小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

初二數學教案課件

時間: 新華 教學設計

初二數學教案課件篇1

教學目標

1.掌握用一組對邊平行且相等來判定平行四邊形的方法.

2.會綜合運用平行四邊形的四種判定方法和性質來證明問題.

教學重點:掌握用一組對邊平行且相等來判定平行四邊形的方法

教學難點:會綜合運用平行四邊形的四種判定方法和性質來證明問題

一.引

平行四邊形的判定方法有那些?

取兩根等長的木條AB、CD,將它們平行放置,再用兩根木條BC、AD加固,得到的四邊形ABCD是平行四邊形嗎?

二.探

自學內容:1、閱讀教材P46頁;2、完成自主學習;

【例題】

已知:如圖,ABCD中,E、F分別是AD、BC的中點,求證:BE=DF

已知:如圖,ABCD中,E、F分別是AC上兩點,且BE⊥AC于E,DF⊥AC于F.求證:四邊形BEDF是平行四邊 三.結

師生共同小結平行四邊形的判定方法

四.用

1、能判定一個四邊形是平行四邊形的條件是( ).

(A)一組對邊平行,另一組對邊相等 (B)一組對邊平行,一組對角互補

(C)一組對角相等,一組鄰角互補 (D)一組對角相等,另一組對角互補

2、能判定四邊形ABCD是平行四邊形的題設是( ).

(A)AD=BC,AB∥CD (B)∠A=∠B,∠C=∠D

(C)AB=BC,AD=DC (D)AB∥CD,CD=AB

3、能判定四邊形ABCD是平行四邊形的條件是:∠A∶∠B∶∠C∶∠D的值為( ).

(A)1∶2∶3∶4 (B)1∶4∶2∶3

(C)1∶2∶2∶1 (D)1∶2∶1∶2

4、如圖,E、F分別是□ABCD的邊AB、CD的中點,則圖中平行四邊形的個數共有( ).

(A)2個 (B)3個

(C)4個 (D)5個

5、如圖,□ABCD中,對角線AC、BD交于點O,將△AOD平移至△BEC的位置,則圖中與OA相等的其他線段有( ).

(A)1條 (B)2條

(C)3條 (D)4條

五.作業P48練習1、2題

平行四邊形的判定

平行四邊形的判定1、2 例題 練習

平行四邊形的判定 3、4

初二數學教案課件篇2

一、學習目標:1.使學生了解運用公式法分解因式的意義;

2.使學生掌握用平方差公式分解因式

二、重點難點

重點:掌握運用平方差公式分解因式.

難點:將單項式化為平方形式,再用平方差公式分解因式;

學習方法:歸納、概括、總結

三、合作學習

創設問題情境,引入新課

在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式.

如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法.

1.請看乘法公式

(a+b)(a-b)=a2-b2(1)

左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是

a2-b2=(a+b)(a-b)(2)

左邊是一個多項式,右邊是整式的乘積.大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式.

a2-b2=(a+b)(a-b)

2.公式講解

如x2-16

=(x)2-42

=(x+4)(x-4).

9m2-4n2

=(3m)2-(2n)2

=(3m+2n)(3m-2n)

四、精講精練

例1、把下列各式分解因式:

(1)25-16x2;(2)9a2-b2.

例2、把下列各式分解因式:

(1)9(m+n)2-(m-n)2;(2)2x3-8x.

補充例題:判斷下列分解因式是否正確.

(1)(a+b)2-c2=a2+2ab+b2-c2.

(2)a4-1=(a2)2-1=(a2+1)?(a2-1).

五、課堂練習教科書練習

六、作業1、教科書習題

2、分解因式:x4-16x3-4x4x2-(y-z)2

3、若x2-y2=30,x-y=-5求x+y

初二數學教案課件篇3

一、讀一讀

學習目標:1、掌握三角形內角和定理的兩個推論及其證明;

2、體會幾何中簡單不等關系的證明;

3、從內和外、相等和不相等的不同角度對三角形的角作更全面的思考。

二、試一試

自學指導:

1、如圖∠1是三角形的一個外角,它與圖中其它角有什么關系?

2、自學教材P242-243,看看你的結論是否正確,并對例1例2進行學習,

仿照證明三角形內角和定理的兩個推論:

推論1:三角形的一個外角等于和它不相鄰的兩個內角的和。

推論2:三角形的一個外角大于任何一個和它不相鄰的內角。

證明:

三、練一練

1、如圖,下列哪些說法一定正確

A∠HEC>∠B

B∠B+∠ACB=180°—∠A

C∠B+∠ACB<180°

D∠B>∠ACD

2、已知:如圖,在△ABC中,∠A=45°,外角∠DCA=100°,

求∠B和∠ACB的大小

初二數學教案課件篇4

教學目的

通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。

重點、難點

1.重點:

探索這些實際問題中的等量關系,由此等量關系列出方程。

2.難點:

找出能表示整個題意的等量關系。

教學過程

一、復習

1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數

本利和=本金×利息×年數+本金

2.商品利潤等有關知識。

利潤=售價—成本;=商品利潤率

二、新授

問:小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

利息—利息稅=48.6

可設小明爸爸前年存了x元,那么二年后共得利息為

2.43%×X×2,利息稅為2.43%X×2×20%

根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6

問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

2.43%x·2.80%=48.6

解方程,得x=1250

例:一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

大家想一想這15元的利潤是怎么來的?

標價的80%(即售價)-成本=15

若設這種服裝每件的成本是x元,那么

每件服裝的標價為:(1+40%)x

每件服裝的實際售價為:(1+40%)x·80%

每件服裝的利潤為:(1+40%)x·80%—x

由等量關系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服裝的成本是125元。

三、鞏固練習

教科書第15頁,練習1、2。

四、小結

當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。

初二數學教案課件篇5

教學目標

1、理解“配方”是一種常用的數學方法,在用配方法將一元二次方程變形的過程中,讓學生進一步體會化歸的思想方法。

2、會用配方法解二次項系數為1的一元二次方程。

重點難點

重點:會用配方法解二次項系數為1的一元二次方程。

難點:用配方法將一元二次方程變形成可用因式分解法或直接開平方法解的方程。

教學過程

(一)復習引入

1、a2±2ab+b2=?

2、用兩種方法解方程(x+3)2-5=0。

如何解方程x2+6x+4=0呢?

(二)創設情境

如何解方程x2+6x+4=0呢?

(三)探究新知

1、利用“復習引入”中的內容引導學生思考,得知:反過來把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所學的因式分解法或直接開平方法解。

2、怎樣把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?讓學生完成課本P.10的“做一做”并引導學生歸納:當二次項系數為“1”時,只要在二次項和一次項之后加上一次項系數一半的平方,再減去這個數,使得含未知數的項在一個完全平方式里,這種做法叫作配方.將方程一邊化為0,另一邊配方后就可以用因式分解法或直接開平方法解了,這樣解一元二次方程的方法叫作配方法。

(四)講解例題

例1(課本P.11,例5)

[解](1)x2+2x-3(觀察二次項系數是否為“l”)

=x2+2x+12-12-3(在一次項和二次項之后加上一次項系數一半的平方,再減去這個數,使它與原式相等)

=(x+1)2-4。(使含未知數的項在一個完全平方式里)

用同樣的方法講解(2),讓學生熟悉上述過程,進一步明確“配方”的意義。

例2引導學生完成P.11~P.12例6的填空。

(五)應用新知

1、課本P.12,練習。

2、學生相互交流解題經驗。

(六)課堂小結

1、怎樣將二次項系數為“1”的一元二次方程配方?

2、用配方法解一元二次方程的基本步驟是什么?

(七)思考與拓展

解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。

說一說一元二次方程解的情況。

[解](1)將方程的左邊配方,得(x-3)2+1=0,移項,得(x-3)2=-1,所以原方程無解。

(2)用配方法可解得x1=x2=-。

(3)用配方法可解得x1=,x2=

一元二次方程解的情況有三種:無實數解,如方程(1);有兩個相等的實數解,如方程(2);有兩個不相等的實數解,如方程(3)。

課后作業

課本習題

教學后記:

初二數學教案課件篇6

教學目的

通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的&39;有效數學模型。

重點、難點

1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。

2.難點:找出能表示整個題意的等量關系。

教學過程

一、復習

1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數

本利和=本金×利息×年數+本金

2.商品利潤等有關知識。

利潤=售價—成本;=商品利潤率

二、新授

問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

利息—利息稅=48。6

可設小明爸爸前年存了x元,那么二年后共得利息為

2.43%×X×2,利息稅為2.43%X×2×20%

根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6

問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

2.43%x·2.80%=48.6

解方程,得x=1250

例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

大家想一想這15元的利潤是怎么來的?

標價的80%(即售價)-成本=15

若設這種服裝每件的成本是x元,那么

每件服裝的標價為:(1+40%)x

每件服裝的實際售價為:(1+40%)x·80%

每件服裝的利潤為:(1+40%)x·80%—x

由等量關系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服裝的成本是125元。

三、鞏固練習

教科書第15頁,練習1、2。

四、小結

當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。

五、作業

教科書第16頁,習題6.3.1,第4、5題。

初二數學教案課件篇7

教材分析

1.本小節內容安排在第十四章“軸對稱”的第三節。等腰三角形是一種特殊的三角形,它是軸對稱圖形,可以借助軸對稱變換來研究等腰三角形的一些特殊性質。這一節的主要內容是等腰三角形的性質與判定,以及等邊三角形的相關知識,重點是等腰三角形的性質與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據,這也是全章的重點之一。

2.本節重在呈現一個動手操作得出概念、觀察實驗得出性質、推理證明論證性質的過程,學生通過學習,既體會到一個觀察、實驗、猜想、論證的研究幾何圖形問題的全過程,又能夠運用等腰三角形的性質解決有關的問題,提高運用知識和技能解決問題的能力。

學情分析

1.學生在此之前已接觸過等腰三角形,具有運用全等三角形的判定及軸對稱的知識和技能,本節教學要突出“自主探究”的特點,即教師引導學生通過觀察、實驗、猜想、論證,得出等腰三角形的性質,讓學生做學習的主人,享受探求新知、獲得新知的樂趣。

2.在與等腰三角形有關的一些命題的證明過程中,會遇到一些添加輔助線的問題,這會給學生的學習帶來困難。另外,以前學生證明問題是習慣于找全等三角形,形成了依賴全等三角形的思維定勢,對于可直接利用等腰三角形性質的問題,沒有注意選擇簡便方法。

教學目標

知識技能:1、理解掌握等腰三角形的性質。

2、運用等腰三角形的性質進行證明和計算。

數學思考:1、觀察等腰三角形的對稱性,發展形象思維。

2、通過時間、觀察、證明等腰三角形性質,發展學生合情推理能力和演繹推理能力。

情感態度:引導學生對圖形的觀察、發現,激發學生的好奇心和求知欲,并在運用數學知識解決問題的活動中獲取成功的體驗,建立學習的自信心。

教學重點和難點

重點:等腰三角形的性質及應用。

難點:等腰三角形的性質證明。

52514 主站蜘蛛池模板: 多功能真空滤油机_润滑油全自动滤油机_高效真空滤油机价格-重庆润华通驰 | 塑料异型材_PVC异型材_封边条生产厂家_PC灯罩_防撞扶手_医院扶手价格_东莞市怡美塑胶制品有限公司 | 活性炭-蜂窝-椰壳-柱状-粉状活性炭-河南唐达净水材料有限公司 | 网站seo优化_seo云优化_搜索引擎seo_启新网络服务中心 | 液氮罐_液氮容器_自增压液氮罐_杜瓦瓶_班德液氮罐厂家 | 注塑模具_塑料模具_塑胶模具_范仕达【官网】_东莞模具设计与制造加工厂家 | 直流电能表-充电桩电能表-导轨式电能表-智能电能表-浙江科为电气有限公司 | 隔离变压器-伺服变压器--输入输出电抗器-深圳市德而沃电气有限公司 | 众品地板网-地板品牌招商_地板装修设计_地板门户的首选网络媒体。 | 无水硫酸铝,硫酸铝厂家-淄博双赢新材料科技有限公司 | COD分析仪|氨氮分析仪|总磷分析仪|总氮分析仪-圣湖Greatlake | 不锈钢列管式冷凝器,换热器厂家-无锡飞尔诺环境工程有限公司 | 内窥镜-工业内窥镜厂家【上海修远仪器仪表有限公司】 | 基本型顶空进样器-全自动热脱附解吸仪价格-AutoHS全模式-成都科林分析技术有限公司 | 万烁建筑设计院-建筑设计公司加盟,设计院加盟分公司,市政设计加盟 | 齿辊分级破碎机,高低压压球机,立式双动力磨粉机-郑州长城冶金设备有限公司 | 黑龙江「京科脑康」医院-哈尔滨失眠医院_哈尔滨治疗抑郁症医院_哈尔滨精神心理医院 | 智能交通网_智能交通系统_ITS_交通监控_卫星导航_智能交通行业 | 求是网 - 思想建党 理论强党 | 合肥花魁情感婚姻咨询中心_挽回爱情_修复婚姻_恋爱指南 | 叉车电池-叉车电瓶-叉车蓄电池-铅酸蓄电池-电动叉车蓄电池生产厂家 | 专业深孔加工_东莞深孔钻加工_东莞深孔钻_东莞深孔加工_模具深孔钻加工厂-东莞市超耀实业有限公司 | 铝合金脚手架厂家-专注高空作业平台-深圳腾达安全科技 | 塑料瓶罐_食品塑料瓶_保健品塑料瓶_调味品塑料瓶–东莞市富慷塑料制品有限公司 | DWS物流设备_扫码称重量方一体机_快递包裹分拣机_广东高臻智能装备有限公司 | IHDW_TOSOKU_NEMICON_EHDW系列电子手轮,HC1系列电子手轮-上海莆林电子设备有限公司 | 细沙回收机-尾矿干排脱水筛设备-泥石分离机-建筑垃圾分拣机厂家-青州冠诚重工机械有限公司 | 一氧化氮泄露报警器,二甲苯浓度超标报警器-郑州汇瑞埔电子技术有限公司 | 临时厕所租赁_玻璃钢厕所租赁_蹲式|坐式厕所出租-北京慧海通 | 高尔夫球杆_高尔夫果岭_高尔夫用品-深圳市新高品体育用品有限公司 | 高压负荷开关-苏州雷尔沃电器有限公司| 铝机箱_铝外壳加工_铝外壳厂家_CNC散热器加工-惠州市铂源五金制品有限公司 | 汽车水泵_汽车水泵厂家-瑞安市骏迪汽车配件有限公司 | 蓝莓施肥机,智能施肥机,自动施肥机,水肥一体化项目,水肥一体机厂家,小型施肥机,圣大节水,滴灌施工方案,山东圣大节水科技有限公司官网17864474793 | 东莞螺杆空压机_永磁变频空压机_节能空压机_空压机工厂批发_深圳螺杆空压机_广州螺杆空压机_东莞空压机_空压机批发_东莞空压机工厂批发_东莞市文颖设备科技有限公司 | 锻造液压机,粉末冶金,拉伸,坩埚成型液压机定制生产厂家-山东威力重工官方网站 | 废气处理设备-工业除尘器-RTO-RCO-蓄热式焚烧炉厂家-江苏天达环保设备有限公司 | 交联度测试仪-湿漏电流测试仪-双85恒温恒湿试验箱-常州市科迈实验仪器有限公司 | 长沙广告公司|长沙广告制作设计|长沙led灯箱招牌制作找望城湖南锦蓝广告装饰工程有限公司 | 北京中创汇安科贸有限公司| 硫化罐-电加热蒸汽硫化罐生产厂家-山东鑫泰鑫智能装备有限公司 |