初二教案數學
初二教案數學篇1
教學
目標1聯系生活中的具體事物,通過觀察和動手操作,初步體會生活中的對稱現象,認識軸對稱圖形的基本特征,會識別并能做出一些簡單的軸對稱圖形。
2.在認識、制作和欣賞軸對稱圖形的過程中,感受到物體圖形的對稱美,激發學生對數學學習的積極情感。
重點
難點理解軸對稱圖形的基本特征
教具
準備剪刀、紙(含平行四邊形、字母NS)、教學掛圖、直尺
教學
方法
手段觀察、比較、討論、動手操作
教學
過程一.新課
1.教師取一個門框上固定門的鉸連讓學生觀察是不是左右對稱?
2.出示教學掛圖:_、飛機、獎杯的實物圖片
將實物圖片進一步抽象為平面圖形,對折以后問學生發現了什么?
生:對折后兩邊能完全重合。
師;對折后能完全重合的圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
教師先示范,讓學生認識_城樓圖的對稱軸,然后讓學生再找出飛機圖、獎杯圖的對稱軸各在哪里。
3.練習:(出示小黑板)
(1)P57“試一試”
判斷哪幾個圖形是軸對稱圖形?試著畫出對稱軸。
估計學生會將平行四邊形看作是軸對稱圖形,可讓兩個學生到講臺前用平行四邊形紙對折一下,看對折以后兩部分是否完全重合。由此得出結論;平行四邊形不是軸對稱圖形。
(2)用剪刀和紙剪一個軸對稱圖形。
初二教案數學篇2
教學目標
1.通過實際操作,了解什么叫做軸對稱變換.
2.如何作出一個圖形關于一條直線的軸對稱圖形.
教學重點
1.軸對稱變換的定義.
2.能夠按要求作出簡單平面圖形經過軸對稱后的圖形.
教學難點
1.作出簡單平面圖形關于直線的軸對稱圖形.
2.利用軸對稱進行一些圖案設計.
教學過程
Ⅰ.設置情境,引入新課
在前一個章節,我們學習了軸對稱圖形以及軸對稱圖形的一些相關的性質問題.在上節課的作業中,我們有個要求,讓同學們自己思考一種作軸對稱圖形的方法,現在來看一下同學們完成的怎么樣.
將一張紙對折后,用針尖在紙上扎出一個圖案,將紙打開后鋪平,得到的兩個圖案是關于折痕成軸對稱的圖形.
準備一張質地較軟,吸水性能好的紙或報紙,在紙的一側上滴上一滴墨水,將紙迅速對折,壓平,并且手指壓出清晰的折痕.再將紙打開后鋪平,位于折痕兩側的墨跡圖案也是對稱的.
這節課我們就是來作簡單平面圖形經過軸對稱后的圖形.
Ⅱ.導入新課
由我們已經學過的知識知道,連結任意一對對應點的線段被對稱軸垂直平分.
類似地,我們也可以由一個圖形得到與它成軸對稱的另一個圖形,重復這個過程,可以得到美麗的圖案.
對稱軸方向和位置發生變化時,得到的圖形的方向和位置也會發生變化.大家看大屏幕,從電腦演示的圖案變化中找出對稱軸的方向和位置,體會對稱軸方
向和位置的變化在圖案設計中的奇妙用途.
下面,同學們自己動手在一張紙上畫一個圖形,將這張紙折疊描圖,再打開看看,得到了什么?改變折痕的位置并重復幾次,又得到了什么?同學們互相交流一下.
結論:由一個平面圖形呆以得到它關于一條直線L對稱的圖形,這個圖形與原圖形的形狀、大小完全相同;新圖形上的每一點,都是原圖形上的某一點關于直線L的對稱點;
連結任意一對對應點的線段被對稱軸垂直平分.
我們把上面由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換.
成軸對稱的兩個圖形中的任何一個可以看作由另一個圖形經過軸對稱變換后得到.一個軸對稱圖形也可以看作以它的一部分為基礎,經軸對稱變換擴展而成的.
取一張長30厘米,寬6厘米的紙條,將它每3厘米一段,一正一反像“手風琴”那樣折疊起來,并在折疊好的紙上畫上字母E,用小刀把畫出的字母E挖去,拉開“手風琴”,你就可以得到以字母E為圖案的花邊.回答下列問題.
(1)在你所得的花邊中,相鄰兩個圖案有什么關系?相間的兩個圖案又有什么關系?說說你的理由.
(2)如果以相鄰兩個圖案為一組,每一組圖案之間有什么關系?三個圖案為一組呢?為什么?
(3)在上面的活動中,如果先將紙條縱向對折,再折成“手風琴”,然后繼續上面的步驟,此時會得到怎樣的花邊?它是軸對稱圖形嗎?先猜一猜,再做一做.
注:為了保證剪開后的紙條保持連結,畫出的圖案應與折疊線稍遠一些.
Ⅲ.隨堂練習
(一)如圖(1),將一張正六邊形紙沿虛線對折折3次,得到一個多層的60°角形紙,用剪刀在折疊好的紙上隨意剪出一條線,如圖(2).
(1)猜一猜,將紙打開后,你會得到怎樣的圖形?
(2)這個圖形有幾條對稱軸?
(3)如果想得到一個含有5條對稱軸的圖形,你應取什么形狀的紙?應如何折疊?
答案:(1)軸對稱圖形.
(2)這個圖形至少有3條對稱軸.
(3)取一個正十邊形的紙,沿它通過中心的五條對角線折疊五次,得到一個多層的36°角形紙,用剪刀在疊好的紙上任意剪出一條線,打開即可得到一個至少含有5條對稱軸的軸對稱圖形.
(二)回顧本節課內容,然后小結.
Ⅳ.課時小結
本節課我們主要學習了如何通過軸對稱變換來作出一個圖形的軸對稱圖形,并且利用軸對稱變換來設計一些美麗的圖案.在利用軸對稱變換設計圖案時,要注意運用對稱軸位置和方向的變化,使我們設計出更新疑獨特的美麗圖案.
初二教案數學篇3
一、讀一讀
學習目標:1、掌握三角形內角和定理的兩個推論及其證明;
2、體會幾何中簡單不等關系的證明;
3、從內和外、相等和不相等的不同角度對三角形的角作更全面的思考。
二、試一試
自學指導:
1、如圖∠1是三角形的一個外角,它與圖中其它角有什么關系?
2、自學教材P242-243,看看你的結論是否正確,并對例1例2進行學習,
仿照證明三角形內角和定理的兩個推論:
推論1:三角形的一個外角等于和它不相鄰的兩個內角的和。
推論2:三角形的一個外角大于任何一個和它不相鄰的內角。
證明:
三、練一練
1、如圖,下列哪些說法一定正確
A∠HEC>∠B
B∠B+∠ACB=180°—∠A
C∠B+∠ACB<180°
D∠B>∠ACD
2、已知:如圖,在△ABC中,∠A=45°,外角∠DCA=100°,
求∠B和∠ACB的大小
初二教案數學篇4
探索勾股定理(二)
教學目標:
1.經歷運用拼圖的方法說明勾股定理是正確的過程,在數學活動中發展學生的探究意識和合作交流的習慣。
2.掌握勾股定理和他的簡單應用
重點難點:
重點:能熟練運用拼圖的方法證明勾股定理
難點:用面積證勾股定理
教學過程
七、創設問題的情境,激發學生的學習熱情,導入課題
我們已經通過數格子的方法發現了直角三角形三邊的關系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學交流。在同學操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?
(同學們回答有這幾種可能:(1)(2))
在同學交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。
=請同學們對上面的式子進行化簡,得到:即=
這就可以從理論上說明勾股定理存在。請同學們去用別的拼圖方法說明勾股定理。
八、講例
1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?
分析:根據題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。
解:由勾股定理得
即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:
答:飛機每個小時飛行540千米。
九、議一議
展示投影2(書中的圖1—9)
觀察上圖,應用數格子的方法判斷圖中的三角形的三邊長是否滿足
同學在議論交流形成共識之后,老師總結。
勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。
十、作業
1、1、課文P11§1.21、2
2、選用作業。
初二教案數學篇5
一、教學目的
1、掌握菱形概念,知道菱形與平行四邊形的關系。
2、理解并掌握菱形的定義及性質1、2;會用這些性質進行有關的論證和計算,會計算菱形的面積。
3、通過運用菱形知識解決具體問題,提高分析能力和觀察能力。
4、根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想。
二、重點、難點
1、教學重點:
菱形的性質1、2。
2、教學難點:
菱形的性質及菱形知識的綜合應用。
三、課堂引入
1、(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2、(引入)我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念。
菱形定義:有一組鄰邊相等的平行四邊形叫做菱形。
【強調】菱形(1)是平行四邊形;(2)一組鄰邊相等。
讓學生舉一些日常生活中所見到過的菱形的例子。
四、例習題分析
例1(補充)已知:如圖,四邊形ABCD是菱形,F是AB上一點,DF交AC于E。
求證:∠AFD=∠CBE。
證明:∵四邊形ABCD是菱形,
∴CB=CD,CA平分∠BCD。
∴∠BCE=∠DCE。又CE=CE,
∴△BCE≌△COB(SAS)。
∴∠CBE=∠CDE。
∵在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴∠AFD=∠CBE。
例2(教材P108例2)略
五、隨堂練習
1、若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數分別為。
2、已知菱形的兩條對角線分別是6cm和8cm,求菱形的周長和面積。
3、已知菱形ABCD的周長為20cm,且相鄰兩內角之比是1∶2,求菱形的對角線的長和面積。
4、已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,且BE=DF。求證:∠AEF=∠AFE。
六、課后練習
1、菱形ABCD中,∠D∶∠A=3∶1,菱形的周長為8cm,求菱形的高。
2、如圖,四邊形ABCD是邊長為13cm的菱形,其中對角線BD長10cm,求(1)對角線AC的長度;(2)菱形ABCD的面積。
初二教案數學篇6
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的&39;有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價—成本;=商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48。6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
初二教案數學篇7
回顧與思考
一、學生起點分析
學生的知識技能基礎:經過本章的學習,學生已掌握了一定的數據處理的方法,會用筆或計算器求一組數據的平均數、中位數和眾數,能利用它們解決一些實際問題,并能初步選擇恰當的數據代表對數據作出自己的評判。
學生活動經驗基礎:學生在本章的學習活動中,解決了一些相關的實際問題,獲得了從事統計活動所必須的數學方法,形成了動手實踐、自主探索、合作交流的學習方式,積累了一些數學探究活動的經驗。
二、學習任務分析
本節課的學習任務是:整理歸納本章所學的知識,形成知識網絡結構;會用計算器準確地求出一組數據的平均數、中位數和眾數,能選擇恰當的數據代表對數據作出評判;培養綜合運用統計知識解決實際問題的能力,達成有關的情感態度目標。為此,本節課的教學目標是:
1.知識與技能:會用計算器準確地求出一組數據的平均數、中位數和眾數。了解平均數、中位數和眾數的差別,能選擇恰當的數據代表對數據作出評判,并解決實際問題。
2.過程與方法:初步經歷調查、統計、分析、研討等活動過程,在活動發展學生綜合運用統計知識解決實際問題的能力。
3.情感與態度:通過本章內容的回顧與思考,培養學生整理歸納知識的方法,逐步養成勤于思考、善于總結的好習慣。
三、教學過程設計
本節課設計了五個教學環節:第一環節:歸納知識結構;第二環節:回顧重點內容;第三環節:綜合運用提高;第四環節:課堂小結;第五環節:布置作業。
第一環節:歸納知識結構
內容:本章內容已全部學完,請大家回憶一下,這一章學了哪些內容?這些內容之間有什么聯系呢?
留出時間讓學生思考、交流、梳理知識,然后師生共同歸納總結出如下知識網絡結構圖:
目的:引導學生將所學的知識整理歸納,總結出網絡結構圖,形成知識系統。幫助學生掌握正確的學習方法,養成良好的學習習慣。
注意事項:以上知識的歸納總結要以學生為主體來完成,教師不要包辦代替。
第二環節:回顧重點內容[
內容:引導學生根據網絡結構圖,把重點知識內容再回顧一下:
1.平均數、中位數、眾數的概念及舉例
一般地,對于n個數x1,x2,…,xn,我們把(x1+x2+…+xn),叫做這n個數的算術平均數,簡稱平均數。新$課$標$第$一$網
一般地,n個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩
個數據的平均數)叫做這組數據的中位數。
一組數據中出現次數最多的那個數據叫做這組數據的眾數。
2.平均數、中位數、眾數的特征
(1)平均數、中位數、眾數都是表示一組數據“平均水平”的特征數。
(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。
(3)中位數的計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。當一組數據中個別數據變動較大時,可選擇中位數來表示這組數據的“集中趨勢”。
(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便。當一組數據中某些數據多次重復出現時,眾數是我們關心的一種統計量。
3.算術平均數和加權平均數的聯系與區別及舉例
算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。
4.加權平均數中權的差異對平均數的影響及舉例
在實際問題中,一組數據里的各個數據的權未必相同,權的差異對平均數的影響較大。加權平均數中,由于權的不同,會導致結果的差異。
5.利用計算器求一組數據的平均數
目的:幫助學生進一步掌握本章的重點知識內容,并會結合實例說明,從而夯實“雙基”。
注意事項:在重點知識的回顧中,應注重理論聯系實際,重視學生的舉例,關注學生所舉例子的合理性、科學性和創造性等,并據此評價學生對知識的理解水平和學習的情感態度,使他們具有:一雙能用數學視角觀察世界的眼睛;一個能用數學思維思考世界的頭腦。
第三環節:綜合運用提高
內容:1.從一批零件毛坯中抽取10件,稱得它們的質量如下(單位:克):
400.0400.3401.2398.9399.8
399.8400.0400.5399.7399.8
利用計算器求出這10個零件的平均質量。
2.某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?
3.某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售量,統計了這15人某月的銷售量如下:
每人銷售件數1800510250210150w120
人數113532[
(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;
(2)假設銷售部負責人把每位營銷員的月銷售量定為320件,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售量,并說明理由。
4.下圖反映了甲、乙兩班學生的體育成績。
(1)不用計算,根據條形統計圖,你能判斷哪個班級學生的體育成績好一些嗎?
(2)你能從圖中觀察出各班學生體育成績等級的“眾數”嗎?
(3)如果依次將不及格、及格、中、良好、優秀記為55分、65分、75分、85分、95分,分別估計一下,甲、乙兩班學生體育成績的平均值大致是多少?算一算看你的估計結果怎么樣?
(4)甲班學生體育成績的平均數、中位數和眾數有什么關系?你能說說其中的道理嗎?你還能寫出幾組數據也適合這一規律嗎?
目的:以上四道題目呈階梯狀,由淺入深,由單一到綜合。第1、2題分別考查學生對算術平均數、加權平均數和計算器的掌握情況;第3題通過表格信息,讓學生計算平均數、中位數和眾數,體會這三者在具體情境中的意義和區別,并能根據數據信息作出評判和決策;第4題綜合了課本復習題的最后兩題,旨在鞏固學生對統計圖信息的識別和判斷能力,運用數據的代表—平均數和眾數說明實際問題,初步體會平均數、中位數和眾數三者的“對稱”關系,提高學生的估計能力和綜合運用知識解決實際問題的能力,培養創新意識。
注意事項:依據題目的層次,第1、2題和第3題的(1)問可讓學生先獨立筆答完成后,教師再講評;第3題的(2)問和第4題具有開放性,特別是第4題內涵豐富,要讓學生展開思維,充分討論,在合作交流中共同提高,教師對此要作出及時的評價。
對本章知識技能的評價,應當更多地關注數據的代表在不同的實際問題情境中的意義和應用,而不要過于關注其具體運算的熟練程度。
第四環節:課堂小結
內容:1.本章知識結構和重點內容。
2.綜合運用統計知識解決實際問題。
3.整理歸納知識的方法,勤于思考、善于總結的好習慣。
目的:圍繞本節課的教學目標,進行知識、方法、能力、習慣全方位的小結,目的是為了學生的全面發展。
注意事項:課堂小結可由教師提綱挈領、畫龍點睛式地完成。
第五環節:布置作業
1.課本本章復習題。
2.在數學成長本上進行本章的小結與反思。
四、教學反思
1.華羅庚教授說:讀書要從薄到厚,又從厚到薄。復習重在從厚到薄。每一章的復習要把全章的知識分成塊,整理成知識網絡,形成知識系統,并加以綜合運用,其中采用樹圖、表格、習題組等技術措施復習是有效的,本節課在這方面做了一些嘗試。
2.一般復習課的容量比較大,一方面要讓充分學生思考和交流,積極發揮其主體作用;另一方面教師作為組織者和引導者,要主次分明,把握好教學的節奏,提高課堂效率。
3.復習課不僅僅是知識的小結及運用,而且更重要的是學習方法、能力和習慣的培養,關注學生的可持續發展,這一點對于學生的終身學習是有益的。