, 如能構(gòu)造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.
初中數(shù)學(xué)教案的范文篇10
教學(xué)設(shè)計(jì)思想:本節(jié)安排1課時(shí)講授;影子是生活中常見的現(xiàn)象,教學(xué)中引用太陽光照射下的影子種種生活中的實(shí)例,目的是讓學(xué)生體會影子在生活中的存在,激發(fā)學(xué)習(xí)的興趣。課前布置作業(yè)讓學(xué)生觀察不同時(shí)刻物體影子的變化,親自感受變化的情況,再通過教師講授逐步加深對投影相關(guān)概念的理解,并掌握其應(yīng)用。
教學(xué)目標(biāo):
1.知識與技能
經(jīng)歷實(shí)踐、探索的過程,知道平行投影、正投影的含義;
能夠確定物體在太陽光下的影子的特征;
知道在不同時(shí)刻物體在太陽光下形成的影子的大小和方向是不同的。
2.過程與方法
通過觀察、想象、實(shí)踐形成一定的空間想象能力,發(fā)展空間觀念;
探索不同時(shí)刻不同物體的影子的變化規(guī)律:影子長的比等于物體高度的比。
3.情感、態(tài)度與價(jià)值觀
通過理論研究自然現(xiàn)象,引發(fā)對大自然和社會生活探索的欲望,提高學(xué)習(xí)興趣,增進(jìn)數(shù)學(xué)的應(yīng)用意識。
教學(xué)重點(diǎn):理解平行投影的含義。
教學(xué)難點(diǎn):通過對平行投影的認(rèn)識進(jìn)行物體與投影之間的相互轉(zhuǎn)化。
教學(xué)方法:啟發(fā)式。
教學(xué)安排:1課時(shí)。
教學(xué)媒體:幻燈片。
教學(xué)過程:
課前準(zhǔn)備:讓學(xué)生在課前觀察物體在陽光下的影子,自己總結(jié)出一些結(jié)論。
一、創(chuàng)設(shè)情景
問題1:
師:請看這幅圖片,哪位同學(xué)知道這是什么?(提出問題,激發(fā)學(xué)生的興趣)
教師陳述:日晷是我國古代利用日影測定時(shí)刻的儀器,它由“晷面”和“晷針”組成。
當(dāng)太陽光照在日晷上時(shí),晷針的影子就會投向晷面。隨著時(shí)間的推移,晷針的影子在晷面上慢慢地移動。以此來顯示時(shí)刻。(看下圖)
設(shè)疑激趣:利用古代顯示時(shí)刻的物體來引起學(xué)生的興趣。
二、引出課題
問題2:
師:太陽光可看成平行的直線,在陽光下,我們經(jīng)常看見物體的影子,那同學(xué)們你們知道影子的長短和方向在一天中是怎樣變化的嗎?
下面我們來看幾副圖片:(幻燈顯示)
(1)(2)(3)
上面的三幅圖是在我國北方某地某天上午不同時(shí)刻的同一位置拍攝的,請根據(jù)樹的影子,判斷拍攝的先后順序,并說明理由。
生:通過這幾天觀察,如果上午觀察物體的影子,都是逐漸變短的一個過程,所以拍攝的先后順序是:(3)→(2)→(1)。
師:這位同學(xué)回答的很正確;但是哪位同學(xué)能解釋一下呢?
生:上午太陽從東方地平線上升起,逐漸升高,這里我們把太陽光線看成平行的直線,根據(jù)以前我們學(xué)過的幾何知識,通過畫圖,顯而易見影子隨著太陽的升高逐漸變短的。
師:回答的很好;根據(jù)上面的總結(jié),我們觀看下面的圖片,觀察有什么變化?
在我國北方地區(qū),人們居住的房屋窗戶大多是朝南的,中午某時(shí)刻室內(nèi)的窗影在一年四季里會有什么變化呢?
學(xué)生相互討論,交流。
生:夏天的時(shí)候影子是最短的,冬天是最長的,春秋次之。
活動:學(xué)生有豐富的關(guān)于影子的生活經(jīng)驗(yàn),讓他們結(jié)合經(jīng)驗(yàn)想象自己的影子從早到晚是如何變化的(包括大小和方向)?并叫三個學(xué)生代表太陽、物體、影子,模擬太陽東升西落。得出結(jié)論:大——小——大;西——北偏西——正北——北偏東——東。
教師總結(jié):物體在光線的照射下,會在地面或墻面上留下它的影子,這種現(xiàn)象就是投影(projection)。
太陽的光線可看做平行線的,像這樣的光線照射在物體上,所形成的投影叫做平行投影。光線是投影線,地面或墻面是投影面。
如上圖,用一束平行光線豎直照射水平放置的三角尺上,投影線、三角尺在水平面上的投影是平行投影。在這種平行投影中,光線是豎直照射在水平面上的。像這種平行投影又叫做正投影。
現(xiàn)在大家對投影有了一定的了解,再看下面這個圖形,思考問題:[
如圖,正方體正面(R面)在V面上的正投影。
1.R面的正投影是什么圖形?與R面相對的面的在正投影是什么圖形?
2.Q面的正投影是什么圖形?與Q面相對的面的正投影是什么圖形?
3.P面及與它相對的面的正投影分別是什么圖形?
學(xué)生相應(yīng)回答上面的問題。
師:我們學(xué)習(xí)了投影的相關(guān)概念,也觀看了許多投影的圖片,那同學(xué)們思考這樣的問題:
(1)一個物體的正投影是立體圖形還是平面圖形?
(2)點(diǎn)、線段和多邊形的正投影可能分別是什么圖形?
第一問顯而易見,教師可以找中下等學(xué)生回答。
第二問教師可以通過課件演示,學(xué)生觀看,回答問題。(參看課件:點(diǎn)、線、面的投影)
師生互動:
例:旗桿直立在A處,它的平行投影如圖所示。
(1)請畫出小明站在B處時(shí)的投影(用線段表示)。并說明你這樣畫的理由。
(2)如果小明站在C處,請畫出他的投影(用線段表示),并比較小明站在B、C兩處投影的長短。
(3)旗桿的高度與它投影長的比和小明的身高與他投影長的比有什么關(guān)系?為什么?
學(xué)生在教師的引導(dǎo)下,自主完成這道例題,教師再進(jìn)行講解。
教師總結(jié):一般地,兩個直立于地面的物體在陽光下的投影,或平行或在同一條直線上,兩個物體、他們的平行投影及過物體頂端的投影線,分別組成直角三角形,這兩個三角形相似。
三、練習(xí)
1.大致說出我國北方的確一天中(早晨、中午、傍晚),人在陽光下的投影的方向和長短。
2.下圖是一棵大樹在陽光下的投影,請畫出另一棵樹的投影(用線段表示)。
3.結(jié)合地理知識,談?wù)勗谖覈男┑貐^(qū)會有太陽直射現(xiàn)象。這時(shí)人的投影是什么樣的?
四、課堂總結(jié)
板書設(shè)計(jì):
平行投影
一、導(dǎo)入平行投影
問題1:正投影
二、新授例:
問題2:
三、練習(xí)
投影:
四、總結(jié)
初中數(shù)學(xué)教案的范文篇11
一、教材、學(xué)情分析
“扇形統(tǒng)計(jì)圖”是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書浙江教育出版社七年級上冊第六章第四節(jié)的學(xué)習(xí)內(nèi)容,是從生活中實(shí)際問題出發(fā),結(jié)合新課程標(biāo)準(zhǔn)的理念,創(chuàng)造使用教材設(shè)計(jì)的一節(jié)課。生活中經(jīng)常需要收集數(shù)據(jù),而統(tǒng)計(jì)圖是展示數(shù)據(jù)的重要方法,經(jīng)常出現(xiàn)在報(bào)刊雜志媒體中,為此教科書安排了扇形統(tǒng)計(jì)圖的認(rèn)識和制作。
學(xué)生在小學(xué)里曾經(jīng)學(xué)習(xí)過扇形統(tǒng)計(jì)圖,對扇形統(tǒng)計(jì)圖的意義、特點(diǎn)和制作有初步的了解。本節(jié)課數(shù)據(jù)的收集是從學(xué)生身邊熟悉的簡單問題入手,讓學(xué)生體會數(shù)據(jù)在現(xiàn)實(shí)生活中的作用,理解扇形統(tǒng)計(jì)圖的特點(diǎn),并能從中獲得有用的信息,進(jìn)而養(yǎng)成數(shù)據(jù)說話的習(xí)慣,初一學(xué)生積極要求上進(jìn)喜歡表現(xiàn)自己,課堂上應(yīng)該給學(xué)生廣闊的舞臺,讓學(xué)生充分思考、合作交流和探究,品嘗學(xué)習(xí)帶來的快樂。
二、教學(xué)目標(biāo)
知識與技能目標(biāo):
1、通過實(shí)際問題認(rèn)識扇形統(tǒng)計(jì)圖的含義和特點(diǎn);
2、能從扇形統(tǒng)計(jì)圖中獲取正確的信息,并能作出合理的解釋和推斷。
過程與方法目標(biāo):
1、在收集數(shù)據(jù)的過程當(dāng)中,學(xué)會合作學(xué)習(xí),并了解收集數(shù)據(jù)的方法步驟;
2、在從扇形統(tǒng)計(jì)圖中獲取信息的過程當(dāng)中,學(xué)會相互交流、相互評價(jià);
3、在決策和形成猜想中的過程當(dāng)中,感受收集和利用數(shù)據(jù)是非常重要的。
情感與態(tài)度目標(biāo):
1、通過從身邊的一些簡單問題,體驗(yàn)數(shù)據(jù)在解決不少現(xiàn)實(shí)問題中是有用的;
2、在問題解決的過程當(dāng)中,品嘗發(fā)現(xiàn)帶來的歡樂,樹立學(xué)好數(shù)學(xué)的自信心。
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):在合作討論的過程當(dāng)中體會數(shù)據(jù)在現(xiàn)實(shí)生活中的作用,理解扇形統(tǒng)計(jì)圖的特點(diǎn),學(xué)會制作扇形統(tǒng)計(jì)圖。
難點(diǎn):從扇形統(tǒng)計(jì)圖中盡可能多并且正確地獲取信息、利用數(shù)據(jù)進(jìn)行分析、作出判斷。
四、教學(xué)和活動過程
(一)教學(xué)準(zhǔn)備階段
1、利用PowerPoint制作一個簡單課件(沒有多媒體教室可采用小黑板展示);
2、布置學(xué)生準(zhǔn)備,圓規(guī)、鉛筆、彩色筆、計(jì)算器、剪刀等工具。
(二)教學(xué)流程
1、引入前面我們學(xué)習(xí)了折線統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖,今天我們將學(xué)習(xí)另外一種統(tǒng)計(jì)圖——扇形統(tǒng)計(jì)圖,大家小學(xué)里已經(jīng)學(xué)過,有印象嗎?能回憶起來是怎樣的一個圖嗎?學(xué)生回答(是一個圓分成幾部分),下面先讓大家欣賞一個扇形統(tǒng)計(jì)圖。(展示)同學(xué)們暑假肯定看了奧運(yùn)會,能知道中國得了多少枚金牌嗎?(32)
射擊412。5%
球類825%
水上項(xiàng)目825%
力量型項(xiàng)目928。125%
田徑26。25%
體操13。125%
從這個統(tǒng)計(jì)圖中同學(xué)們能知道中國在什么項(xiàng)目上有優(yōu)勢,什么項(xiàng)目上薄弱呢?大家知道嗎?美國在什么項(xiàng)目上有優(yōu)勢?(田徑)
引入設(shè)計(jì)說明:
1、從學(xué)生感興趣的奧運(yùn)會引入,激發(fā)學(xué)生的興趣,調(diào)節(jié)課堂氣氛。2、突出扇形統(tǒng)計(jì)圖的優(yōu)點(diǎn)——能直觀反映各部分在總體中所占的比例,區(qū)別于折線型統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖。
今天這節(jié)課我們來更深入一步認(rèn)識一下扇形統(tǒng)計(jì)圖,并教大家如何來畫扇形統(tǒng)計(jì)圖。
2、出示課本學(xué)生快餐營養(yǎng)成份統(tǒng)計(jì)圖,學(xué)生觀察、思考,老師介紹扇形統(tǒng)計(jì)圖的特點(diǎn)。
用圓和扇形分別表示關(guān)于總體和各個組成部分?jǐn)?shù)據(jù)的統(tǒng)計(jì)圖叫做扇形統(tǒng)計(jì)圖(或稱餅形圖),特點(diǎn)是能直觀地、生動地反映各部分在總體中所占的比例。
第一問、第二問學(xué)生回答;
第三問先說明什么是圓心角,頂點(diǎn)在圓心的角,課本上有摩天輪圖(學(xué)生觀察)。我們可以更直觀向?qū)W生介紹,用事先準(zhǔn)備好圓紙片對折,再對折,把圓分成相等四部分,這個直角就是圓心角。
這樣學(xué)生更直觀、清楚地理解了圓心角的概念。
還有奔馳汽車的標(biāo)志,把圓分成相等的三部分,圓心角為120。
總結(jié):圓心角的度數(shù)為所占的比例乘以360。
請一個學(xué)生回答第三問。
3、做一做,P152,第(2)小題后面部分,老師分析。
4、合作活動,師生互動(主要讓學(xué)生學(xué)會畫扇形統(tǒng)計(jì)圖)
提出問題—→調(diào)查情況—→收集數(shù)據(jù)—→整理數(shù)據(jù)—→畫圖
問題:同學(xué)們從家里到學(xué)校交通情況。
學(xué)生舉手,一個學(xué)生點(diǎn)數(shù),另一個學(xué)生記錄,得出有關(guān)數(shù)據(jù)。
①步行20人40%144不妨設(shè)有50名學(xué)生,統(tǒng)計(jì)數(shù)據(jù)若如下(根據(jù)現(xiàn)場統(tǒng)計(jì)情況有不同的數(shù)據(jù))。
②騎自行車15人30%108
③坐公交10人20%72
④其他5人10%36
畫圖步驟:1、畫一個圓;
2、按各組成部分所占的比例算出各個扇形的圓心角度數(shù);
3、根據(jù)算出的各圓心角的度數(shù)畫出各個扇形,并注明相應(yīng)的百分比,各比例的名稱可以注在圖上,也可用圖例表明。
注意:不用彩色,也可用白色、涂黑、斜線、網(wǎng)狀等表示,學(xué)會動手畫出扇形統(tǒng)計(jì)圖。
學(xué)生再看例題:氣象資料統(tǒng)計(jì)圖,計(jì)算圓心角度數(shù)需用計(jì)算器。
5、課內(nèi)練習(xí),學(xué)生板演,一個學(xué)生計(jì)算數(shù)據(jù),一個學(xué)生畫出扇形統(tǒng)計(jì)圖。
6、作業(yè)1)P153①②③④,思考題⑤
2)收集扇形統(tǒng)計(jì)圖,渠道來自報(bào)紙、雜志、上網(wǎng)查詢。
3)自己設(shè)計(jì)一個調(diào)查方案,用調(diào)查的數(shù)據(jù)制作一個扇形統(tǒng)計(jì)圖。
五、教學(xué)設(shè)計(jì)說明
新課程標(biāo)準(zhǔn)下的教學(xué)設(shè)計(jì)應(yīng)全面貫徹六大基本理念,更加側(cè)重理念③和理念④,本節(jié)課突出生動有趣的特點(diǎn),學(xué)習(xí)方式多樣化,讓學(xué)生成為課堂的主人。引入的情景設(shè)計(jì)是學(xué)生身邊的問題,例題采用學(xué)生自己收集數(shù)據(jù)、整理數(shù)據(jù),最后畫圖,讓學(xué)生感到一種自己研究成果的成就感,相比之下,比課本的氣象資料更具有感染力。作業(yè)中有一題是自己設(shè)計(jì)一個調(diào)查方案,培養(yǎng)學(xué)生動手能力、實(shí)踐能力,這就是新課程大力倡導(dǎo)的。
初中數(shù)學(xué)教案的范文篇12
【說教學(xué)目標(biāo)】
1、使學(xué)生理解邊邊邊公理的內(nèi)容,能運(yùn)用邊邊邊公理證明三角形全等,為證明線段相等或角相等創(chuàng)造條件;
2、繼續(xù)培養(yǎng)學(xué)生畫圖、實(shí)驗(yàn),發(fā)現(xiàn)新知識的能力。
【說重點(diǎn)難點(diǎn)】
1、難點(diǎn):讓學(xué)生掌握邊邊邊公理的內(nèi)容和運(yùn)用公理的自覺性;
2、重點(diǎn):靈活運(yùn)用SSS判定兩個三角形是否全等。
【說教學(xué)過程】
一、創(chuàng)設(shè)問題情境,引入新課
請問同學(xué),老師在黑板上畫得兩個三角形,△ABC與△全等嗎?你是如何判定的。
(同學(xué)們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與角,觀察是否有三條邊對應(yīng)相等,三個角對應(yīng)相等。)
上一節(jié)課我們已經(jīng)探討了兩個三角形只滿足一個或兩個邊、角對應(yīng)相等條件時(shí),兩個三角形不一定全
等。滿足三個條件時(shí),兩個三角形是否全等呢?現(xiàn)在,我們就一起來探討研究。
二、實(shí)踐探索,總結(jié)規(guī)律
1、問題1:如果兩個三角形的三條邊分別相等,那么這兩個三角形會全等嗎?做一做:給你三條線段,分別為,你能畫出這個三角形嗎?
先請幾位同學(xué)說說畫圖思路后,教師指導(dǎo),同學(xué)們動手畫,教師演示并敘述書寫出步驟。
步驟:
(1)畫一線段AB使它的`長度等于c(4.8cm)。
(2)以點(diǎn)A為圓心,以線段b(3cm)的長為半徑畫圓弧;以點(diǎn)B為圓心,以線段a(4cm)的長為半徑畫圓弧;兩弧交于點(diǎn)C.
(3)連結(jié)AC、BC.
△ABC即為所求
把你畫的三角形與其他同學(xué)的圖形疊合在一起,你們會發(fā)現(xiàn)什么?
換三條線段,再試試看,是否有同樣的結(jié)論
請你結(jié)合畫圖、對比,說說你發(fā)現(xiàn)了什么?
同學(xué)們各抒己見,教師總結(jié):給定三條線段,如果它們能組成三角形,那么所畫的三角形都是全等的。這樣我們就得到判定三角形全等的一種簡便的方法:如果兩個三角形的三條邊分別對應(yīng)相等,那么這兩個三角形全等。簡寫為邊邊邊,或簡記為(S.S.S.)。
2、問題2:你能用相似三角形的判定法解釋這個(SSS)三角形全等的判定法嗎?
(我們已經(jīng)知道,三條邊對應(yīng)成比例的兩個三角形相似,而相似比為1時(shí),三條邊就分別對應(yīng)相等了,這兩個三角形不但形狀相同,而且大小都一樣,即為全等三角形。)
3、問題3、你用這個SSS三角形全等的判定法解釋三角形具有穩(wěn)定性嗎?
(只要三角形三邊的長度確定了,這個三角形的形狀和大小就完全確定了)
4、范例:
例1如圖19.2.2,四邊形ABCD中,AD=BC,AB=DC,試說明△ABC≌△CDA.解:已知AD=BC,AB=DC,又因?yàn)锳C是公共邊,由(S.S.S.)全等判定法,可知△ABC≌△CDA
5、練習(xí):
6、試一試:已知一個三角形的三個內(nèi)角分別為、、,你能畫出這個三角形嗎?把你畫的三角形與同伴畫的進(jìn)行比較,你發(fā)現(xiàn)了什么?
(所畫出的三角形都是相似的,但大小不一定相同)。
三個對應(yīng)角相等的兩個三角形不一定全等。
三、加強(qiáng)練習(xí),鞏固知識
1、如圖,,,△ABC≌△DCB全等嗎?為什么?
2、如圖,AD是△ABC的中線,。與相等嗎?請說明理由。
四、小結(jié)
本節(jié)課探討出可用(SSS)來判定兩個三角形全等,并能靈活運(yùn)用(SSS)來判定三角形全等。三個角對應(yīng)相等的兩個三角不一定會全等。
初中數(shù)學(xué)教案的范文篇13
教學(xué)目標(biāo):
1、理解切線的判定定理,并學(xué)會運(yùn)用。
2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。
教學(xué)重點(diǎn):切線的判定定理和切線判定的方法。
教學(xué)難點(diǎn):切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學(xué)生開始時(shí)掌握不好并極容易忽視一.
教學(xué)過程:
一、復(fù)習(xí)提問
【教師】問題1.怎樣過直線l上一點(diǎn)P作已知直線的垂線?
問題2.直線和圓有幾種位置關(guān)系?
問題3.如何判定直線l是⊙O的切線?
啟發(fā):(1)直線l和⊙O的公共點(diǎn)有幾個?
(2)圓心O到直線L的距離與半徑的數(shù)量關(guān)系如何?
學(xué)生答完后,教師強(qiáng)調(diào)(2)是判定直線l是⊙O的切線的常用方法,即:定理:圓心O到直線l的距離OA等于圓的半(如圖1,投影顯示)
再啟發(fā):若把距離OA理解為OA⊥l,OA=r;把點(diǎn)A理解為半徑在圓上的端點(diǎn),請同學(xué)們試將上面定理用新的理解改寫成新的命題,此命題就是這節(jié)課要學(xué)的“切線的判定定理”(板書課題)
二、引入新課內(nèi)容
【學(xué)生】命題:經(jīng)過半徑的在圓上的端點(diǎn)且垂直于半徑的直線是圓的切線。
證明定理:啟發(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫出已知、求證,分析證明思路,閱讀課本P60。
定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.
定理的證明:已知:直線l經(jīng)過半徑OA的外端點(diǎn)A,直線l⊥OA,
求證:直線l是⊙O的切線
證明:略
定理的符號語言:∵直線l⊥OA,直線l經(jīng)過半徑OA的外端A
∴直線l為⊙O的切線。
是非題:
(1)垂直于圓的半徑的直線一定是這個圓的切線。()
(2)過圓的半徑的外端的直線一定是這個圓的切線。()
三、例題講解
例1、已知:直線AB經(jīng)過⊙O上的點(diǎn)C,并且OA=OB,CA=CB。
求證:直線AB是⊙O的切線。
引導(dǎo)學(xué)生分析:由于AB過⊙O上的點(diǎn)C,所以連結(jié)OC,只要證明AB⊥OC即可。
證明:連結(jié)OC.
∵OA=OB,CA=CB,
∴AB⊥OC
又∵直線AB經(jīng)過半徑OC的外端C
∴直線AB是⊙O的切線。
練習(xí)1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過⊙O上的點(diǎn)A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。
練習(xí)2、如圖,已知AB為⊙O的直徑,C為⊙O上一點(diǎn),AD⊥CD于點(diǎn)D,AC平分∠BAD。
求證:CD是⊙O的切線。
例2、如圖,已知AB是⊙O的直徑,點(diǎn)D在AB的延長線上,且BD=OB,過點(diǎn)D作射線DE,使∠ADE=30°。
求證:DE是⊙O的切線。
思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?
四、小結(jié)
1.切線的判定定理。
2.判定一條直線是圓的切線的方法:
①定義:直線和圓有唯一公共點(diǎn)。
②數(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d=r)。[
③切線的判定定理:經(jīng)過半徑外端且與這條半徑垂直的直線是圓的切線。
3.證明一條直線是圓的切線的輔助線和證法規(guī)律。
凡是已知公共點(diǎn)(如:直線經(jīng)過圓上的點(diǎn);直線和圓有一個公共點(diǎn);)往往是"連結(jié)"圓心和公共點(diǎn),證明"垂直"(直線和半徑);若不知公共點(diǎn),則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點(diǎn),“連半徑,證垂直”;不知公共點(diǎn),則“作垂直,證半徑”。
五、布置作業(yè):略
《切線的判定》教后體會
本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過學(xué)生自我活動得到數(shù)學(xué)結(jié)論作為教學(xué)重點(diǎn),呈現(xiàn)學(xué)生真實(shí)的思維過程為教學(xué)宗旨,進(jìn)行教學(xué)設(shè)計(jì),目的在于讓學(xué)生對知識有一個本質(zhì)的、有效的理解。本節(jié)課切實(shí)反映了平時(shí)的教學(xué)情況,為前來調(diào)研和研討的老師提供了真實(shí)的樣本。反思本節(jié)課,有以下幾個成功與不足之處:
成功之處:
一、教材的二度設(shè)計(jì)順應(yīng)了學(xué)生的認(rèn)知規(guī)律
這批學(xué)生習(xí)慣于單一知識點(diǎn)的學(xué)習(xí),即得出一個知識點(diǎn),必須由淺入深反復(fù)進(jìn)行練習(xí),鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結(jié)論,導(dǎo)致錯誤,久之便會失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時(shí)課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時(shí),兩個定理的運(yùn)用和切線的兩種常用的判定方法作為第二課時(shí),學(xué)生往往會因第一時(shí)間得不到及時(shí)的鞏固,對定理本質(zhì)的東西不能很好地理解,在運(yùn)用時(shí)抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識點(diǎn)多不知所措,在云里霧里。二度設(shè)計(jì)將切線的判定方法作為第一課時(shí),切線的性質(zhì)定理以及兩個定理的綜合運(yùn)用作為第二課時(shí),這樣的設(shè)計(jì)即是對前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對后面學(xué)習(xí)綜合運(yùn)用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個循序漸進(jìn)、溫過知新的過程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。
二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念
數(shù)感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學(xué)習(xí)就會輕松。擁有數(shù)感,不僅會對數(shù)學(xué)知識反應(yīng)靈敏,更會在生活中不知不覺運(yùn)用數(shù)學(xué)思維方式解決實(shí)際問題。本節(jié)課中,兩個例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實(shí)證明,學(xué)生有這樣的理解、概括和表達(dá)能力。通過思考得出正確的結(jié)論,這個結(jié)論往往是刻骨銘心的,長此以往,對數(shù)和形的感覺會越來越好。
不足之處:
一、這節(jié)課沒有“高潮”,沒有讓學(xué)生特別興奮激起求知欲的情境,整個教學(xué)過程是在一個平靜、和諧的氛圍中完成的。
二、課的引入太直截了當(dāng),脫離不了應(yīng)試教學(xué)的味道。
三、教學(xué)風(fēng)格的定勢使所授知識不能很合理地與生活實(shí)際相聯(lián)系,一定程度上阻礙了學(xué)生解決實(shí)際問題能力的發(fā)展。
通過本節(jié)課的教學(xué),我深刻感悟到在教學(xué)實(shí)踐中,教師要不斷地充實(shí)自己,拓寬知識面,努力突破已有的教學(xué)形狀,適應(yīng)現(xiàn)代教育,適應(yīng)現(xiàn)代學(xué)生。課堂教學(xué)中,敢于實(shí)驗(yàn),舍得放手,盡量培養(yǎng)學(xué)生主體意識,問題讓學(xué)生自己去揭示,方法讓學(xué)生自己去探索,規(guī)律讓學(xué)生自己去發(fā)現(xiàn),知識讓學(xué)生自己去獲得,教師只提供給學(xué)生現(xiàn)實(shí)情境、充足的思考時(shí)間和活動空間,給學(xué)生表現(xiàn)自我的機(jī)會和成功的體驗(yàn),培養(yǎng)學(xué)生的自我意識,發(fā)揮學(xué)生的主體作用,來真正實(shí)現(xiàn)《數(shù)學(xué)課程標(biāo)準(zhǔn)》中提出的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”這一教學(xué)理念。
初中數(shù)學(xué)教案的范文篇14
一、課題
略。
二、教學(xué)目標(biāo)
1.結(jié)合具體例子,體會數(shù)學(xué)與我們的成長密切相關(guān)。
2.通過對小學(xué)數(shù)學(xué)知識的歸納,感受到數(shù)學(xué)學(xué)習(xí)促進(jìn)了我們的成長。
3.嘗試從不同角度,運(yùn)用多種方式(觀察、獨(dú)立思考、自主探索、合作交流)有效解決問題。
4.通過對數(shù)學(xué)問題的自主探索,進(jìn)一步體會數(shù)學(xué)學(xué)習(xí)促進(jìn)了我們成長,發(fā)展了我們的思維。
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn)
難點(diǎn)
1.結(jié)合具體例子,體會數(shù)學(xué)與我們的成長密切相關(guān)。
2.通過對小學(xué)數(shù)學(xué)知識的歸納,感受到數(shù)學(xué)學(xué)習(xí)促進(jìn)了我們的成長。
結(jié)合具體例子,體會數(shù)學(xué)與我們的成長密切相關(guān)。
四、教學(xué)手段
現(xiàn)代課堂教學(xué)手段
教學(xué)準(zhǔn)備
教師準(zhǔn)備
錄音機(jī)、投影儀、剪刀、長方形紙片。
學(xué)生準(zhǔn)備
預(yù)習(xí)、剪刀、長方形紙片
五、教學(xué)方法
啟發(fā)式教學(xué)
六、教學(xué)過程設(shè)計(jì)
一、導(dǎo)入
教師活動
學(xué)生活動
展示圖片并播放錄音。
宇宙之大(海王星、流星雨),粒子之微(鈹原子、氯化鈉晶體結(jié)構(gòu)),火箭之速(火箭),化工之巧(陶瓷),地球之變(隕石坑),生物之謎(青蛙),日用之繁(杯子、表),大千世界,天上人間,無處不有數(shù)學(xué)的貢獻(xiàn),讓我們共同走進(jìn)數(shù)學(xué)世界,去領(lǐng)略一下數(shù)學(xué)的風(fēng)采,體會數(shù)學(xué)的魅力。
觀察圖片,聽錄音。
二、板書課題。
三、導(dǎo)學(xué)
教師活動
學(xué)生活動
1.現(xiàn)在讓我們進(jìn)入時(shí)空的隧道,回憶我們的成長歷程:
出生——學(xué)前——小學(xué)(板書),我們每一天都在接觸數(shù)學(xué)并不斷學(xué)習(xí)它,相信嗎?不妨大家從不同階段來舉出一些我們身邊或親身經(jīng)歷的例子,試一試。(積極鼓勵)
(師、生共同討論交流,從具體事例中分析并找出數(shù)學(xué)信息。)
2.進(jìn)入小學(xué),我們正式開始學(xué)習(xí)數(shù)學(xué),回憶一下,在小學(xué)階段我們學(xué)習(xí)的主要數(shù)學(xué)知識有哪些?
3.指定若干名學(xué)生口答,師生共同系統(tǒng)歸納:
數(shù)與式:認(rèn)識、計(jì)算、方程、解應(yīng)用題;
圖形:圖形的認(rèn)識、圖形的畫法、圖形的計(jì)算;
統(tǒng)計(jì)知識。
4.?dāng)?shù)學(xué)知識的學(xué)習(xí),不僅開闊了我們的視野,而且改變了我們的思維方式,使我們變得更加聰明了。發(fā)揮一下我們的聰明才智,嘗試解決下面的2個問題:
(1)投影或小黑板展示下列問題:
①計(jì)算并觀察下列三組算式:
②已知25×25=625,則24×26=(不要計(jì)算)
③你能舉出一個類似的例子嗎?
④更一般地,若a×a=m,則(a+1)(a-1)=。
(老師點(diǎn)評、表揚(yáng))
(2)投影或小黑板展示教材第13頁第4題。
通過剛才的解題,可以看出同學(xué)們都非常聰明,其實(shí)不僅我們每個人離不開數(shù)學(xué),而且整個人類、整個社會也離不開數(shù)學(xué),同學(xué)們課后可以閱讀一下第1節(jié)第2點(diǎn)《人類離不開數(shù)學(xué)》,體會數(shù)學(xué)對促進(jìn)人類社會發(fā)展的&39;重大作用。
布置作業(yè):
(1)談一談你對數(shù)學(xué)的興趣、學(xué)習(xí)數(shù)學(xué)的方法以及學(xué)習(xí)中存在的困難等;
(2)習(xí)題1.1第2、4題。
1.回憶、交流、積極大膽發(fā)言。
2.回憶、交流。
3.觀察、計(jì)算、思考、探索。
4.學(xué)生取出剪刀和長方形紙片,小組合作,動手嘗試解決。
學(xué)生1
學(xué)生2
學(xué)生拼圖(略)
七、練習(xí)設(shè)計(jì)
課堂基礎(chǔ)練習(xí)
1、下列圖形中,陰影部分的面積相等的是.
答案:A與B;C與D
2、三個連續(xù)奇數(shù)的和是21,它們的積為
答案:315
3、計(jì)算:7+27+377+4777
答案:5188
課后延伸練習(xí)
1、猜謎語(各打數(shù)學(xué)中常用字)
千人分在北上下;②1人立在口上邊
答案:①乘;②倍
2、在與伙伴玩“24點(diǎn)”游戲中,使數(shù)1,5,5,5通過運(yùn)算得24?
答案:[5-(1÷5)]×5
3、只允許添兩個“一”、一個“十”和一個括號,不改變數(shù)字順序,把1,2,3,4,5,6,7,8,9這九個數(shù)字連成結(jié)果為100的算式:
123456789=100
答案:123-(45+67-89)=100
4、把長方形剪去一個角,它可能是幾邊形?
答案:三邊形,四邊形,五邊形.
5、有一個正方形池塘如圖1-1-2,在它的四個角上有四棵大樹,現(xiàn)在為了擴(kuò)大池塘,要把池塘面積擴(kuò)大一倍,但是,這四棵樹不便搬動,也不能使它淹在水里,而且擴(kuò)大后的池塘還是正方形,這該怎么辦呢?
答案:
能力提高訓(xùn)練
18
19
答案:7個,邊長從大到
小依次為11、8、
7、5、3
1、一個長方形,長19cm,寬18cm,如果把這個長方形分割成若干個邊長為整數(shù)的小正方形,那么這些小正方形最少有多少個?如何分割?
2、在操場上,小華遇到小馮,交談中順便問道:“你們班有多少學(xué)生?”小馮說:“如果我們班上的學(xué)生像孫悟空那樣一個能變兩個,然后再來這么多學(xué)生的,再加上班上學(xué)生的,最后連你也算過去,就該有100個了.”那么小馮班上有多少學(xué)生?
答案:36
八、板書設(shè)計(jì)
(一)知識回顧(四)例題解析(六)課堂小結(jié)
(二)觀察發(fā)現(xiàn)例1、例2
(三)解方程(五)課堂練習(xí)練習(xí)設(shè)計(jì)
九、教學(xué)后記
初中數(shù)學(xué)教案的范文篇15
教學(xué)目標(biāo):
教學(xué)目標(biāo):
1、會畫已知點(diǎn)關(guān)于已知直線的對稱點(diǎn),會畫已知線段的對稱線段,會畫已知三角形的對稱三角形。
2、經(jīng)歷探索軸對稱的性質(zhì)的活動過程,積累數(shù)學(xué)活動經(jīng)驗(yàn),進(jìn)一步發(fā)展空間觀念和有條理地思考和表達(dá)能力。
三、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):作已知圖形的軸對稱圖形的一般步驟。
教學(xué)難點(diǎn):怎樣確定已知圖形的關(guān)鍵點(diǎn)并根據(jù)這些點(diǎn)作出對稱圖形。
學(xué)習(xí)過程:
一.學(xué)前準(zhǔn)備
1、完成課本第10頁的操作,即圖1—6,并將你完成的操作帶到課堂上來。
2、思考:
下列圖形中,哪些是軸對稱圖形,請把它們找出來,畫出它們所有的對稱軸。
3、請你在下圖的方格內(nèi),設(shè)計(jì)一個軸對稱圖形。
二.自學(xué)、合作探究
(一)自學(xué)、相信自己(書本)
實(shí)踐、操作:
1、思考:如圖1-9,3點(diǎn)都在方格紙的格點(diǎn)位置上。請你再找一個格點(diǎn),使圖中的4點(diǎn)組成一個軸對稱圖形。
2、如果直線外有一點(diǎn),那么怎樣畫出點(diǎn)關(guān)于直線的.對稱點(diǎn)?
問題一:畫點(diǎn)關(guān)于直線的對稱點(diǎn)的方法,并說明道理。
問題二:怎樣畫已知線段的對稱線段?怎樣畫已知三角形的對稱三角形?說說你的想法和依據(jù)。
(二)思索、交流(書本例題練習(xí)難)
3、分別畫出圖1-10(1)、(2)、(3)中線段關(guān)于直線對稱的線段。
4、分別在圖圖1-10(1)、(2)、(3)的直線上取一點(diǎn),并畫關(guān)于直線對稱的.
(三)應(yīng)用、探究(難度大綜合縱橫思考)
例題講解
例題1、如圖所示,要在街道旁修建一個牛奶站,向居民區(qū)A、B提供牛奶,牛奶站應(yīng)建在什么地方,才能使A、B到它的距離之和最短?
例題1
例題2
三.學(xué)習(xí)體會(空)
四.自我測試(書本練習(xí))
1.練習(xí)1下列數(shù)字圖象都是由鏡中看到的,請分別寫出它們所對應(yīng)的實(shí)際數(shù)字,并說明數(shù)字圖象與鏡面的位置關(guān)系。
1、如圖1,線段AB與A’B’關(guān)于直線l對稱,
⑴連接AA’交直線l于點(diǎn)O,再連接OB、OB’。
⑵把紙沿直線l對折,重合的線段有:。
⑶因?yàn)椤鱋AB和△OA’B’關(guān)于直線l,所以△OAB-△OA’B’,直線l垂直平分線段,∠ABO=∠,∠AO’B=∠。
圖1圖2圖3
2、如圖2,三角形Ⅰ的兩個頂點(diǎn)分別在直線l1和l2,且l1⊥l2,
⑴畫三角形Ⅱ與三角形Ⅰ關(guān)于l1對稱;
⑵畫三角形Ⅲ與三角形Ⅱ關(guān)于l2對稱;
⑶畫三角形Ⅳ與三角形Ⅲ關(guān)于l1對稱;
⑷所畫的三角形Ⅳ與三角形Ⅰ成軸對稱嗎?
3、如圖3,四邊形ABCD是長方形彈子球臺面,有黑白兩球分別位于E、F兩點(diǎn)位置上,試問怎樣撞擊黑球E,才能使黑球先碰撞臺邊AB反彈后再擊中白球F?
初中數(shù)學(xué)教案的范文篇16
教學(xué)目標(biāo)
1、知識與技能:體會公式的發(fā)現(xiàn)和推導(dǎo)過程,了解公式的幾何背景,理解公式的本質(zhì),會應(yīng)用公式進(jìn)行簡單的計(jì)算.
2、過程與方法:通過讓學(xué)生經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展推理能力和有條理的表達(dá)能力.培養(yǎng)學(xué)生的數(shù)形結(jié)合能力.
3、情感態(tài)度價(jià)值觀:體驗(yàn)數(shù)學(xué)活動充滿著探索性和創(chuàng)造性,并在數(shù)學(xué)活動中獲得成功的體驗(yàn)與喜悅,樹立學(xué)習(xí)自信心.
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):
1、對公式的理解,包括它的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、語言表述(學(xué)生自己的語言)、幾何解釋.
2、會運(yùn)用公式進(jìn)行簡單的計(jì)算.
教學(xué)難點(diǎn):
1、完全平方公式的推導(dǎo)及其幾何解釋.
2、完全平方公式的結(jié)構(gòu)特點(diǎn)及其應(yīng)用.
教學(xué)工具
課件
教學(xué)過程
一、復(fù)習(xí)舊知、引入新知
問題1:請說出平方差公式,說說它的結(jié)構(gòu)特點(diǎn).
問題2:平方差公式是如何推導(dǎo)出來的?
問題3:平方差公式可用來解決什么問題,舉例說明.
問題4:想一想、做一做,說出下列各式的結(jié)果.
(1)(a+b)2(2)(a-b)2
(此時(shí),教師可讓學(xué)生分別說說理由,并且不直接給出正確評價(jià),還要繼續(xù)激發(fā)學(xué)生的學(xué)習(xí)興趣.)
二、創(chuàng)設(shè)問題情境、探究新知
一塊邊長為a米的正方形實(shí)驗(yàn)田,因需要將其邊長增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種.(如圖)
(1)四塊面積分別為:、、、;
(2)兩種形式表示實(shí)驗(yàn)田的總面積:
①整體看:邊長為的大正方形,S=;
②部分看:四塊面積的和,S=.
總結(jié):通過以上探索你發(fā)現(xiàn)了什么?
問題1:通過以上探索學(xué)習(xí),同學(xué)們應(yīng)該知道我們提出的問題4正確的結(jié)果是什么了吧?
問題2:如果還有同學(xué)不認(rèn)同這個結(jié)果,我們再看下面的問題,繼續(xù)探索.(a+b)2表示的意義是什么?請你用多項(xiàng)式的乘法法則加以驗(yàn)證.
(教學(xué)過程中教師要有意識地提到猜想、感覺得到的不一定正確,只有再通過驗(yàn)證才能得出真知,但還是要鼓勵學(xué)生大膽猜想,發(fā)表見解,但要驗(yàn)證)
問題3:你能說說(a+b)2=a2+2ab+b2
這個等式的結(jié)構(gòu)特點(diǎn)嗎?用自己的語言敘述.
(結(jié)構(gòu)特點(diǎn):右邊是二項(xiàng)式(兩數(shù)和)的平方,右邊有三項(xiàng),是兩數(shù)的平方和加上這兩數(shù)乘積的二倍)
問題4:你能根據(jù)以上等式的結(jié)構(gòu)特點(diǎn)說出(a-b)2等于什么嗎?請你再用多項(xiàng)式的乘法法則加以驗(yàn)證.
總結(jié):我們把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2稱為完全平方公式.
問題:①這兩個公式有何相同點(diǎn)與不同點(diǎn)?②你能用自己的語言敘述這兩個公式嗎?
語言描述:兩數(shù)和(或差)的平方等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的2倍.
強(qiáng)化記憶:首平方,尾平方,首尾二倍放中央,和是加來差是減.
三、例題講解,鞏固新知
例1:利用完全平方公式計(jì)算
(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2
解:(2x-3)2=(2x)2-2o(2x)o3+32
=4x2-12x+9
(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2
=16x2+40xy+25y2
(mn-a)2=(mn)2-2o(mn)oa+a2
=m2n2-2mna+a2
交流總結(jié):運(yùn)用完全平方公式計(jì)算的一般步驟
(1)確定首、尾,分別平方;
(2)確定中間系數(shù)與符號,得到結(jié)果.
四、練習(xí)鞏固
練習(xí)1:利用完全平方公式計(jì)算
練習(xí)2:利用完全平方公式計(jì)算
練習(xí)3:
(練習(xí)可采用多種形式,學(xué)生上黑板板演,師生共同評價(jià).也可學(xué)生獨(dú)立完成后,學(xué)生互相批改,力求使學(xué)生對公式完全掌握,如有學(xué)生出現(xiàn)問題,學(xué)生、教師應(yīng)及時(shí)幫助.)
五、變式練習(xí)
六、暢談收獲,歸納總結(jié)
1、本節(jié)課我們學(xué)習(xí)了乘法的完全平方公式.
2、我們在運(yùn)用公式時(shí),要注意以下幾點(diǎn):
(1)公式中的字母a、b可以是任意代數(shù)式;
(2)公式的結(jié)果有三項(xiàng),不要漏項(xiàng)和寫錯符號;
(3)可能出現(xiàn)①②這樣的錯誤.也不要與平方差公式混在一起.
七、作業(yè)設(shè)置