小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 >

初二數學教案設計

時間: 新華 教案模板

初二數學教案設計篇1

重點

用因式分解法解一元二次方程.

難點

讓學生通過比較解一元二次方程的多種方法感悟用因式分解法使解題更簡便.

一、復習引入

(學生活動)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老師點評:(1)配方法將方程兩邊同除以2后,x前面的系數應為12,12的一半應為14,因此,應加上(14)2,同時減去(14)2.(2)直接用公式求解.

二、探索新知

(學生活動)請同學們口答下面各題.

(老師提問)(1)上面兩個方程中有沒有常數項?

(2)等式左邊的各項有沒有共同因式?

(學生先答,老師解答)上面兩個方程中都沒有常數項;左邊都可以因式分解.

因此,上面兩個方程都可以寫成:

(1)x(2x+1)=0(2)3x(x+2)=0

因為兩個因式乘積要等于0,至少其中一個因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何實現降次的?)

因此,我們可以發現,上述兩個方程中,其解法都不是用開平方降次,而是先因式分解使方程化為兩個一次式的乘積等于0的形式,再使這兩個一次式分別等于0,從而實現降次,這種解法叫做因式分解法.

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的條件是什么?

解:略(方程一邊為0,另一邊可分解為兩個一次因式乘積.)

練習:下面一元二次方程解法中,正確的是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,兩邊同除以x,得x=1

三、鞏固練習

教材第14頁練習1,2.

四、課堂小結

本節課要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其應用.

(2)因式分解法要使方程一邊為兩個一次因式相乘,另一邊為0,再分別使各一次因式等于0.

五、作業布置

教材第17頁習題6,8,10,11

初二數學教案設計篇2

教學目標:

1、通過操作活動,使學生體會所學平面圖形的特征,并能用自己的語言描述長方形、正方形邊的特征。

1、通過觀察、操作,使學生初步感知所學圖形之間的關系。

3、能根據要求自己操作學具。

4、培養學生團結協作的精神。

教學重難點:

平面圖形之間的關系。

教具、學具準備:教師:各種平面圖形的圖片;學生:學具袋中的平面圖形。

教學過程:

一、基礎訓練。

20以內退位減法的練習。(20題,學生獨立在練習紙上完成,電腦計時2分鐘。)

二、情景引入。

小朋友們,老師今天要領你們去圖形王國參觀學習,你們想去嗎?

三、探究交流,獲取新知。

1、引舊入新,初步感知長方形和正方形的特征。

(1)出示圖形王國的向導,引出所學過的圖形,學生認一認。

(2)先后出示長短不同的5條線段,讓學生選其中的4條分別拼成一個長方形并說說選擇它們的理由。

在學生說出理由的同時講解“對邊”的含義。

2、動手操作,具體感知長方形和正方形的特征

(1)設難:你如何證明長方形的對邊一樣長呢?

先讓學生自由說說自己的方法,之后再讓學生看書第27面例1中的對折方法,引導學生對折證明。

(2)老師小結并板書:長方形的對邊相等。

(3)引導學生通過動手折疊證明正方形的四條邊一樣長。

(4)老師小結并板書:正方形的四條邊都相等。

3、動手拼圖,感知平面圖形之間的關系。

(1)用兩個同樣的長方形拼一拼,你能拼成什么圖形?

學生先動手拼,再分別展示學生的作品。

(2)教師提出要求:用四個大小相同的正方形你可以拼成什么圖形呢。

先讓學生動手拼,再分別展示學生的圖形。

(3)用四個三角形可能拼出什么圖形?

把拼法不同的圖案展示出來,并加以表揚肯定。

4、課中操:《小手拍拍》

5、平面圖形之間的相互轉換。

(1)正方形轉換成三角形。

(2)長方形轉換成正方形。

(3)圓形轉換成正方形。

四、應用知識,體驗成功。

1、說出圖中是用哪些圖形拼出來的。

2、出示兩個大小不同的長方形,問:它們能否拼成一個正方形呢?為什么?

3、生活中的拼圖。

出示幾組生活中的圖案,讓學生感受圖形拼組的實用、美觀,激發學習興趣。

五、質疑問難

長方形和正方形有什么不同?

六、小結本課內容。

1、小朋友們,今天我們一起學習了什么內容?

2、談一談你的收獲。

初二數學教案設計篇3

考標要求:

1體會因式分解法適用于解一邊為0,另一邊可分解為兩個一次因式的乘積的一元二次方程;

2會用因式分解法解某些一元二次方程。

重點:用因式分解法解一元二次方程。

難點:用因式分解把一元二次方程化為左邊是兩個一次二項式相乘右邊是零的形式。

一填空題(每小題5分,共25分)

1解方程(2+x)(x-3)=0,就相當于解方程()

A2+x=0,Bx-3=0C2+x=0且x-3=0,D2+x=0或x-3=0

2用因式分解法解一元二次方程的思路是降次,下面是甲、乙兩位同學解方程的過程:

(1)解方程:,小明的解法是:解:兩邊同除以x得:x=2;

(2)解方程:(x-1)(x-2)=2,小亮的解法是:解:x-1=1,x-2=2或者x-1=2,x-2=1,或者,x-1=-1,x-2=-2,或者x-1=-2,x-2=-1∴=2,=4,=3,=0

其中正確的是()

A小明B小亮C都正確D都不正確

3下面方程不適合用因式分解法求解的是()

A2-32=0,B2(2x-3)-=0,,D

4方程2x(x-3)=5(x-3)的根是()

Ax=,Bx=3C=,=3Dx=

5定義一種運算“※”,其規則為:a※b=(a+1)(b+1),根據這個規則,方程x※(x+1)=0的解是()

Ax=0Bx=-1C=0,=-1,D=-1=-2

二填空題(每小題5分,共25分)

6方程(1+)-(1-)x=0解是=_____,=__________

7當x=__________時,分式值為零。

8若代數式與代數式4(x-3)的值相等,則x=_________________

9已知方程(x-4)(x-9)=0的解是等腰三角形的兩邊長,則這個等腰三角形的周長=_______.

10如果,則關于x的一元二次方程a+bx=0的解是_________

三解答題(每小題10分,共50分)

11解方程

(1)+2x+1=0(2)4-12x+9=0

(3)25=9(4)7x(2x-3)=4(3-2x)

12解方程=(a-2)(3a-4)

13已知k是關于x的方程4k-8x-k=0的一個根,求k的值。?

14解方程:-2+1=0

15對于向上拋的物體,在沒有空氣阻力的情況下,有如下關系:h=vt-g,其中h是上升到高度,v是初速度,g是重力加速度,(為方便起見,本題中g取10米/),t是拋出后所經過的時間。

如果將一物體以每秒25米的初速向上拋,物體多少秒后落到地面

初二數學教案設計篇4

教學目標

1.使學生正確理解不等式的解,不等式的解集,解不等式的概念,掌握在數軸上表示不等式的解的集合的方法;

2.培養學生觀察、分析、比較的能力,并初步掌握對比的思想方法;

3.在本節課的教學過程中,滲透數形結合的思想,并使學生初步學會運用數形結合的觀點去分析問題、解決問題.

教學重點和難點

重點:不等式的解集的概念及在數軸上表示不等式的解集的方法.

難點:不等式的解集的概念.

課堂教學過程設計

一、從學生原有的認知結構提出問題

1.什么叫不等式?什么叫方程?什么叫方程的解?(請學生舉例說明)

2.用不等式表示:

(1)x的3倍大于1; (2)y與5的差大于零;

(3)x與3的和小于6; (4)x的小于2.

(3)當x取下列數值時,不等式x+3<6是否成立?

-4,3.5,-2.5,3,0,2.9.

((2)、(3)兩題用投影儀打在屏幕上)

一、講授新課

1.引導學生運用對比的方法,得出不等式的解的概念

2.不等式的解集及解不等式

首先,向學生提出如下問題:

不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,還有沒有其它的解?若有,解的個數是多少?它們的分布是有什么規律?

(啟發學生利用試驗的方法,結合數軸直觀研究.具體作法是,在數軸上將是x+3<6的解的數值-4,-2.5,0,2.9用實心圓點畫出,將不是x+3<6的解的數值3.5,4,3用空心圓圈畫出,好像是“挖去了”一樣.如下圖所示)

然后,啟發學生,通過觀察這些點在數軸上的分布情況,可看出尋求不等式x+3<6的解的關鍵值是“3”,用小于3的任何數替代x,不等式x+3<6均成立;用大于或等于3的任何數替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知數x的值是小于3的所有數,用不等式表示為x<3.把能夠使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.簡稱不等式x+3<6的解集,記作x<3.

最后,請學生總結出不等式的解集及解不等式的概念.(若學生總結有困難,教師可作適當的啟發、補充)

一般地說,一個含有未知數的不等式的所有解,組成這個不等式的解的集合.簡稱為這個不等式的解集.

不等式一般有無限多個解.

求不等式的解集的過程,叫做解不等式.

3.啟發學生如何在數軸上表示不等式的解集

我們知道解不等式不能只求個別解,而應求它的解集,一般而言,不等式的解集不是由一個數或幾個數組成的,而是由無限多個數組成的,如x<3.那么如何在數軸上直觀地表示不等式x+3<6的解集x<3呢?(先讓學生想一想,然后請一名學生到黑板上試著用數軸表示一下,其余同學在下面自行完成,教師巡視,并針對黑板上板演的結果做講解)

在數軸上表示3的點的左邊部分,表示解集x<3.如下圖所示.

由于x=3不是不等式x+3<6的解,所以其中表示3的點用空心圓圈標出來.(表示挖去x=3這個點)

記號“≥”讀作大于或等于,既不小于;記號“≤”讀作小于或等于,即不大于.

例如不等式x+5≥3的解集是x≥-2(想一想,為什么?并請一名學生回答)在數軸上表示如下圖.

即用數軸上表示-2的點和它的右邊部分表示出來.由于解中包含x=-2,故其中表示-2的點用實心圓點表示.

此處,教師應強調,這里特別要注意區別是用空心圓圈“。”還是用實心圓點“.”,是左邊部分,還是右邊部分.

三、應用舉例,變式練習

例1 在數軸上表示下列不等式的解集:

(1)x≤-5; (2)x≥0; (3)x>-1;

(4)1≤X≤4; (5)-2<x≤3; p="" (6)-2≤x<3.

解(1),(2),(3)略.

(4)在數軸上表示1≤x≤4,如下圖

(5)在數軸上表示-2<x≤3,如下圖< p="">

(此題在講解時,教師要著重強調:注意所給題目中的解集是否包含分界點,是左邊部分還是右邊部分.本題應分別讓6名學生板演,其余學生自行完成,教師巡視遇到問題,及時糾正)

例2 用不等式表示下列數量關系,再用數軸表示出來:

(1)x小于-1; (2)x不小于-1;

(3)a是正數; (4)b是非負數.

解:(1)x小于-1表示為x<-1;(用數軸表示略)

(2)x不小于-1表示為x≥-1;(用數軸表示略)

(3)a是正數表示為a>0;(用數軸表示略)

(4)b是非負數表示為b≥0.(用數軸表示略)

(以上各小題分別請四名學生回答,教師板書,最后,請學生在筆記本上畫數軸表示)

例3 用不等式的解集表示出下列各數軸所表示的數的范圍.(投影,請學生口答,教師板演)

解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

(本題從另一例面來揭示不等式的解集與數軸上表示數的范圍的一種對應關系,從而進一步加深學生對不等式解集的理解,以使學生進一步領會到數形結合的方法具有形象,直觀,易于說明問題的優點)

練習(1)用簡明語言敘述下列不等式表示什么數:①x>0;②x<0;③x>-1;④x≤-1.

(2)在數軸上表示下列不等式的解集:

①x>3; ②x≥-1; ③x≤-1.5;

④0≤x<5; ⑤-2<x≤2; p="" ⑥-2<x<.

(3)用觀察法求不等式<1的解集,并用不等式和數軸分別表示出來.

(4)觀察不等式<1的解集,并用不等式和數軸分別表示出來,它的正數解是什么?

自然數解是什么?(表示選作題)

四、師生共同小結

針對本節課所學內容,請學生回答以下問題:

1.如何區別不等式的解,不等式的解集及解不等式這幾個概念?

2.找出一元一次方程與不等式在“解”,“求解”等概念上的異同點.

3.記號“≥”、“≤”各表示什么含義?

4.在數軸上表示不等式解集時應注意什么?

結合學生的回答,教師再強調指出,不等式的解、不等式的解集及解不等式這三者的定義是區別它們的標準;在數軸上表示不等式解集時,需特別注意解的范圍的分界點,以便在數軸上正確使用空心圓圈“。”和實心圓點“·”.

五、作業

1.不等式x+3≤6的解集是什么?

2.在數軸上表示下列不等式的解集:

(1)x≤1; (2)x≤0; (3)-1<x≤5;< p="">

(4)-3≤x≤2; (5)-2<x<; p="" (6)-≤x<.

3.求不等式x+2<5的正整數解.

課堂教學設計說明由于本節課的知識點比較多,因此,在設計教學過程時,緊緊抓住不等式的解集這一重點知識.通過對方程的解的電義的回憶,對比學習不等式的解及解集.同時,為了進一步加深學生對不等式的解集的理解,教學中注意運用以下幾種教學方法:(1)啟發學生用試驗的方法,結合數軸直觀形象來研究不等式的解和解集;(2)比較方程與不等式的解的異同點;(3)通過例題與練習,加深理解.

在數軸上表示數是數形結合的具體體現.而在數軸上表示不等式的解集則又進了一步.因此,在設計教學過程時,就充分考慮到應使學生通過本節課的學習,進一步領會數形結合的思想方法具有形象、直觀、易于說明問題的優點,并初步學會用數形結合的觀念去處理問題、解決問題.

初二數學教案設計篇5

一、學習目標:讓學生了解多項式公因式的意義,初步會用提公因式法分解因式

二、重點難點

重點:能觀察出多項式的公因式,并根據分配律把公因式提出來

難點:讓學生識別多項式的公因式.

三、合作學習:

公因式與提公因式法分解因式的概念.

三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)

既ma+mb+mc=m(a+b+c)

由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。

四、精講精練

例1、將下列各式分解因式:

(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.

例2把下列各式分解因式:

(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

(3)a(x-3)+2b(x-3)

通過剛才的練習,下面大家互相交流,總結出找公因式的一般步驟.

首先找各項系數的____________________,如8和12的公約數是4.

其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數取次數最___________的.

課堂練習

1.寫出下列多項式各項的公因式.

(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab

2.把下列各式分解因式

(1)8x-72(2)a2b-5ab

(3)4m3-6m2(4)a2b-5ab+9b

(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2

五、小結:

總結出找公因式的一般步驟.:

首先找各項系數的大公約數,

其次找各項中含有的相同的字母,相同字母的指數取次數最小的.

注意:(a-b)2=(b-a)2

六、作業1、教科書習題

2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)20__+(-2)20__

4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

初二數學教案設計篇6

一、學習目標:1.多項式除以單項式的運算法則及其應用.

2.多項式除以單項式的運算算理.

二、重點難點:

重點:多項式除以單項式的運算法則及其應用

難點:探索多項式與單項式相除的運算法則的過程

三、合作學習:

(一)回顧單項式除以單項式法則

(二)學生動手,探究新課

1.計算下列各式:

(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy.

2.提問:①說說你是怎樣計算的②還有什么發現嗎?

(三)總結法則

1.多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______

2.本質:把多項式除以單項式轉化成______________

四、精講精練

例:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x(4)(-6a3b3+8a2b4+10a2b3+2ab2)÷(-2ab2)

隨堂練習:教科書練習

五、小結

1、單項式的除法法則

2、應用單項式除法法則應注意:

A、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號

B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;

C、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;

D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.

E、多項式除以單項式法則

初二數學教案設計篇7

教學目標:1、使學生在現實情境中理解有理數加法的意義

2、經歷探索有理數加法法則的過程,掌握有理數加法法則,并能準確地進行加法運算。[]

3、在教學中適當滲透分類討論思想。

重點:有理數的加法法則

重點:異號兩數相加的法則

教學過程:

二、講授新課

1、同號兩數相加的法則

問題:一個物體作左右方向的運動,我們規定向左為負,向右為正。向右運動5m記作5m,向左運動5m記作-5m。如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是多少?

學生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)

教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少?

學生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)

師生共同歸納法則:同號兩數相加,取與加數相同的符號,并把絕對值相加。

2、異號兩數相加的法則

教師:如果物體先向右運動5m,再向左運動3m,那么兩次運動后物體從起點向哪個方向運動了多少米?

學生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)

師生借此結論引導學生歸納異號兩數相加的法則:異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。

3、互為相反數的兩個數相加得零。

教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少?

學生回答:經過兩次運動后,物體又回到了原點。也就是物體運動了0m。

師生共同歸納出:互為相反數的兩個數相加得零

教師:你能用加法法則來解釋這個法則嗎?

學生回答:可用異號兩數相加的法則來解釋。

一般地,還有一個數同0相加,仍得這個數。

三、鞏固知識

課本P18例1,例2、課本P118練習1、2題

四、總結

運算的關鍵:先分類,再按法則運算;

運算的步驟:先確定符號,再計算絕對值。

注意:要借用數軸來進一步驗證有理數的加法法則;異號兩數相加,首先要確定符號,再把絕對值相加。

五、布置作業

課本P24習題1.3第1、7題。

初二數學教案設計篇8

理解一元二次方程求根公式的推導過程,了解公式法的概念,會熟練應用公式法解一元二次方程.

復習具體數字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導,并應用公式法解一元二次方程.

重點

求根公式的推導和公式法的應用.

難點

一元二次方程求根公式的推導.

一、復習引入

1.前面我們學習過解一元二次方程的“直接開平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提問1 這種解法的(理論)依據是什么?

提問2 這種解法的局限性是什么?(只對那種“平方式等于非負數”的特殊二次方程有效,不能實施于一般形式的二次方程.)

2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)

(學生活動)用配方法解方程 2x2+3=7x

(老師點評)略

總結用配方法解一元二次方程的步驟(學生總結,老師點評).

(1)先將已知方程化為一般形式;

(2)化二次項系數為1;

(3)常數項移到右邊;

(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學獨立完成下面這個問題.

問題:已知ax2+bx+c=0(a≠0),試推導它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)

分析:因為前面具體數字已做得很多,我們現在不妨把a,b,c也當成一個具體數字,根據上面的解題步驟就可以一直推下去.

解:移項,得:ax2+bx=-c

二次項系數化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,當b2-4ac≥0時,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a,b,c而定,因此:

(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個實數根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應把它化為一般形式,然后代入公式即可.

補:(5)(x-2)(3x-5)=0

三、鞏固練習

教材第12頁 練習1.(1)(3)(5)或(2)(4)(6).

四、課堂小結

本節課應掌握:

(1)求根公式的概念及其推導過程;

(2)公式法的概念;

(3)應用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數a,b,c,注意各項的系數包括符號;3)計算b2-4ac,若結果為負數,方程無解;4)若結果為非負數,代入求根公式,算出結果.

(4)初步了解一元二次方程根的情況.

五、作業布置

教材第17頁 習題4

52162 主站蜘蛛池模板: 国产频谱分析仪-国产网络分析仪-上海坚融实业有限公司 | 热处理温控箱,热处理控制箱厂家-吴江市兴达电热设备厂 | 无菌实验室规划装修设计-一体化实验室承包-北京洁净净化工程建设施工-北京航天科恩实验室装备工程技术有限公司 | ◆大型吹塑加工|吹塑加工|吹塑代加工|吹塑加工厂|吹塑设备|滚塑加工|滚塑代加工-莱力奇塑业有限公司 | 心肺复苏模拟人|医学模型|急救护理模型|医学教学模型上海康人医学仪器设备有限公司 | 广东燎了网络科技有限公司官网-网站建设-珠海网络推广-高端营销型外贸网站建设-珠海专业h5建站公司「了了网」 | 12cr1mov无缝钢管切割-15crmog无缝钢管切割-40cr无缝钢管切割-42crmo无缝钢管切割-Q345B无缝钢管切割-45#无缝钢管切割 - 聊城宽达钢管有限公司 | 超声波成孔成槽质量检测仪-压浆机-桥梁预应力智能张拉设备-上海硕冠检测设备有限公司 | 比士亚-专业恒温恒湿酒窖,酒柜,雪茄柜的设计定制 | 400电话_400电话申请_888元包年_400电话办理服务中心_400VIP网 | 定硫仪,量热仪,工业分析仪,马弗炉,煤炭化验设备厂家,煤质化验仪器,焦炭化验设备鹤壁大德煤质工业分析仪,氟氯测定仪 | 博莱特空压机|博莱特-阿特拉斯独资空压机品牌核心代理商 | 安徽泰科检测科技有限公司【官方网站】 | 炉门刀边腹板,焦化设备配件,焦化焦炉设备_沧州瑞创机械制造有限公司 | 协议书_协议合同格式模板范本大全| 上海质量认证办理中心| 筛分机|振动筛分机|气流筛分机|筛分机厂家-新乡市大汉振动机械有限公司 | 浙江富广阀门有限公司 | 黑龙江京科脑康医院-哈尔滨精神病医院哪家好_哈尔滨精神科医院排名_黑龙江精神心理病专科医院 | 培训无忧网-教育培训咨询招生第三方平台| 冷轧机|两肋冷轧机|扁钢冷轧机|倒立式拉丝机|钢筋拔丝机|收线机-巩义市华瑞重工机械制造有限公司 | 深圳市源和塑胶电子有限公司-首页| 硫酸亚铁-聚合硫酸铁-除氟除磷剂-复合碳源-污水处理药剂厂家—长隆科技 | 伊卡洛斯软装首页-电动窗帘,别墅窗帘,定制窗帘,江浙沪1000+别墅窗帘案例 | 氧化铁红厂家-淄博宗昂化工 | 捷码低代码平台 - 3D数字孪生_大数据可视化开发平台「免费体验」 | 桐城新闻网—桐城市融媒体中心主办 | 聚氨酯催化剂K15,延迟催化剂SA-1,叔胺延迟催化剂,DBU,二甲基哌嗪,催化剂TMR-2,-聚氨酯催化剂生产厂家 | 地埋式垃圾站厂家【佳星环保】小区压缩垃圾中转站转运站 | 东莞爱加真空科技有限公司-进口真空镀膜机|真空镀膜设备|Polycold维修厂家 | 穿线管|波纹穿线管|包塑金属软管|蛇皮管?闵彬专注弱电工程? | 中国在职研究生招生信息网 | 不锈钢电动球阀_气动高压闸阀_旋塞疏水调节阀_全立阀门-来自温州工业阀门巨头企业 | 四探针电阻率测试仪-振实密度仪-粉末流动性测定仪-宁波瑞柯微智能 | 塑料异型材_PVC异型材_封边条生产厂家_PC灯罩_防撞扶手_医院扶手价格_东莞市怡美塑胶制品有限公司 | 上海平衡机-单面卧式动平衡机-万向节动平衡机-圈带动平衡机厂家-上海申岢动平衡机制造有限公司 | POS机办理_个人POS机免费领取 - 银联POS机申请首页 | 全自动在线分板机_铣刀式在线分板机_曲线分板机_PCB分板机-东莞市亿协自动化设备有限公司 | 发电机价格|发电机组价格|柴油发电机价格|柴油发电机组价格网 | 儿童语言障碍训练-武汉优佳加感统文化发展有限公司 | 品牌策划-品牌设计-济南之式传媒广告有限公司官网-提供品牌整合丨影视创意丨公关活动丨数字营销丨自媒体运营丨数字营销 |