九年級數(shù)學簡單教案
九年級數(shù)學簡單教案篇1
第1課時解決代數(shù)問題
1.經歷用一元二次方程解決實際問題的過程,總結列一元二次方程解決實際問題的一般步驟.
2.通過學生自主探究,會根據(jù)傳播問題、百分率問題中的數(shù)量關系列一元二次方程并求解,熟悉解題的具體步驟.
3.通過實際問題的解答,讓學生認識到對方程的解必須要進行檢驗,方程的解是否舍去要以是否符合問題的實際意義為標準.
重點
利用一元二次方程解決傳播問題、百分率問題.
難點
如果理解傳播問題的傳播過程和百分率問題中的增長(降低)過程,找到傳播問題和百分率問題中的數(shù)量關系.
一、引入新課
1.列方程解應用題的基本步驟有哪些?應注意什么?
2.科學家在細胞研究過程中發(fā)現(xiàn):
(1)一個細胞一次可分裂成2個,經過3次分裂后共有多少個細胞?
(2)一個細胞一次可分裂成x個,經過3次分裂后共有多少個細胞?
(3)如是一個細胞一次可分裂成2個,分裂后原有細胞仍然存在并能再次分裂,試問經過3次分裂后共有多少個細胞?
二、教學活動
活動1:自學教材第19頁探究1,思考教師所提問題.
有一人患了流感,經過兩輪傳染后,有121人患了流感,每輪傳染中平均一個人傳染了幾個人?
(1)如何理解“兩輪傳染”?如果設每輪傳染中平均一個人傳染了x個人,第一輪傳染后共有________人患流感.第二輪傳染后共有________人患流感.
(2)本題中有哪些數(shù)量關系?
(3)如何利用已知的數(shù)量關系選取未知數(shù)并列出方程?
解答:設每輪傳染中平均一個人傳染了x個人,則依題意第一輪傳染后有(x+1)人患了流感,第二輪有x(1+x)人被傳染上了流感.于是可列方程:
1+x+x(1+x)=121
解方程得x1=10,x2=-12(不合題意舍去)
因此每輪傳染中平均一個人傳染了10個人.
變式練習:如果按這樣的傳播速度,三輪傳染后有多少人患了流感?
活動2:自學教材第19頁~第20頁探究2,思考老師所提問題.
兩年前生產1噸甲種藥品的成本是5000元,生產1噸乙種藥品的成本是6000元,隨著生產技術的進步,現(xiàn)在生產1噸甲種藥品的成本是3000元,生產1噸乙種藥品的成本是3600元,哪種藥品成本的年平均下降率較大?
(1)如何理解年平均下降額與年平均下降率?它們相等嗎?
(2)若設甲種藥品年平均下降率為x,則一年后,甲種藥品的成本下降了________元,此時成本為________元;兩年后,甲種藥品下降了________元,此時成本為________元.
(3)增長率(下降率)公式的歸納:設基準數(shù)為a,增長率為x,則一月(或一年)后產量為a(1±x);
二月(或二年)后產量為a(1±x)2;
n月(或n年)后產量為a(1±x)n;
如果已知n月(n年)后總產量為M,則有下面等式:M=a(1±x)n.
(4)對甲種藥品而言根據(jù)等量關系列方程為:________________.
三、課堂小結與作業(yè)布置
課堂小結
1.列一元二次方程解應用題的步驟:審、設、找、列、解、答.最后要檢驗根是否符合實際.
2.傳播問題解決的關鍵是傳播源的確定和等量關系的建立.
3.若平均增長(降低)率為x,增長(或降低)前的基準數(shù)是a,增長(或降低)n次后的量是b,則有:a(1±x)n=b(常見n=2).
4.成本下降額較大的藥品,它的下降率不一定也較大,成本下降額較小的藥品,它的下降率不一定也較小.
作業(yè)布置
教材第21-22頁習題21.3第2-7題.第2課時解決幾何問題
1.通過探究,學會分析幾何問題中蘊含的數(shù)量關系,列出一元二次方程解決幾何問題.
2.通過探究,使學生認識在幾何問題中可以將圖形進行適當變換,使列方程更容易.
3.通過實際問題的解答,再次讓學生認識到對方程的解必須要進行檢驗,方程的解是否舍去要以是否符合問題的實際意義為標準.
重點
通過實際圖形問題,培養(yǎng)學生運用一元二次方程分析和解決幾何問題的能力.
難點
在探究幾何問題的過程中,找出數(shù)量關系,正確地建立一元二次方程.
活動1創(chuàng)設情境
1.長方形的周長________,面積________,長方體的體積公式________.
2.如圖所示:
(1)一塊長方形鐵皮的長是10cm,寬是8cm,四角各截去一個邊長為2cm的小正方形,制成一個長方體容器,這個長方體容器的底面積是________,高是________,體積是________.
(2)一塊長方形鐵皮的長是10cm,寬是8cm,四角各截去一個邊長為xcm的小正方形,制成一個長方體容器,這個長方體容器的底面積是________,高是________,體積是________.
活動2自學教材第20頁~第21頁探究3,思考老師所提問題
要設計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的矩形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上下邊襯等寬,左右邊襯等寬,應如何設計四周邊襯的寬度(精確到0.1cm).
(1)要設計書本封面的長與寬的比是________,則正中央矩形的長與寬的比是________.
(2)為什么說上下邊襯寬與左右邊襯寬之比為9∶7?試與同伴交流一下.
(3)若設上、下邊襯的寬均為9xcm,左、右邊襯的寬均為7xcm,則中央矩形的長為________cm,寬為________cm,面積為________cm2.
(4)根據(jù)等量關系:________,可列方程為:________.
(5)你能寫出解題過程嗎?(注意對結果是否合理進行檢驗.)
(6)思考如果設正中央矩形的長與寬分別為9xcm和7xcm,你又怎樣去求上下、左右邊襯的寬?
活動3變式練習
如圖所示,在一個長為50米,寬為30米的矩形空地上,建造一個花園,要求花園的面積占整塊面積的75%,等寬且互相垂直的兩條路的面積占25%,求路的寬度.
答案:路的寬度為5米.
活動4課堂小結與作業(yè)布置
課堂小結
1.利用已學的特殊圖形的面積(或體積)公式建立一元二次方程的數(shù)學模型,并運用它解決實際問題的關鍵是弄清題目中的數(shù)量關系.
2.根據(jù)面積與面積(或體積)之間的等量關系建立一元二次方程,并能正確解方程,最后對所得結果是否合理要進行檢驗.
作業(yè)布置
教材第22頁習題21.3第8,10題.
九年級數(shù)學簡單教案篇2
九年級數(shù)學教案-九年級數(shù)學教案設
計
九年級數(shù)學教案設計文橋中學
吳園田課題:太陽光與影子
課型:新授課教學目標
知識目標:
1、
經歷實踐、探索的過程,了解平行投影的含義,能夠確定物體在太陽光下影子。
2、通過觀察、想象,了解不同時刻物體在太陽光下形成的影子的大小和方向是不同的。
3、了解平行投影與物體三種視圖之間的關系。
能力目標:
1、經歷實踐,探索的過程,培養(yǎng)學生的實踐探索能力。
2、通過觀察、想象,了解不同時刻物體在太陽光下形成的影子的大小和方向的不
同,培養(yǎng)學生的觀察能力和想象能力。
情感目標:
1、讓學生體會影子在生活中的大量存在,使學生能積極參與數(shù)學學習活動,激發(fā)學生學習數(shù)學的動機和興趣。
2、讓學生認識數(shù)學與人類生活的密切聯(lián)系及對人類歷史發(fā)展的作用,體驗數(shù)學活動充滿著探索與創(chuàng)造。
教學重點平行投影的含義;物體在太陽光下影子的確定;平行投影與物體三種視圖之間的關系。
教學難點讓學生經歷操作與觀察、演示與想象、直觀與推理等過程,自己歸納總結得出有關結論。
教學方法和手段觀察想象法,實踐推理法。
教學設計理念本節(jié)的設計遵循學生學習數(shù)學的心理規(guī)律,強調學生從已有的生活經驗出發(fā),讓學生親身經歷將實際問題抽象成數(shù)學模型并進行解釋與應用的過程,進而使學生獲得對數(shù)學理解的同時,在思維能力、情感態(tài)度與價值觀等多方面得到進步與發(fā)展。
本節(jié)課向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合
作交流的過程中真正理解和掌握基本的數(shù)學知識與技能、數(shù)學思想和方法,獲得廣泛的數(shù)學活動經驗。
教學組織形式分組探究,集中教授。
教學過程
創(chuàng)設問題情境,引入新課引入:太陽光與影子是我們日常生活中的常見現(xiàn)象,大家在其他課程的學習中已經積累了物體在太陽光下形成的影子的有關知識,本節(jié)課我們通過眾多實例進一步討論物體在太陽光下所形成的影子的大小、形狀、方向等。
新課學習
1.投影的定義師:大家肯定見過影子,你能舉出實例嗎?在太陽光下人和樹有影子;在有月亮的晚上,人和樹也有影子;建筑物在太陽和月亮下也有影子.
師:大家對于影子是司空見慣了,那么,有沒有想過影子能給人類帶來什么好處呢?
生:我爺爺在田地里干活時,經常根據(jù)他的影子來判斷時間的早晚;我奶奶在家也經常根據(jù)太陽照在門口的影子的大小,來判斷是否是晌午了。
師:很好.現(xiàn)在我們確定時間
時,是通過看表來確定的,但在古代并沒有表,勤勞的古代前輩利用智慧制造出了日晷.日晷是我國古代利用日影測定時刻的儀器,它由“晷面”和“晷針”組成,當太陽光照在日晷上時,晷針的影子就會投向晷面,隨著時間的推移,晷針的影子在晷面上慢慢地移動,以此來顯示時刻。
其實不止在太陽光下,只要在光線的照射下,會在地面或墻壁上留下它的影子,這就是投影現(xiàn)象。
像上面提到的晷針的影子,以及窗戶的影子、遮陽傘的影子都是在太陽光下形成的。
2.做一做
取若干長短不等的小棒及三角形、矩形紙片,觀察它們在太陽光下的影子。
改變小棒或紙片的位置和方向,它們的影子發(fā)生了什么變化?師:大家先想象一下,長短不等的小棒及三角形、矩形紙片,它們在太陽光下的影子是什么形狀?生:影子的形狀應該不變,只是大小發(fā)生變化而已.因此,影子分別是線段、三角形、
矩形。
師:大家的想象是否與現(xiàn)實相符呢?我們一齊來做一個試驗。
生:試驗的結果與想象不一定相符,三角形的紙片在太陽光下的影子有時是三角形,有時是線段;矩形在太陽光下的影子有時是平行四邊形,有時是線段。
師:現(xiàn)在來想象第二個問題。
生:由人的影子在一天中的大小不同,可以判斷小棒或紙片的影子也是大小不同。
師:請大家再進行試驗,互相交換意見后得出結論。
生:當改變小棒或紙片的位置和方向時,它們的影子也相應地發(fā)生變化。
師:大家有沒有注意到,剛才在做實驗時有一種特殊情況,當小棒或紙片與投影面平行時,所形成的影子的大小和形狀的特點呢?生:當小棒或紙片與投影面平行時,所形成的影子的大小和形狀與原物體全等。
師:太陽光線可以看成平行光線,像這樣的光線所形成的投影稱為平行投影。
上面討論過的小棒或紙片的影子就是平行投影。
3.議一議
P122圖中的三幅圖是在我國北方某地某天上午不同時刻的同一位置拍攝的。
(1)在三個不同的時刻,同一棵樹的影子長度不同,請將它們按拍攝的先后順序進行排列,并說明你的理由。
(2)在同一時刻,大樹和小樹的影子與它們的高度之間有什么關系?與同伴進行交流。
師:請大家互相討論后發(fā)表自己的看法。
生:順序應為(3)(2)(1)。
因為在早晨,太陽位于正東方向,此時樹的影子較長,影子位于樹的正西方向,在上午,隨著太陽位置的變化,樹影的長度逐漸變短,樹影也由正西方向向正北方向移動。
(2)因為大樹的影子較長,小樹的影子較短,因此應該有大樹的高度與其影子的長度之比等于小樹高度與其影長之比。
生:我認為應該是大樹與小樹高度之比等于大樹與小樹影長之比。
4.做一做某校墻邊有甲、乙兩根木桿。
(1)某一時刻甲木桿在陽光下的影子如P124圖所示,你能畫出此時乙木桿的影子嗎?(用線段表
示影子)(2)在上圖中,當乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在你所畫的圖形中有相似三角形嗎?為什么?
師:請大家:互相討論來解答。
九年級數(shù)學簡單教案篇3
二次根式的乘除法
教學目標
1、使學生掌握二次根式的乘法運算法則,會用它進行簡單的二次根式的乘法運算。
2、使學生掌握積的算術平方根的性質、會根據(jù)這一性質熟練地化簡二次根式.
3、培養(yǎng)學生合情推理能力。
教學過程
一、復習提問
1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?
2、二次根式有哪些性質?計算下列各題:
()2
二、提出問題,導入新知
1、試一試
計算: (1) _=( )=( )
=( )=( )
(2) _=( )=( )
=( )=( )
提問:觀察以上計算結果,你能發(fā)現(xiàn)什么?
2、思考
_與是否相等?
提問:(1)你將用什么方法計算?
(2)通過計算,你發(fā)現(xiàn)了什么?是否與前面試一試的結果一樣?
3、概括
讓學生觀察以上計算結果、歸納得出結論:_=(a≥0,b≥0)
注意,a,b必須都是非負數(shù),上式才能成立。
三、舉例應用
例1、計算。
__
說明:二次根式運算的結果,應該盡量化簡、如(2)結果不要寫成,而應化簡成4。
等式_=(a≥0,b≥0),也可以寫成=_(a≥0,b≥0)
利用它可以進行二次根式的化簡,例如:=_==a2
例2、化簡
說明:(1)如果一個二次根式的被開方數(shù)中有的因式(或因數(shù))能開得盡方,可以利用積的算術平方根的性質,將這些因式(或因數(shù))開出來,從而將二次根式化簡;(2)在化簡時,一般先將被開方數(shù)進行因式分解或因數(shù)分解,然后就將能開得盡方的因式(偶次方因式)或因數(shù)用它們的算術平方根代替,移到根號外,也就是開出方來。
四、課堂練習
1、計算下列各式,將所得結果化簡:
_ _
2、P12頁練習1(1)、(2)、2
五、想一想
1、__與是否相等?a、b、c有什么限制?請舉一個例子加以說明。
2、等于__ 嗎?
3、化簡:
六、小結
這節(jié)課我們學習了以下知識:
1、二次根式的乘法運算法則,即_= (a≥0,b≥0)
2、積的算術平方根,等于積中各因式的算術平方根的積,即=_ (a≥0,b≥0)……)
要特別注意,以上(1)、(2)中,a、b必須都是非負數(shù),如果a、b中出現(xiàn)了負數(shù),等式就不成立、想一想,=_成立嗎?為什么?
3、應用(1)、(2)進行計算和化簡,在計算和化簡中,復習了性質=a(a≥ 0),加深了對非負數(shù)a的算術平方根的性質的認識
七、作業(yè)
習題22.2第2、(1),(2)題,第3、(1)、(2)題、第4題
九年級數(shù)學簡單教案篇4
學習目標
1.了解圓周角的概念.
2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
3.理解圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.
4.熟練掌握圓周角的定理及其推理的靈活運用.
設置情景,給出圓周角概念,探究這些圓周角與圓心角的關系,運用數(shù)學分類思想給予邏輯證明定理,得出推導,讓學生活動證明定理推論的正確性,最后運用定理及其推導解決一些實際問題
學習過程
一、 溫故知新:
(學生活動)同學們口答下面兩個問題.
1.什么叫圓心角?
2.圓心角、弦、弧之間有什么內在聯(lián)系呢?
二、 自主學習:
自學教材P90---P93,思考下列問題:
1、 什么叫圓周角?圓周角的兩個特征: 。
2、 在下面空里作一個圓,在同一弧上作一些圓心角及圓周角。通過圓周角的概念和度量的方法回答下面的問題.
(1)一個弧上所對的圓周角的個數(shù)有多少個?
(2).同弧所對的圓周角的度數(shù)是否發(fā)生變化?
(3).同弧上的圓周角與圓心角有什么關系?
3、默寫圓周角定理及推論并證明。
4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質成立嗎?
5、教材92頁思考?在同圓或等圓中,如果兩個圓周角相等,它們所對的弧一定相等嗎?為什么?
三、 典型例題:
例1、(教材93頁例2)如圖, ⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長。
例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到C,使AC=AB,BD與CD的大小有什么關系?為什么?
四、 鞏固練習:
1、(教材P93練習1)
解:
2、(教材P93練習2)
3、(教材P93練習3)
證明:
4、(教材P95習題24.1第9題)
五、 總結反思:
達標檢測
1.如圖1,A、B、C三點在⊙O上,∠AOC=100°,則∠ABC等于( ).
A.140° B.110° C.120° D.130°
(1) (2) (3)
2.如圖2,∠1、∠2、∠3、∠4的大小關系是( )
A.∠4<∠1<∠2<∠3 B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3∠2 D.∠4<∠1<∠3=∠2
3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于( )
A.100° B.110° C.120° D.130°
4.半徑為2a的⊙O中,弦AB的長為2 a,則弦AB所對的圓周角的度數(shù)是________.
5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點,則∠1+∠2=_______.
(4) (5)
6.(中考題)如圖5, 于 ,若 ,則
7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長AB.
拓展創(chuàng)新
1.如圖,已知AB=AC,∠APC=60°
(1)求證:△ABC是等邊三角形.
(2)若BC=4cm,求⊙O的面積.
3、教材P95習題24.1第12、13題。
布置作業(yè)教材P95習題24.1第10、11題。
九年級數(shù)學簡單教案篇5
教學目標
1.使學生掌握百分數(shù)、小數(shù)互化的方法,并能正確的互化。
2.在學習互化的過程中使學生認識到這二者之間的內在聯(lián)系,為后面學習百分數(shù)的計算和應用打下基礎。
3.在學習的過程中培養(yǎng)學生的分析思維和抽象概括能力。
教學重難點
使學生理解掌握百分數(shù)和小數(shù)互化的方法。
教學工具
課件
教學過程
一、活動(一)復習準備
1、課件出示復習題。
張宇跳繩個數(shù)是陳聰?shù)?.37倍。
王志祥跳繩個數(shù)是陳聰?shù)?/5.
劉星宇跳繩個數(shù)是陳聰?shù)?37.5%.
思考:這三個人誰跳得最多,怎么比較?
2.引入新課。
在生產、工作和生活中進行統(tǒng)計和分析時,為了便于統(tǒng)計和比較,我們常用百分數(shù)表示一些數(shù)據(jù)。除了用百分數(shù)表示,還可以用什么數(shù)表示?
這節(jié)課我們就來學習百分數(shù)和小數(shù)的互化以及百分數(shù)和分數(shù)的互化。
二、活動(二)百分數(shù)和小數(shù)的互化。
(1)回憶小數(shù)化分數(shù)的過程。
(2)小數(shù)要化成百分數(shù),分母應是多少?怎樣使它的分母變成100呢?
三、活動(三)百分數(shù)化成小數(shù)
1、例1:把0.25,1.4,0.123化成百分數(shù)。
①小數(shù)化百分數(shù)分幾步進行?
②學生回答,教師板書:0.25=25/100=25%
③1.4怎樣化成分母是100的分數(shù)?根據(jù)什么?
④“做一做”:把下面各小數(shù)化成百分數(shù)。
0.381.050.0553
⑤觀察例1的各小數(shù),化成百分數(shù)后發(fā)生了怎樣的變化?
你所做的練習的各數(shù)是不是也發(fā)生了同樣的變化?這一變化符合什么?
⑥現(xiàn)在你能很快地把下列小數(shù)化成百分數(shù)嗎?(口答)
2.50.7850.16
2、例2:把27%,135%,0.4%化成小數(shù)。
學生自己試做,學生總結方法
①說一說百分數(shù)化小數(shù)的方法。
②觀察百分數(shù)化成小數(shù)發(fā)生了什么變化?
③把下面各百分數(shù)化成小數(shù)
15%80%3.5%
3、小結。
通過剛才的分析、歸納,誰能說一說百分數(shù)和小數(shù)怎樣互化?
四、鞏固與提高
1、P80“做一做”
2、練習十九的第2題
五、作業(yè)
練習十九的第1題
課后習題
練習十九的第1題
九年級數(shù)學簡單教案篇6
一、學情分析
通過對上期末檢測分析,發(fā)現(xiàn)本班學生存在很嚴重的兩極分化。一方面是平時成績比較突出的學生基本上掌握了學習的數(shù)學的方法和技巧,對學習數(shù)學興趣濃厚。另一方面是相當部分學生因為各種原因,數(shù)學已經落后很遠,基本喪失了學習數(shù)學的興趣。從上個學期期末測試就可以看出來,優(yōu)秀率達到了15%,但及格率下降到45%,特別是不及格的學生中,大部分學生的成績在50分(總分為120分)以下。
二、指導思想
以《初中數(shù)學新課程標準》為準繩,繼續(xù)深入開展新課程教學改革。以提高學生中考成績?yōu)槌霭l(fā)點,注重培養(yǎng)學生的基礎知識和基本技能,提高學生解題答題的能力。同時通過本學期的課堂教學,完成九年級上冊數(shù)學教學任務。并根據(jù)實際情況,適當完成九年級下冊新授教學內容。
三、教學目標
知識技能目標:掌握二次根式的概念、性質及計算;會解一元二次方程;理解旋轉的基本性質;掌握圓及與圓有關的概念、性質;理解概率在生活中的應用。過程方法目標:培養(yǎng)學生的觀察、探究、推理、歸納的能力,發(fā)展學生合情推理能力、邏輯推理能力和推理認證表達能力,提高知識綜合應用能力。態(tài)度情感目標:進一步感受數(shù)學與日常生活密不可分的聯(lián)系,同時對學生進行辯證唯物主義世界觀教育。
四、教材分析
第二十一章二次根式:本章主要內容是二次根式的概念、性質、化簡和有關的計算。本章重點是理解二次根式的性質,及二次根式的化簡和計算。本章的難點是正確理解二次根式的性質和運算法則。
第二十二章一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并運用一元二次方程解決實際問題。本章重點是解一元二次方程的思路及具體方法。本章的難點是解一元二次方程。
第二十三章旋轉:本章主要是探索和理解旋轉的性質,能夠按要求作出簡單平面圖形旋轉后的圖形。本章的重點是中心對稱的概念、性質與作圖。本章的難點是辨認中心對稱圖形,按要求作出簡單平面圖形旋轉后的圖形。
第二十四章圓:理解圓及有關概念,掌握弧、弦、圓心角的關系,探索點與圓、直線與圓、圓與圓之間的位置關系,探索圓周角與圓心角的關系,直徑所對圓周角的特點,切線與過切點的半徑之間的關系,正多邊形與圓的關系……。本章內容知識點多,而且都比較復雜,是整個初中幾何中最難的一個教學內容。
第二十五章概率初步:理解概率的意義及其在生活中的廣泛應用。本章的重點是理解概率的意義和應用,掌握概率的計算方法。本章的難點是會用列舉法求隨機事件的概率。
五、教學措施
1、精心備課,設置好每個教學情境,激發(fā)學生學習興趣和欲望。深入淺出,幫助學生理解各個知識點,突出重點,講透難點。
2、加強對學生課后的輔導,尤其是中等生和后進生的基礎知識的輔導,提高他們的解題作答能力和正確率。
3、精心組織單元測試,認真分析試卷中暴露出來的問題,并對其中大多數(shù)學生存在的問題集中進行分析與講解,力求透徹。對于少部分學生存在的問題進行小組輔導,突破難點。
4、做好學生的思想教育工作,促進學生學習的積極性,從而提高學生的學習成績。