初二數學教案表格
好的教案應該突出學生的主體地位,培養學生的思維能力和創造力,提高學生的綜合素質。初二數學教案表格規范是怎樣的?下面給大家整理了一些初二數學教案表格,供大家參考。
初二數學教案表格篇1
一、學習目標:1.完全平方公式的推導及其應用.
2.完全平方公式的幾何解釋.
二、重點難點:
重點:完全平方公式的推導過程、結構特點、幾何解釋,靈活應用
難點:理解完全平方公式的結構特征并能靈活應用公式進行計算
三、合作學習
Ⅰ.提出問題,創設情境
一位老人非常喜歡孩子.每當有孩子到他家做客時,老人都要拿出糖果招待他們.來一個孩子,老人就給這個孩子一塊糖,來兩個孩子,老人就給每個孩子兩塊塘,…
(1)第一天有a個男孩去了老人家,老人一共給了這些孩子多少塊糖?
(2)第二天有b個女孩去了老人家,老人一共給了這些孩子多少塊糖?
(3)第三天這(a+b)個孩子一起去看老人,老人一共給了這些孩子多少塊糖?
(4)這些孩子第三天得到的糖果數與前兩天他們得到的糖果總數哪個多?多多少?為什么?
Ⅱ.導入新課
計算下列各式,你能發現什么規律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
兩數和(或差)的平方,等于它們的平方和,加(或減)這兩個數的積的二倍的2倍.
(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
四、精講精練
例1、應用完全平方公式計算:
(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2
例2、用完全平方公式計算:
(1)1022(2)992
初二數學教案表格篇2
教學目標
1、知道解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。
2、學會用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。
3、引導學生體會“降次”化歸的思路。
重點難點
重點:掌握用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。
難點:通過分解因式或直接開平方將一元二次方程降次為一元一次方程。
教學過程
(一)復習引入
1、判斷下列說法是否正確
(1)若p=1,q=1,則pq=l(),若pq=l,則p=1,q=1();
(2)若p=0,g=0,則pq=0(),若pq=0,則p=0或q=0();
(3)若x+3=0或x-6=0,則(x+3)(x-6)=0(),
若(x+3)(x-6)=0,則x+3=0或x-6=0();
(4)若x+3=或x-6=2,則(x+3)(x-6)=1(),
若(x+3)(x-6)=1,則x+3=或x-6=2()。
答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。
2、填空:若x2=a;則x叫a的,x=;若x2=4,則x=;
若x2=2,則x=。
答案:平方根,±,±2,±。
(二)創設情境
前面我們已經學了一元一次方程和二元一次方程組的解法,解二元一次方程組的基本思路是什么?(消元、化二元一次方程組為一元一次方程)。由解二元一次方程組的基本思路,你能想出解一元二次方程的基本思路嗎?
引導學生思考得出結論:解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。
給出1.1節問題一中的方程:(35-2x)2-900=0。
問:怎樣將這個方程“降次”為一元一次方程?
(三)探究新知
讓學生對上述問題展開討論,教師再利用“復習引入”中的內容引導學生,按課本P.6那樣,用因式分解法和直接開平方法,將方程(35-2x)2-900=0“降次”為兩個一元一次方程來解。讓學生知道什么叫因式分解法和直接開平方法。
(四)講解例題
展示課本P.7例1,例2。
按課本方式引導學生用因式分解法和直接開平方法解一元二次方程。
引導同學們小結:對于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接開平方法解。
因式分解法的基本步驟是:把方程化成一邊為0,另一邊是兩個一次因式的乘積(本節課主要是用平方差公式分解因式)的形式,然后使每一個一次因式等于0,分別解兩個一元一次方程,得到的兩個解就是原一元二次方程的解。
直接開平方法的步驟是:把方程變形成(ax+b)2=k(k≥0),然后直接開平方得ax+b=和ax+b=-,分別解這兩個一元一次方程,得到的解就是原一元二次方程的解。
注意:(1)因式分解法適用于一邊是0,另一邊可分解成兩個一次因式乘積的一元二次方程;
(2)直接開平方法適用于形如(ax+b)2=k(k≥0)的方程,由于負數沒有平方根,所以規定k≥0,當k<0時,方程無實數解。
(五)應用新知
課本P.8,練習。
(六)課堂小結
1、解一元二次方程的基本思路是什么?
2、通過“降次”,把—元二次方程化為兩個一元一次方程的方法有哪些?基本步驟是什么?
3、因式分解法和直接開平方法適用于解什么形式的一元二次方程?
(七)思考與拓展
不解方程,你能說出下列方程根的情況嗎?
(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。
答案:(1)有兩個不相等的實數根;(2)和(4)沒有實數根;(3)有兩個相等的實數根
通過解答這個問題,使學生明確一元二次方程的解有三種情況。
布置作業
初二數學教案表格篇3
教學
目標1聯系生活中的具體事物,通過觀察和動手操作,初步體會生活中的對稱現象,認識軸對稱圖形的基本特征,會識別并能做出一些簡單的軸對稱圖形。
2.在認識、制作和欣賞軸對稱圖形的過程中,感受到物體圖形的對稱美,激發學生對數學學習的積極情感。
重點
難點理解軸對稱圖形的基本特征
教具
準備剪刀、紙(含平行四邊形、字母NS)、教學掛圖、直尺
教學
方法
手段觀察、比較、討論、動手操作
教學
過程一.新課
1.教師取一個門框上固定門的鉸連讓學生觀察是不是左右對稱?
2.出示教學掛圖:_、飛機、獎杯的實物圖片
將實物圖片進一步抽象為平面圖形,對折以后問學生發現了什么?
生:對折后兩邊能完全重合。
師;對折后能完全重合的圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
教師先示范,讓學生認識_城樓圖的對稱軸,然后讓學生再找出飛機圖、獎杯圖的對稱軸各在哪里。
3.練習:(出示小黑板)
(1)P57“試一試”
判斷哪幾個圖形是軸對稱圖形?試著畫出對稱軸。
估計學生會將平行四邊形看作是軸對稱圖形,可讓兩個學生到講臺前用平行四邊形紙對折一下,看對折以后兩部分是否完全重合。由此得出結論;平行四邊形不是軸對稱圖形。
(2)用剪刀和紙剪一個軸對稱圖形。
初二數學教案表格篇4
一、學習目標:讓學生了解多項式公因式的意義,初步會用提公因式法分解因式
二、重點難點
重點:能觀察出多項式的公因式,并根據分配律把公因式提出來
難點:讓學生識別多項式的公因式.
三、合作學習:
公因式與提公因式法分解因式的概念.
三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)
既ma+mb+mc=m(a+b+c)
由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。
四、精講精練
例1、將下列各式分解因式:
(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3)a(x-3)+2b(x-3)
通過剛才的練習,下面大家互相交流,總結出找公因式的一般步驟.
首先找各項系數的____________________,如8和12的公約數是4.
其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數取次數最___________的.
課堂練習
1.寫出下列多項式各項的公因式.
(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72(2)a2b-5ab
(3)4m3-6m2(4)a2b-5ab+9b
(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2
五、小結:
總結出找公因式的一般步驟.:
首先找各項系數的大公約數,
其次找各項中含有的相同的字母,相同字母的指數取次數最小的.
注意:(a-b)2=(b-a)2
六、作業1、教科書習題
2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)20__+(-2)20__
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
初二數學教案表格篇5
1.通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次項及其系數、一次項及其系數與常數項等概念.
2.了解一元二次方程的解的概念,會檢驗一個數是不是一元二次方程的解.
重點
通過類比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用這些概念解決簡單問題.
難點
一元二次方程及其二次項系數、一次項系數和常數項的識別.
活動1復習舊知
1.什么是方程?你能舉一個方程的例子嗎?
2.下列哪些方程是一元一次方程?并給出一元一次方程的概念和一般形式.
(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1
3.下列哪個實數是方程2x-1=3的解?并給出方程的解的概念.
A.0B.1C.2D.3
活動2探究新知
根據題意列方程.
1.教材第2頁問題1.
提出問題:
(1)正方形的大小由什么量決定?本題應該設哪個量為未知數?
(2)本題中有什么數量關系?能利用這個數量關系列方程嗎?怎么列方程?
(3)這個方程能整理為比較簡單的形式嗎?請說出整理之后的方程.
2.教材第2頁問題2.
提出問題:
(1)本題中有哪些量?由這些量可以得到什么?
(2)比賽隊伍的數量與比賽的場次有什么關系?如果有5個隊參賽,每個隊比賽幾場?一共有20場比賽嗎?如果不是20場比賽,那么究竟比賽多少場?
(3)如果有x個隊參賽,一共比賽多少場呢?
3.一個數比另一個數大3,且兩個數之積為0,求這兩個數.
提出問題:
本題需要設兩個未知數嗎?如果可以設一個未知數,那么方程應該怎么列?
4.一個正方形的面積的2倍等于25,這個正方形的邊長是多少?
活動3歸納概念
提出問題:
(1)上述方程與一元一次方程有什么相同點和不同點?
(2)類比一元一次方程,我們可以給這一類方程取一個什么名字?
(3)歸納一元二次方程的概念.
1.一元二次方程:只含有________個未知數,并且未知數的次數是________,這樣的________方程,叫做一元二次方程.
2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次項,a是二次項系數;bx是一次項,b是一次項系數;c是常數項.
提出問題:
(1)一元二次方程的一般形式有什么特點?等號的左、右分別是什么?
(2)為什么要限制a≠0,b,c可以為0嗎?
(3)2x2-x+1=0的一次項系數是1嗎?為什么?
3.一元二次方程的解(根):使一元二次方程左右兩邊相等的未知數的值叫做一元二次方程的解(根).
活動4例題與練習
例1在下列方程中,屬于一元二次方程的是________.
(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;
(4)2x2-2x(x+7)=0.
總結:判斷一個方程是否是一元二次方程的依據:(1)整式方程;(2)只含有一個未知數;(3)含有未知數的項的次數是2.注意有些方程化簡前含有二次項,但是化簡后二次項系數為0,這樣的方程不是一元二次方程.
例2教材第3頁例題.
例3以-2為根的一元二次方程是()
A.x2+2x-1=0B.x2-x-2=0
C.x2+x+2=0D.x2+x-2=0
總結:判斷一個數是否為方程的解,可以將這個數代入方程,判斷方程左、右兩邊的值是否相等.
練習:
1.若(a-1)x2+3ax-1=0是關于x的一元二次方程,那么a的取值范圍是________.
2.將下列一元二次方程化為一般形式,并分別指出它們的二次項系數、一次項系數和常數項.
(1)4x2=81;(2)(3x-2)(x+1)=8x-3.
3.教材第4頁練習第2題.
4.若-4是關于x的一元二次方程2x2+7x-k=0的一個根,則k的值為________.
答案:1.a≠1;2.略;3.略;4.k=4.
活動5課堂小結與作業布置
課堂小結
我們學習了一元二次方程的哪些知識?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程嗎?
作業布置
教材第4頁習題21.1第1~7題.
初二數學教案表格篇6
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的&39;有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價—成本;=商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48。6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
初二數學教案表格篇7
【教學目標】
知識與技能
會推導平方差公式,并且懂得運用平方差公式進行簡單計算。
過程與方法
經歷探索特殊形式的多項式乘法的過程,發展學生的符號感和推理能力,使學生逐漸掌握平方差公式。
情感、態度與價值觀
通過合作學習,體會在解決具體問題過程中與他人合作的重要性,體驗數學活動充滿著探索性和創造性。
【教學重難點】
重點:平方差公式的推導和運用,以及對平方差公式的幾何背景的了解。
難點:平方差公式的應用。
關鍵:對于平方差公式的推導,我們可以通過教師引導,學生觀察、總結、猜想,然后得出結論來突破;抓住平方差公式的本質特征,是正確應用公式來計算的關鍵。
【教學過程】
一、創設情境,故事引入
【情境設置】教師請一位學生講一講《狗熊掰棒子》的故事
【學生活動】1位學生有聲有色地講述著《狗熊掰棒子》的故事,其他學生認真聽著,不時補充。
【教師歸納】聽了這則故事之后,同學們應該懂得這么一個道理,學習千萬不能像狗熊掰棒子一樣,前面學,后面忘,那么,上節課我們學習了什么呢?還記得嗎?
【學生回答】多項式乘以多項式。
【教師激發】大家是不是已經掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯誤呢?下面我們就來做這幾道題,看看你是否掌握了以前的知識。
【問題牽引】計算:
(1)(x+2)(x—2);(2)(1+3a)(1—3a);
(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,觀察以上算式及運算結果,你能發現什么規律?再舉兩個例子驗證你的發現。
【學生活動】分四人小組,合作學習,獲得以下結果:
(1)(x+2)(x—2)=x2—4;
(2)(1+3a)(1—3a)=1—9a2;
(3)(x+5y)(x—5y)=x2—25y2;
(4)(y+3z)(y—3z)=y2—9z2。
【教師活動】請一位學生上臺演示,然后引導學生仔細觀察以上算式及其運算結果,尋找規律。
【學生活動】討論
【教師引導】剛才同學們從上述算式中找到了這一組整式乘法的結果的規律,這些是一類特殊的多項式相乘,那么如何用字母來表示剛才同學們所歸納出來的特殊多項式相乘的規律呢?
【學生回答】可以用(a+b)(a—b)表示左邊,那么右邊就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
用語言描述就是:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。
【教師活動】表揚學生的探索精神,引出課題──平方差,并說明這是一個平方差公式和公式中的字母含義。
二、范例學習,應用所學
【教師講述】
平方差公式的運用,關鍵是正確尋找公式中的a和b,只有正確找到a和b,一切就變得容易了。現在大家來看看下面幾個例子,從中得到啟發。
例1:運用平方差公式計算:
(1)(2x+3)(2x—3);
(2)(b+3a)(3a—b);
(3)(—m+n)(—m—n)。
《乘法公式》同步練習
二、填空題
5、冪的乘方,底數______,指數______,用字母表示這個性質是______。
6、若32×83=2n,則n=______。
《乘法公式》同步測試題
25、利用正方形的面積公式和梯形的面積公式即可求解;
根據所得的兩個式子相等即可得到。
此題考查了平方差公式的幾何背景,根據正方形的面積公式和梯形的面積公式得出它們之間的關系是解題的關鍵,是一道基礎題。
26、由等式左邊兩數的底數可知,兩底數是相鄰的兩個自然數,右邊為兩底數的和,由此得出規律;
等式左邊減數的底數與序號相同,由此得出第n個式子;
初二數學教案表格篇8
教學目標
1、知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式、
2、過程與方法
使學生經歷探索多項式各項公因式的過程,依據數學化歸思想方法進行因式分解、
3、情感、態度與價值觀
培養學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經驗,體會其應用價值、
重、難點與關鍵
1、重點:掌握用提公因式法把多項式分解因式、
2、難點:正確地確定多項式的公因式、
3、關鍵:提公因式法關鍵是如何找公因式、方法是:一看系數、二看字母、公因式的系數取各項系數的公約數;字母取各項相同的字母,并且各字母的指數取最低次冪、
教學方法
采用“啟發式”教學方法、
教學過程
一、回顧交流,導入新知
【復習交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2、
問題:
1、多項式mn+mb中各項含有相同因式嗎?
2、多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由、
【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法、
二、小組合作,探究方法
【教師提問】多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數、二看字母,公因式的系數取各項系數的公約數;字母取各項相同的字母,并且各字母的指數取最低次冪、
三、范例學習,應用所學
【例1】把-4x2yz-12xy2z+4xyz分解因式、
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法、
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2?3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2?3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡便的方法計算:0、84×12+12×0、6-0、44×12、
【教師活動】引導學生觀察并分析怎樣計算更為簡便、
解:0、84×12+12×0、6-0、44×12
=12×(0、84+0、6-0、44)
=12×1=12、
【教師活動】在學生完全例3之后,指出例3是因式分解在計算中的應用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習,鞏固深化
課本P167練習第1、2、3題、
【探研時空】
利用提公因式法計算:
0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69
五、課堂總結,發展潛能
1、利用提公因式法因式分解,關鍵是找準公因式、在找公因式時應注意:(1)系數要找公約數;(2)字母要找各項都有的;(3)指數要找最低次冪、
2、因式分解應注意分解徹底,也就是說,分解到不能再分解為止、
六、布置作業,專題突破
課本P170習題15、4第1、4(1)、6題、
板書設計
初二數學教案表格篇9
教材分析
1.本小節內容安排在第十四章“軸對稱”的第三節。等腰三角形是一種特殊的三角形,它是軸對稱圖形,可以借助軸對稱變換來研究等腰三角形的一些特殊性質。這一節的主要內容是等腰三角形的性質與判定,以及等邊三角形的相關知識,重點是等腰三角形的性質與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據,這也是全章的重點之一。
2.本節重在呈現一個動手操作得出概念、觀察實驗得出性質、推理證明論證性質的過程,學生通過學習,既體會到一個觀察、實驗、猜想、論證的研究幾何圖形問題的全過程,又能夠運用等腰三角形的性質解決有關的問題,提高運用知識和技能解決問題的能力。
學情分析
1.學生在此之前已接觸過等腰三角形,具有運用全等三角形的判定及軸對稱的知識和技能,本節教學要突出“自主探究”的特點,即教師引導學生通過觀察、實驗、猜想、論證,得出等腰三角形的性質,讓學生做學習的主人,享受探求新知、獲得新知的樂趣。
2.在與等腰三角形有關的一些命題的證明過程中,會遇到一些添加輔助線的問題,這會給學生的學習帶來困難。另外,以前學生證明問題是習慣于找全等三角形,形成了依賴全等三角形的思維定勢,對于可直接利用等腰三角形性質的問題,沒有注意選擇簡便方法。
教學目標
知識技能:1、理解掌握等腰三角形的性質。
2、運用等腰三角形的性質進行證明和計算。
數學思考:1、觀察等腰三角形的對稱性,發展形象思維。
2、通過時間、觀察、證明等腰三角形性質,發展學生合情推理能力和演繹推理能力。
情感態度:引導學生對圖形的觀察、發現,激發學生的好奇心和求知欲,并在運用數學知識解決問題的活動中獲取成功的體驗,建立學習的自信心。
教學重點和難點
重點:等腰三角形的性質及應用。
難點:等腰三角形的性質證明。
初二數學教案表格篇10
教學目標:
1.通過把長方形或正方形折、剪、拼等活動,直觀認識三角形和平行四邊形,知道這兩個圖形的名稱;并能識別三角形和平行四邊形,初步知道它們在日常生活中的應用。
2.在折圖形、剪圖形、拼圖形等活動中,體會圖形的變換,發展對圖形的空間想象能力。
3.在學習活動中積累對數學的興趣,增強與同學交往、合作的意識。
教學重點:直觀認識三角形和平行四邊形,知道它們的名稱,并能識別這些圖形,知道它們在日常生活中的應用。
教學難點:讓學生動手在釘子板上圍、用小棒拼平行四邊形。
教學用具:長方形模型、長方形和正方形的紙、課件、小棒。
教學方法:實踐操作法
教學過程:
一、復習鋪墊
出示長方形問“小朋友們,誰愿意來介紹一下這位老朋友?他介紹得對嗎?”接著出示第二個圖形(正方形),問:“這個老朋友又是誰呢?”再出示圓:“它叫什么名字?這是我們已經認識的長方形、正方形和圓三位老朋友。我發現你們很喜歡折紙,是嗎?今天我特意為大家準備了一個折紙的游戲,高興嗎?
二、啟發思維、引出新知
1.認識三角形
(1)教師出示一張正方形紙,提問:這是什么圖形?
學生回答:這是正方形。
師:你能把一張正方形紙對折成一樣的兩部分嗎?
學生活動,教師巡視,了解學生折紙的情況。
組織學生交流你是怎樣折的,折出了什么圖形?
師:我們現在折出來的是一個什么圖形呢?
生答:三角形。
師:小朋友們一下就認識了我們的新朋友。對了,這就是三角形。出示并貼上三角形。
板書:三角形
(2)提問:這樣的圖形好像在哪兒也看到過?想一想?
①先在小組里交流。
②學生回答。
③老師也帶來了幾個三角形。
(3)師小結:在我們的生活中有許多物體的面是三角形面,只要小朋友多觀察,就會有更多的發現。
2.認識平行四邊形
(1)這是一張什么形狀的紙?(演示長方形紙)怎樣折一下,把它折成兩個完全一樣的三角形?
(2)學生先想一想,然后同桌商量著試折。教師巡視
(3)交流。你們會像他一樣折嗎?
(4)折好后把兩個三角形剪下來。要想知道這兩個三角形是不是完全一樣,你能有什么辦法?(把它們疊在一起)這就是完全一樣。
(5)現在我們手里都有這樣兩個一樣的三角形,用它們拼一拼,看看能拼出什么圖形?學生分組活動,教師巡視。
交流探討。同學們可能拼出以下幾種圖形:三角形、長方形、四邊形、平行四邊形。每出現一種拼法,請一位同學在投影儀上向大家展示。師:這個圖形真漂亮,它叫什么名字呀!這個圖形就是我們要認識的另一個新朋友——平行四邊形。(出示圖形,并板書:平行四邊形)(板書)
出示一個長方形的模型,提問:“這個圖形的面是一個什么圖形?”學生回答后,老師將這個長方形輕輕拉動,這時出現的是一個平行四邊形。提問:“現在這個圖形的面變成了一個什么圖形?”
小結:我們已經認識了長方形,其實只要把它稍微變一變,就是一個平行四邊形了,你看:(演示長方形變平行四邊形)。對我們生活中有很多地方就利用了平行四邊形可以變的特點制作了很多東西,如:籬笆、樓梯、伸縮門、可拉伸的衣架等。
三、體驗深化
板書設計
認識圖形(二)
認識三角形平行四邊形
三角形平行四邊形
初二數學教案表格篇11
教學目標:
1.知識目標:通過折疊探索等腰三角形、等邊三角形的性質。
2.能力目標:進行操作、觀察、分析、比較、交流等教學活動,讓學生在親身經歷類似的創造活動過程中學習數學知識。
3.情感目標:培養學生用事實驗證事物的能力,而不是用主觀臆斷事物的屬性。
教學過程:
一、反饋作業
1.師:昨天我們學習了哪些知識?對于等腰三角形和等邊三角形,大家回家也做了探究型作業,對他們有了更深的了解。誰來說說你還知道些什么?
2.師:剛才也有同學談到其實等腰三角形和等邊三角形是對稱圖形。老師說它們可以稱為軸對稱圖形。
二、新課探究
1.師:你能不能把一個等腰
三角形折一折分成2個部分,使這2部分完全重合?
2.師:大家都可以這樣做到,那么誰能指一指我們是沿著哪一條線對折才能使圖形對折后完全重合的嗎?(學生指)
師:我們把這條能使圖形對折
后重合的直線稱為對稱軸。(板書)我們通常用虛線來表示對稱軸。(學生用虛線表示)
3.學生探究
師:你能不能用找到等腰三角形對稱軸的方法來找一找等邊三角形的對稱軸?
(學生嘗試)學生交流:你是怎樣找的?你找到幾條?
(圖形對折,是否完全重合)
3.小結:等腰三角形有一條對稱軸,等邊三角形有三條對稱軸。而三條邊都不相等的三角形卻一條對稱軸也沒有。
三、探究作業
1.在生活中還有哪些是軸對稱圖形,也有對稱軸,我請同學們回家去找一下,用剪刀和紙把它剪出來,看誰剪得最多。
2.想不出的同學可以問問現在5年級的同學,他們會給你們幫助的。
初二數學教案表格篇12
初二上冊數學知識點總結:等腰三角形
一、等腰三角形的性質:
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
5、等邊三角形的性質:
①等邊三角形三邊都相等.
②等邊三角形三個內角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).
6.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形.
②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
③有一個角是60°的等腰三角形是等邊三角形.
初二數學教案表格篇13
一、讀一讀學習目標:1、熟練證明的基本步驟和書寫格式;
2、會根據“同位角相等,兩直線平行”(公理)證明“同旁內角互補,兩直線平行”“內錯角相等,兩直線平行”(定理),并能應用這些結論。
二、試一試
自學指導:平行線判定公理:同位角相等,兩直線平行
1、自學教材P229-231,學完后合上課本完成下列各題:
(1)已知:如右圖所示,∠1和∠2是直線a,b被直線c截出的同旁內角,且∠1和∠2互補。利用平行線判定公理證明a∥b
由此得,平行線判定定理1:;
(2)已知:如右圖所示,∠1和∠2是直線a,b被直線c截出的內錯角,且∠1=∠2利用平行線判定公理或上述已證明的判定定理證明a∥b
由此得,平行線判定定理2:.
三、練一練
1、在教材上完成P231隨堂練習1;P232知識技能1;P233問題解決
2、已知:如右圖所示,直線a,b被直線c所截,且∠1+∠2=180°
求證:a∥b你有幾種證明方法?請選擇其中兩種方法來證明
五、記一記:證明命題的一般步驟:
(1)根據題意畫出圖形(若已給出圖形,則可省略)
(2)根據題設和結論,結合圖形,寫出已知和求證;
(3)經過分析,找出已知退出求證的途徑,寫出證明過程;
(4)檢查證明過程是否正確完善。
初二數學教案表格篇14
一、教學目標:
1.經歷觀察、發現、探究中心對稱圖形的有關概念和基本性質的過程,積累一定的審美體驗。
2了解中心對稱圖形及其基本性質,掌握平行四邊形也是中心對稱圖形。
二、教學重、難點:
理解中心對稱圖形的概念及其基本性質。
三、教學過程:
(一)創設問題情境
1.以魔術創設問題情境:教師通過撲克牌魔術的演示引出研究課題,激發學生探索“中心對稱圖形”的興趣。
【魔術設計】:師取出若干張非中心對稱的撲克牌和一張是中心對稱的牌,按牌面的多數指向整理好(如上圖),然后請一位同學上臺任意抽出一張撲克,把這張牌旋轉180O后再插入,再請這位同學洗幾下,展開撲克牌,馬上確定這位同學抽出的撲克。
(課堂反應:學生非常安靜,目不轉睛地盯著老師做動作。每完成一個動作之后,學生就進入沉思狀態,接著就是小聲議論。)
師重復以上活動
2次后提問:
(1)你們知道這是什么原因嗎?老師手中的撲克牌圖案有什么特點?
(2)你能說明為什么老師要把抽出的這張牌旋轉1800嗎?(小組討論)
(反思:創設問題情境主要在于下面幾點理由:(1)采取從學生最熟悉的實際問題情境入手的方式,貼近學生的生活實際,讓學生認識到數學來源于生活,又服務于生活,進一步感悟到把實際問題抽象成數學問題的訓練,從而激發學生的求知欲。
(2)所有新知識的學習都以對相關具體問題情境的探索作為開始,它們是學生了解與學習這些新知識的有效方法,同時也活躍了課堂氣氛,激發學生的學習興趣。(
3)通過撲克魔術創設問題情境,學生獲得的答案將是豐富的。在最后交流歸納時,他們感覺到,自己在活動中“研究”的成果,對最終形成規范、正確的結論是有貢獻的,從而激發他們更加注意學習方式和“研究”方式。這也是對他們從事科學研究的情感態度的培養。學生勤于動手、樂于探究,發展學生實踐應用能力和創新精神成為可行。)
2.教師揭示謎底。
利用“Z+Z”課件游戲演示牌面,請學生找一找哪張牌旋轉
180O后和原來牌面一樣。
3.學生通過動手分析上述撲克牌牌面、獨立思考、探究、合作交流等活動,得到答案:
(1)只有一張撲克牌圖案顛倒后和原來牌面一樣。
(2)其余撲克牌顛倒后和原來牌面不一樣,因此,老師事先按牌面的多數(少數)指向整理好,把任意抽出的一張撲克牌旋轉180O后,就可以馬上在一堆撲克牌中找出它。
(反思:本環節是在撲克魔術揭密問題的具體背景下,通過學生自己的觀察、發現、總結、歸納,進一步理解中心對稱圖形及其特點,發展空間觀念,突出了數學課堂教學中的探索性。從而培養了學生觀察、概括能力,讓學生嘗到了成功的喜悅,激發了學生的發現思維的火花。)
(二)學生分組討論、思考探究:
1.師問:生活中有哪些圖形是與這張撲克牌一樣,旋轉180O后和原來一樣?
生舉例:線段、平行四邊形、矩形、菱形、正方形、圓、飛機的雙葉螺旋槳等。
2.你能將下列各圖分別繞其上的一點旋轉180O,使旋轉前后的圖形完全重合嗎?(先讓學生思考,允許有困難的學生利用“
Z+Z”演示其旋轉過程。)3
.有人用“中心對稱圖形”一詞描述上面的這些現象,你認為這個詞是什么含義?
(對于抽象的概念教學,要關注概念的實際背景與形成過程,加強數學與生活的聯系,力求讓學生采取發現式的學習方式,通過“想一想”、“議一議”、“動一動”等多種活動形式,幫助學生克服記憶概念的學習方式。)
(三)教師明晰,建立模型
1給出“中心對稱圖形”定義:在平面內,一個圖形繞某個點旋轉180O,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
2.對比軸對稱圖形與中心對稱圖形:(列出表格,加深印象)
軸對稱圖形中心對稱圖形有一條對稱軸——直線有一個對稱中心——點沿對稱軸對折繞對稱中心旋轉180O對折后與原圖形重合
旋轉后與原圖形重合
(四)解釋、應用與拓廣
1.教師用“Z+Z
智能教育平臺”演示旋轉過程,驗證上述圖形的中心對稱性,引導學生討論、探究中心對稱圖形的性質。
(利用計算機《Z+Z智能教育平臺》技術,通過圖形旋轉給出中心對稱圖形的一個幾何解釋,目的是使學生對中心對稱圖形有一個更直觀的認識。)
2.探究中心對稱圖形的性質
板書:中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
3.師問:怎樣找出一個中心對稱圖形的對稱中心?
(兩組對應點連結所成線段的交點)
4平行四邊形是中心對稱圖形嗎?若是,請找出其對稱中心,你怎樣驗證呢?
學生分組討論交流并回答。
討論:根據以上的驗證方法,你能驗證平行四邊形的哪些性質?學生分組討論交流并回答。
討論:根據以上的驗證方法,你能驗證平行四邊形的哪些性質?
5逆向問題:如果一個四邊形是中心對稱圖形,那么這個四邊形一定是平行四邊形嗎?
學生討論回答。
6你還能找出哪些多邊形是中心對稱圖形?
(反思:合作學習是新課程改革中追求的一種學習方法,但合作學習必須建立在學生的獨立探索的基礎上,否則合作學習將會流于形式,不能起到應有的效果,所于我在上課時強調學生先獨立思考,再由當天的小組長組織進行,并由當天的記錄員記錄小組成員的活動情況(每個小組有一張課堂合作學習參考表,見附錄)。)
(五)拓展與延伸
1中國文字豐富多彩、含義深刻,有許多是中心對稱的,你能找出幾個嗎?
2.正六邊形的對稱中心怎樣確定?
(六)魔術表演:
1.師:把4張撲克牌放在桌上,然后把某一張撲克牌旋轉180o后,得到右圖,你知道哪一張撲克被旋轉過嗎?
2.學生小組活動:
以“引入”為例,在一副撲克牌中,拿出若干張撲克牌設計魔術,相互之間做游戲。
(新教材的編寫,著重突出了用數學活動呈現教學內容,而不是以例題和習題的形式出現。通過多種形式的實踐活動,讓學生親歷探究與現實生活聯系密切的學習過程,使學生在合作中學習,在競爭收獲,共同分享成功的喜悅,同時能調節課堂的氣氛,培養學生之間的情感。只有這樣,學生的創新意識和動手意識才會充分地發揮出來。)
四、案例小結
《數學課程標準》提出:“實踐活動是培養學生進行主動探索與合作交流的重要途徑。”“教師應該充分利用學生已有的生活經驗,隨時引導學生把所學的數學知識應用到生活中去,解決身邊的數學問題,了解數學在現實生活中的作用,體會學習數學的重要性。”這兩段話,正體現了新教材的重要變化——關注學生的生活世界,學習內容更加貼近實際,同時強調了數學教學讓學生動手實踐的重要意義和作用。
現實性的生活內容,能夠賦予數學足夠的活力和靈性。對許多學生來說,“撲克”和“游戲”是很感興趣的內容,因此,也具有現實性,即回歸生活(玩撲克牌)——讓學生感知學習數學可以讓生活增添許多樂趣,同時也讓學生感知到數學就在我們身邊,學生學習的數學應當是生活中的數學,是學生“自己身邊的數學”。這樣,數學來源于生活,又必須回歸于生活,學生就能在游戲中學得輕松愉快,整個課堂顯得生動活潑。
初二數學教案表格篇15
一、教學目標
1.掌握矩形的定義,知道矩形與平行四邊形的關系.
2.掌握矩形的性質定理.
3.使學生能應用矩形定義、性質等知識,解決簡單的證明題和計算題,進一步培養學生的分析能力.
4.通過性質的學習,體會矩形的應用美.
二、教法設計
觀察、啟發、總結、提高,類比探討,討論分析,啟發式.
三、重點、難點及解決辦法
1.教學重點:矩形的性質及其推論.
2.教學難點:矩形的本質屬性及性質定理的綜合應用.
四、課時安排
1課時
五、教具學具準備
教具(一個活動的平行四邊形),投影儀及膠片,常用畫圖工具
六、師生互動活動設計
教具演示、創設情境,觀察猜想,推理論證
七、教學步驟
【復習提問】
什么叫平行四邊形?它和四邊形有什么區別?
【引入新課】
我們已經知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質外,還有它的特殊性質,同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形,堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).
【講解新課】
制一個活動的平行四邊形教具,堂上進行演示圖,使學生注意觀察四邊形角的變化,當變到一個角是直角時,指出這時平行四邊形是矩形,使學生明確矩形是特殊的平行四邊形(特殊之處就在于一個角是直角,深刻理解矩形與平行四邊形的聯系和區別).
矩形的性質:
既然矩形是一種特殊的平行四邊形,就應具有平行四邊形性質,同時矩形又是特殊的平行四邊形,比平行四邊形多了一個角是直角的條件,因而它就增加了一些特殊性質.
繼續演示教具,當它變成矩形時,學生容易看到它的四個角都是直角;它的對角線也相等(寫出這兩個結論),指出觀察出來的結論不能做為定理,需要證明.引導學生利用平行四邊形角的性質證明得出.
矩形性質定理1:矩形的四個角都是直角.
矩形性質定理2:矩形對角線相等.
由矩形性質定理2我們可以得到
推論:直角三角形斜邊上的中線等于斜邊的一半.
(這實際上是△的一個重要性質,即△斜邊中點到三頂點的距離相等,它在求線段長或線段部分關系時經常用到)
例1已知如圖1矩形的兩條對角線相交于點,,,求矩形對角線的長.(按教材的格式)
(強調這種計算題的解題格式,防止學生離開幾何元素之間的關系,而單純進行代數計算)
【總結、擴展】
1.小結:(用投影打出)
(1)矩形、平行四邊形、四邊形從屬關系如圖.
(2)矩形性質.
1.具有平行四邊形的所有性質.
2.特有性質:四個角都是直角,對角線相等.
3.思考題:已知如圖,是矩形對角線交點,平分,,求的度數
八、布置作業
教材P158中2、5,P195中7.
九、板書設計
十、隨堂練習
教材P146中1、2、3、4
初二數學教案表格篇16
學習目標:
1、了解平行線性質定理和判定定理在條件和結論上的區別,體會互逆的思維過程;
2、能熟練應用平行線的性質公理及定理。
二、試一試
自學指導:平行線性質公理:兩直線平行,同位角相等
1、思考下列各題,你能利用平行線性質公理解決它們嗎?
2、充分思考后自學教材P229-231,學完后合上課本完成下列各題,注意邏輯和書寫。
(1)已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的內錯角。請根據平行線性質公理證明∠1=∠2
由此得平行線性質定理1:
(2)已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的同旁內角。請根據平行線性質公理或上題已證的定理證明∠1+∠2=180°
由此得平行線性質定理2:
三、練一練
1、已知:如圖,直線a,b,c被直線d所截,且a∥b,c∥b
(1)求證:a∥c
(2)請將(1)題證得的結論用一句話總結出來
2、利用“兩直線平行,同旁內角互補”證明“平行四邊形對角線相等”。
五、記一記
1、兩直線平行的性質公理及兩個性質定理;
2、平行線的性質補充結論
(1)垂直于兩平行線之一的直線必垂直于另一條直線
(2)夾在兩平行線之間的平行線段相等;
(3)兩條平行線間的距離處處相等;
(4)經過直線外一點,有且只有一條直線和已知直線平行;
(5)如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等或者互補
B組:請在補充結論中選擇你感興趣的進行證明:
初二數學教案表格篇17
一、學習目標:1.添括號法則.
2.利用添括號法則靈活應用完全平方公式
二、重點難點
重 點: 理解添括號法則,進一步熟悉乘法公式的合理利用
難 點: 在多項式與多項式的乘法中適當添括號達到應用公式的目的.
三、合作學習
Ⅰ.提出問題,創設情境
請同學們完成下列運算并回憶去括號法則.
(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)
去括號法則:
去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不變號;
如果括號前是負號,去掉括號后,括號里的各項都要變號。
1.在等號右邊的括號內填上適當的項:
(1)a+b-c=a+( ) (2)a-b+c=a-( )
(3)a-b-c=a-( ) (4)a+b+c=a-( )
2.判斷下列運算是否正確.
(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)
添括號法則:添上一個正括號,擴到括號里的不變號,添上一個負括號,擴到括號里的要變號。
五、精講精練
例:運用乘法公式計算
(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)
隨堂練習:教科書練習
五、小結:去括號法則
六、作業:教科書習題
初二數學教案表格篇18
求數的平方根和立方根的運算是數學的基本運算之一,在根式運算、解方程及幾何圖形解法等問題中經常要用到。學習立方根的意義在于:(1)它有著廣泛應用,因為空間形體都是三維的,關于有關體積的計算經常涉及開立方。(2)立方根是奇次方根的特例,就像平方根是偶次方的特例一樣,立方根對進一步研究奇次方根的性質具有典型意義。
教學目標:1、能說出開立方、立方根的定義,記住正數、零、負數的立方根的不同結論;能用符號表示a的立方根,并指出被開方數、根指數,會正確讀出符號,知道開立方與立方互為逆運算。2、能依據立方根的定義求完全立方數的立方根。教學重點是:立方根相關概念的理解和求法。在教學中突出立方根與平方根的對比,弄清兩者的區別與聯系,這樣做既有利于鞏固平方根的概念,又便于加深對立方根的理解。
在教學過程中,我注重體現教師的導向作用和學生的主體地位。本節是新課內容的學習。教學過程中盡力引導學生成為知識的發現者,把教師的點撥和學生解決問題結合起來,為學生創設情境。
在課堂的引入上采用了一個求立方根的實際應用問題,已知體積,求正方體的棱長。由實際應用問題是學生易于接受。再對已學過的相似運算---平方根進行復習,為接下來與立方根進行比較打下基礎。為培養學生自主學習的能力,我為他們布置了問題,讓他們帶著問題看書。自己找出立方根的基本概念。關于立方根的個數的討論,是本節的一個難點。考慮到這個結論與平方根的相應結論不同,采用了先啟發學生思考的辦法,用“想一想”提出有關正數、0、負數立方根個數的思考題,接著安排一個例題,求一些具體數的立方根,在學生經過思考并有了一些感性認識之后,自己總結出結論。其后,引導學生自己總結平方根與立方根的區別,強調:用根號式子表示立方根時,根指數不能省略;以及立方根的性。考慮到如果教學計劃提前完成,我在練習卷之外,還準備了一些易混淆的命題讓學生判斷、區分,鞏固所學內容。
本節內容設計了兩課時完成,在第二課時進一步深入學習立方根在解方程,以及與平方根部分的綜合應用。