小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教學設計 >

八年級數學上冊教案設計

時間: 新華 教學設計

八年級數學上冊教案設計篇1

一、目標要求

1.理解掌握分式的四則混合運算的順序。

2.能正確熟練地進行分式的加、減、乘、除混合運算。

二、重點難點

重點:分式的加、減、乘、除混合運算的順序。

難點:分式的加、減、乘、除混合運算。

分式的加、減、乘、除混合運算的順序是先進行乘、除運算,再進行加、減運算,遇有括號,先算括號內的。

三、解題方法指導

【例1】計算:(1)[++(+)]·;

(2)(x-y-)(x+y-)÷[3(x+y)-]。

分析:分式的四則混合運算要注意運算順序及括號的關系。

解:(1)原式=[++]·=[++]·=·==。

(2)原式=·÷=··=y-x。

【例2】計算:(1)(-+)·(a3-b3);

(2)(-)÷。

解:(1)原式=-+=-+ab

=a2+ab+b2-(a2-b2)-ab

=a2+ab+b2-a2+b2-ab=2b2。

(2)原式=[-]·=-=-====。

說明:分式的加、減、乘、除混合運算注意以下幾點:

(1)一般按分式的運算順序法則進行計算,但恰當地使用運算律會使運算簡便。

(2)要隨時注意分子、分母可進行因式分解的式子,以備約分或通分時備用,可避免運算煩瑣。

(3)注意括號的“添”或“去”、“變大”與“變小”。

(4)結果要化為最簡分式。

四、激活思維訓練

▲知識點:求分式的值

【例】已知x+=3,求下列各式的值:

八年級數學上冊教案設計篇2

教學目標:

1、知識目標:

(1)掌握已知三邊畫三角形的方法;

(2)掌握邊邊邊公理,能用邊邊邊公理證明兩個三角形全等;

(3)會添加較明顯的輔助線.

2、能力目標:

(1)通過尺規作圖使學生得到技能的訓練;

(2)通過公理的初步應用,初步培養學生的邏輯推理能力.

3、情感目標:

(1)在公理的形成過程中滲透:實驗、觀察、歸納;

(2)通過變式訓練,培養學生“舉一反三”的學習習慣.

教學重點:SSS公理、靈活地應用學過的各種判定方法判定三角形全等。

教學難點:如何根據題目條件和求證的結論,靈活地選擇四種判定方法中最適當的方法判定兩個三角形全等。

教學用具:直尺,微機

教學方法:自學輔導

教學過程:

1、新課引入

投影顯示

問題:有一塊三角形玻璃窗戶破碎了,要去配一塊新的,你最少要對窗框測量哪幾個數據?如果你手頭沒有測量角度的儀器,只有尺子,你能保證新配的玻璃恰好不大不小嗎?

這個問題讓學生議論后回答,他們的答案或許只是一種感覺。于是教師要引導學生,抓住問題的本質:三角形的三個元素――三條邊。

2、公理的獲得

問:通過上面問題的分析,滿足什么條件的兩個三角形全等?

讓學生粗略地概括出邊邊邊的公理。然后和學生一起畫圖做實驗,根據三角形全等定義對公理進行驗證。(這里用尺規畫圖法)

公理:有三邊對應相等的兩個三角形全等。

應用格式:(略)

強調說明:

(1)、格式要求:先指出在哪兩個三角形中證全等;再按公理順序列出三個條件,并用括號把它們括在一起;寫出結論。

(2)、在應用時,怎樣尋找已知條件:已知條件包含兩部分,一是已知中給出的,二時圖形中隱含的(如公共邊)

(3)、此公理與前面學過的公理區別與聯系

(4)、三角形的穩定性:演示三角形的穩定性與四邊形的不穩定性。在演示中,其實可以去掉組成三角形的一根小木條,以顯示三角形條件不可減少,這也為下面總結“三角形全等需要有3全獨立的條件”做好了準備,進行了溝通。

(5)說明AAA與SSA不能判定三角形全等。

3、公理的應用

(1)講解例1。學生分析完成,教師注重完成后的點評。

例1如圖△ABC是一個鋼架,AB=ACAD是連接點A與BC中點D的支架

求證:AD⊥BC

分析:(設問程序)

(1)要證AD⊥BC只要證什么?

(2)要證∠1=只要證什么?

(3)要證∠1=∠2只要證什么?

(4)△ABD和△ACD全等的條件具備嗎?依據是什么?

證明:(略)

(2)講解例2(投影例2)

例2已知:如圖AB=DC,AD=BC

求證:∠A=∠C

(1)學生思考、分析、討論,教師巡視,適當參與討論。

(2)找學生代表口述證明思路。

思路1:連接BD(如圖)

證△ABD≌△CDB(SSS)先得∠A=∠C

思路2:連接AC證△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

(3)教師共同討論后,說明思路1較優,讓學生用思路1在練習本上寫出證明,一名學生板書,教師強調解題格式:在“證明”二字的后面,先將所作的輔助線寫出,再證明。

例3如圖,已知AB=AC,DB=DC

(1)若E、F、G、H分別是各邊的中點,求證:EH=FG

(2)若AD、BC連接交于點P,問AD、BC有何關系?證明你的結論。

學生思考、分析,適當點撥,找學生代表口述證明思路

讓學生在練習本上寫出證明,然后選擇投影顯示。

證明:(略)

說明:證直線垂直可證兩直線夾角等于,而由兩鄰補角相等證兩直線的夾角等于,又是很重要的一種方法。

例4如圖,已知:△ABC中,BC=2AB,AD、AE分別是△ABC、△ABD的中線,

求證:AC=2AE.

證明:(略)

學生口述證明思路,教師強調說明:“中線”條件下的常規作輔助線法。

5、課堂小結:

(1)判定三角形全等的方法:3個公理1個推論(SAS、ASA、AAS、SSS)

在這些方法中,每一個都需要3個條件,3個條件中都至少包含條邊。

(2)三種方法的綜合運用

讓學生自由表述,其它學生補充,自己將知識系統化,以自己的方式進行建構。

6、布置作業:

a、書面作業P7011、12

b、上交作業P7014P71B組3

八年級數學上冊教案設計篇3

《矩形》教案

教學目標:

知識與技能目標:

1.掌握矩形的概念、性質和判別條件。

2.提高對矩形的性質和判別在實際生活中的應用能力。

過程與方法目標:

1.經歷探索矩形的有關性質和判別條件的過程,在直觀操作活動和簡單的說理過程中發展學生的合情推理能力,主觀探索習慣,逐步掌握說理的基本方法。

2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉化歸思想。

情感與態度目標:

1.在操作活動過程中,加深對矩形的的認識,并以此激發學生的探索精神。

2.通過對矩形的探索學習,體會它的內在美和應用美。

教學重點:矩形的性質和常用判別方法的理解和掌握。

教學難點:矩形的性質和常用判別方法的綜合應用。

教學方法:分析啟發法

教具準備:像框,平行四邊形框架教具,多媒體課件。

教學過程設計:

一、情境導入:

演示平行四邊形活動框架,引入課題。

二、講授新課:

1.歸納矩形的定義:

問題:從上面的演示過程可以發現:平行四邊形具備什么條件時,就成了矩形?(學生思考、回答。)

結論:有一個內角是直角的平行四邊形是矩形。

2.探究矩形的性質:

(1)問題:像框除了“有一個內角是直角”外,還具有哪些一般平行四邊形不具備的性質?(學生思考、回答.)

結論:矩形的四個角都是直角。

(2)探索矩形對角線的性質:

讓學生進行如下操作后,思考以下問題:(幻燈片展示)

在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀.

①隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?

②當∠α是銳角時,兩條對角線的長度有什么關系?當∠α是鈍角時呢?

③當∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關系?

(學生操作,思考、交流、歸納。)

結論:矩形的兩條對角線相等.

(3)議一議:(展示問題,引導學生討論解決)

①矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由.

②直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關性質解釋這結論嗎?

(4)歸納矩形的性質:(引導學生歸納,并體會矩形的“對稱美”)

矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形.

例解:(性質的運用,滲透矩形對角線的“化歸”功能)

如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4

厘米,求BD與AD的長。

(引導學生分析、解答)

探索矩形的判別條件:(由修理桌子引出)

(5)想一想:(學生討論、交流、共同學習)

對角線相等的平行四邊形是怎樣的四邊形?為什么?

結論:對角線相等的平行四邊形是矩形.

(理由可由師生共同分析,然后用幻燈片展示完整過程.)

(6)歸納矩形的判別方法:(引導學生歸納)

有一個內角是直角的平行四邊形是矩形.

對角線相等的平行四邊形是矩形.

三、課堂練習:(出示P98隨堂練習題,學生思考、解答。)

四、新課小結:

通過本節課的學習,你有什么收獲?

(師生共同從知識與思想方法兩方面小結。)

五、作業設計:P99習題4.6第1、2、3題。

板書設計:

1.矩形

矩形的定義:

矩形的性質:

前面知識的小系統圖示:

2.矩形的判別條件:

例1

課后反思:在平行四邊形及菱形的教學后。學生已經學會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質。一些相關矩形的計算也學會應用轉化為直角三角形的方法來解決??偟目磥磉@節課學生掌握的還不錯。當然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。

八年級數學上冊教案設計篇4

一、學習目標:

1、會推導兩數差的平方公式,會用式子表示及用文字語言敘述;

2、會運用兩數差的平方公式進行計算。

二、學習過程:

請同學們快速閱讀課本第27—28頁的內容,并完成下面的練習題:

(一)探索

1、計算:(a-b)=

方法一:方法二:

方法三:

2、兩數差的平方用式子表示為_________________________;

用文字語言敘述為___________________________。

3、兩數差的平方公式結構特征是什么?

(二)現學現用

利用兩數差的平方公式計算:

1、(3-a)2、(2a-1)3、(3y-x)

4、(2x–4y)5、(3a-)

(三)合作攻關

靈活運用兩數差的平方公式計算:

1、(999)2、(a–b–c)

3、(a+1)-(a-1)

(四)達標訓練

1、、選擇:下列各式中,與(a-2b)一定相等的是()

A、a-2ab+4bB、a-4b

C、a+4bD、a-4ab+4b

2、填空:

(1)9x++16y=(4y-3x)

(2)()=m-8m+16

2、計算:

(a-b)(x-2y)

3、有一邊長為a米的正方形空地,現準備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計算出噴泉水池的面積嗎?

(四)提升

1、本節課你學到了什么?

2、已知a–b=1,a+b=25,求ab的值

八年級數學上冊教案設計篇5

教學任務分析

教學目標

知識技能

探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.

數學思考

能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養學生的分析問題能力和計算能力.

解決問題

通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.

情感態度

在應用等腰梯形的性質的過程養成獨立思考的習慣,在數學學習活動中獲得成功的體驗.

重點

等腰梯形的性質及其應用.

難點

解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.

教學流程安排

活動流程圖

活動的內容和目的

活動1想一想

活動2說一說

活動3畫一畫

活動4做—做

活動5練一練

活動6理一理

觀察梯形圖片,引入本節課的學習內容.

了解梯形定義、各部分名稱及分類.

通過畫圖活動,初步發現梯形與三角形的轉化關系.

探究得到等腰梯形的性質.

通過解決具體問題,尋找解決梯形問題的方法.

通過整理回顧,鞏固知識、提高能力、滲透思想.

教學過程設計

問題與情景

師生行為

設計意圖

[活動1]

觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?

演示圖片,學生欣賞.

結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.

由現實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養學生的觀察、概括能力.

[活動2]

梯形定義一組對邊平行而另一組對邊不平行的四邊形叫做梯形.

學生根據梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區別和聯系.

通過類比,培養學生歸納、總結的能力.

問題與情景

師生行為

設計意圖

一些基本概念

(1)(如圖):底、腰、高.

(2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

(3)直角梯形:有一個角是直角的梯形叫做直角梯形.

學生在小學已經對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發言后,教師可以強調:①梯形與四邊形的關系;

②上、下底的概念是由底的長短來定義的,而并不是指位置來說的.

熟悉圖形,明確概念,為探究圖形性質做準備.

[活動3]

畫一畫

在下列所給圖中的每個三角形中畫一條線段,

(1)怎樣畫才能得到一個梯形?

(2)在哪些三角形中,能夠得到一個等腰梯形?

在學生獨立探究的基礎上,學生分組交流.

教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.

本次活動教師應重點關注:

(1)學生在活動過程中能否發現梯形與三角形之間的聯系,他們之間的轉化方法.

(2)學生能否將等腰三角形轉化為等腰梯形.

(3)學生能否主動參與探究活動,在討論中發表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.

等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.

問題與情景

師生行為

設計意圖

[活動4]

做—做

探索等腰梯形的性質(引入用軸對稱解決問題的思想).

在一張方格紙上作一個等腰梯形,連接兩條對角線.

(1)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發現哪些相等的&39;線段和相等的角?學生畫圖并通過觀察猜想;

(2)這個等腰梯形的兩條對角線的長度有什么關系?

學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.

針對不同認識水平的學生,教師指導學生活動.

師生共同歸納:

①等腰梯形是軸對稱圖形,上下底的中點連線是對稱軸.

②等腰梯形兩腰相等.

③等腰梯形同一底上的兩個角相等.

④等腰梯形的兩條對角線相等.

教學中要注意引導學生證明等腰梯形的性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現,可以借此機會,給學生介紹這兩種輔助線的添加方法.

[活動5]

練—練

例1(教材P118的例1)略.

例2如圖,梯形ABCD中,AD∥BC,

∠B=70°,∠C=40°,AD=6cm,BC=15cm.

求CD的長.

師生共同分析,尋找解決問題的方法和策略.

例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.

分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.

其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

解:(略)

通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當的輔助線,把梯形問題轉化為已經熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.

問題與情景

師生行為

設計意圖

例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

BE⊥AC于E.

求證:BE=CD.

分析:要證BE=CD,需添加適當的輔助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

證明(略)

例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.

[活動6]

1.小結

2.布置作業

(1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

(2)已知:如圖,

梯形ABCD中,CD//AB,,.

求證:AD=AB—DC.

(3)已知,如圖,

梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)

師生歸納總結:

解決梯形問題常用的方法:

(1)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);

(2)“作高”:使兩腰在兩個直角三角形中(圖2);

(3)“延腰”:構造具有公共角的兩個等腰三角形(圖3);

(4)“平移對角線”:使兩條對角線在同一個三角形中(圖4);

(5)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).

盡量多地讓學生參與發言是一個交流的過程.

梳理本節課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續探究的空間.

學生通過獨立思考,完成課后作業,便于發現問題,及時查漏補缺.

八年級數學上冊教案設計篇6

教學目標:

1、知識目標:了解圖案最常見的構圖方式:軸對稱、平移、旋轉……,理解簡單圖案設計的意圖。認識和欣賞平移,旋轉在現實生活中的應用,能夠靈活運用軸對稱、平移、旋轉的組合,設計出簡單的圖案。

2、能力目標:經歷收集、欣賞、分析、操作和設計的過程,培養學生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創新能力。

3、情感體驗點:經歷對典型圖案設計意圖的分析,進一步發展學生的空間觀念,增強審美意識,培養學生積極進取的生活態度。

重點與難點:

重點:靈活運用軸對稱、平移、旋轉……等方法及它們的組合進行的圖案設計。

難點:分析典型圖案的設計意圖。

疑點:在設計的圖案中清晰地表現自己的設計意圖

教具學具準備:

提前一周布置學生以小組為單位,通過各種渠道收集到的圖案、圖標的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

教學過程設計:

1、情境導入:在優美的音樂中,逐個展示生活中常見的典型圖案,并讓學生試著說一說每種圖案標志的對象。(展示課本圖3—23)

明確在欣賞了圖案后,簡單地復習:平移、旋轉的概念,為下面圖案的設計作好理論準備。對教材給出的六個圖案通過觀察、分析進行議論交流,讓學生初步了解圖案的設計中常常運用圖形變換的思想方法,為學生自己設計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉適合角度形成(可以讓學生自己說說每個旋轉的角度和旋轉的次數及旋轉中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學生指出對軸對稱及對稱軸的條數),而圖(2)可以通過平移形成。

2、課本

1欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學生逐步能夠進行圖案設計,同時了解軸對稱、平移、旋轉變換是圖案制作的基本手段。例題解答的關鍵是確定“基本圖案”,然后再運用平移、旋轉關系加以說明,注意旋轉中心可以為圖形上某一特征的點。

評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

(二)課內練習

(1)以小組為單位,由每組指定一個同學展示該組搜集得到的圖案,并在全班交流。

(2)利用下面提供的基本圖形,用平移、旋轉、軸對稱、中心對稱等方法進行圖案設計,并簡要說明自己的設計意圖。

(三)議一議

生活中還有那些圖案用到了平移或旋轉?分析其中的一個,并與同伴進行交流。

(四)課時小結

本課時的重點是了解平移、旋轉和軸對稱變換是圖案設計的基本方法,并能運用這些變換設計出一些簡單的圖案。

通過今天的學習,你對圖案的設計又增加了哪些新的認識?(可以利用平移、旋轉、軸對稱等多種方法來設計,而且設計的圖案要能表達自己的創作意圖,再就是圖案的設計一定要新穎,獨特,這樣才能使人過目不忘,達到標志的效果。)

八年級數學上冊教案(五)延伸拓展

進一步搜集身邊的各種標志性圖案,嘗試著重新設計它,并結合實際背景分析它的設計意圖。

八年級數學上冊教案設計篇7

教學目標:

1、經歷數據離散程度的探索過程

2、了解刻畫數據離散程度的三個量度極差、標準差和方差,能借助計算器求出相應的數值。

教學重點:

會計算某些數據的極差、標準差和方差。

教學難點:

理解數據離散程度與三個差之間的關系。

教學準備:

計算器,投影片等

教學過程:

一、創設情境

1、投影課本P138引例。

(通過對問題串的解決,使學生直觀地估計從甲、乙兩廠抽取的20只雞腿的平均質量,同時讓學生初步體會平均水平相近時,兩者的離散程度未必相同,從而順理成章地引入刻畫數據離散程度的一個量度極差)

2、極差:是指一組數據中最大數據與最小數據的差,極差是用來刻畫數據離散程度的一個統計量。

二、活動與探究

如果丙廠也參加了競爭,從該廠抽樣調查了20只雞腿,數據如圖(投影課本159頁圖)

問題:1、丙廠這20只雞腿質量的平均數和極差是多少?

2、如何刻畫丙廠這20只雞腿質量與其平均數的差距?分別求出甲、丙兩廠的20只雞腿質量與對應平均數的差距。

3、在甲、丙兩廠中,你認為哪個廠雞腿質量更符合要求?為什么?

(在上面的情境中,學生很容易比較甲、乙兩廠被抽取雞腿質量的極差,即可得出結論。這里增加一個丙廠,其平均質量和極差與甲廠相同,此時導致學生思想認識上的矛盾,為引出另兩個刻畫數據離散程度的量度標準差和方差作鋪墊。

三、講解概念:

方差:各個數據與平均數之差的平方的平均數,記作s2

設有一組數據:x1,x2,x3,,xn,其平均數為

則s2=,

而s=稱為該數據的標準差(既方差的算術平方根)

從上面計算公式可以看出:一組數據的極差,方差或標準差越小,這組數據就越穩定。

四、做一做

你能用計算器計算上述甲、丙兩廠分別抽取的20只雞腿質量的方差和標準差嗎?你認為選哪個廠的雞腿規格更好一些?說說你是怎樣算的?

(通過對此問題的解決,使學生回顧了用計算器求平均數的步驟,并自由探索求方差的詳細步驟)

五、鞏固練習:課本第172頁隨堂練習

六、課堂小結:

1、怎樣刻畫一組數據的離散程度?

2、怎樣求方差和標準差?

七、布置作業:習題5.5第1、2題。

八年級數學上冊教案設計篇8

一、學生起點分析

學生已經了勾股定理,并在先前其他內容學習中已經積累了一定百度一下的逆向思維、逆向研究的經驗,如:已知兩直線平行,有什么樣的結論?

反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發逆向思考獲得逆命題,學生應該已經具備這樣的意識,但具體研究中

可能要用到反證等思路,對現階段學生而言可能還具有一定困難,需要教師適時的引導。

二、學習任務分析

本節課是北師大版數學八年級(上)第一章《勾股定理》第2節。教學任務有:探索勾股定理的逆定理

并利用該定理根據邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數,增加對勾股數的直觀體驗。為此確定教學目標:

●知識與技能目標

1.理解勾股定理逆定理的具體內容及勾股數的概念;

2.能根據所給三角形三邊的條件判斷三角形是否是直角三角形。

●過程與方法目標

1.經歷一般規律的探索過程,發展學生的抽象思維能力;

2.經歷從實驗到驗證的過程,發展學生的數學歸納能力。

●情感與態度目標

1.體驗生活中的數學的應用價值,感受數學與人類生活的密切聯系,激發學生學數學、用數學的興趣;

2.在探索過程中體驗成功的喜悅,樹立學習的自信心。

教學重點

理解勾股定理逆定理的具體內容。

三、教法學法

1.教學方法:實驗猜想歸納論證

本節課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數學結論已有一定的體驗

但數學思維嚴謹的同學總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現本節課的教學目標,我力求從以下三個方面對學生進行引導:

(1)從創設問題情景入手,通過知識再現,孕育教學過程;

(2)從學生活動出發,通過以舊引新,順勢教學過程;

(3)利用探索,研究手段,通過思維深入,領悟教學過程。

2.課前準備

教具:教材、電腦、多媒體課件。

學具:教材、筆記本、課堂練習本、文具。

四、教學過程設計

本節課設計了七個環節。第一環節:情境引入;第二環節:合作探究;第三環節:小試牛刀;第四環節:

登高望遠;第五環節:鞏固提高;第六環節:交流小結;第七環節:布置作業。

第一環節:情境引入

內容:

情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?

2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?

意圖:

通過情境的創設引入新課,激發學生探究熱情。

效果:

從勾股定理逆向思維這一情景引入,提出問題,激發了學生的求知欲,為下一環節奠定了良好的基礎。

第二環節:合作探究

內容1:探究

下面有三組數,分別是一個三角形的三邊長,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:

1.這三組數都滿足嗎?

2.分別以每組數為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數。

意圖:

通過學生的合作探究,得出若一個三角形的三邊長,滿足,則這個三角形是直角三角形這一結論;在活動中體驗出數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

效果:

經過學生充分討論后,匯總各小組實驗結果發現:①5,12,13滿足,可以構成直角三角形;②7,24,25滿足,可以構成直角三角形;③8,15,17滿足,可以構成直角三角形。

從上面的分組實驗很容易得出如下結論:

如果一個三角形的三邊長,滿足,那么這個三角形是直角三角形

內容2:說理

提問:有同學認為測量結果可能有誤差,不同意這個發現。你認為這個發現正確嗎?你能給出一個更有說服力的理由嗎?

意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:

如果一個三角形的三邊長,滿足,那么這個三角形是直角三角形

滿足的三個正整數,稱為勾股數。

注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。

活動3:反思總結

提問:

1.同學們還能找出哪些勾股數呢?

2.今天的結論與前面學習勾股定理有哪些異同呢?

3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?

4.通過今天同學們合作探究,你能體驗出一個數學結論的發現要經歷哪些過程呢?

意圖:進一步讓學生認識該定理與勾股定理之間的關系

第三環節:小試牛刀

內容:

1.下列哪幾組數據能作為直角三角形的三邊長?請說明理由。

①9,12,15;②15,36,39;③12,35,36;④12,18,22

解答:①②

2.一個三角形的三邊長分別是,則這個三角形的面積是()

A250B150C200D不能確定

解答:B

3.如圖1:在中,于,,則是()

A等腰三角形B銳角三角形

C直角三角形D鈍角三角形

解答:C

4.將直角三角形的三邊擴大相同的倍數后,(圖1)

得到的三角形是()

A直角三角形B銳角三角形

C鈍角三角形D不能確定

解答:A

意圖:

通過練習,加強對勾股定理及勾股定理逆定理認識及應用

效果

每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。

第四環節:登高望遠

內容:

1.一個零件的形狀如圖2所示,按規定這個零件中都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?

解答:符合要求,又,

2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經驗,船長指揮船左傳90,繼續航行70海里,則距出發地250海里,你能判斷船轉彎后,是否沿正西方向航行?

解答:由題意畫出相應的圖形

AB=240海里,BC=70海里,,AC=250海里;在△ABC中

=(250+240)(250-240)

=4900==即△ABC是Rt△

答:船轉彎后,是沿正西方向航行的。

意圖:

利用勾股定理逆定理解決實際問題,進一步鞏固該定理。

效果:

學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數量關系判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將作適當變形(),以便于計算。

第五環節:鞏固提高

內容:

1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1,圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。

解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

圖4圖5

解答:④⑤是直角三角形,①②③⑥不是直角三角形

意圖:

第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網格進行計算,從而解決問題。

效果:

學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網格的應用。

第六環節:交流小結

內容:

師生相互交流總結出:

1.今天所學內容①會利用三角形三邊數量關系判斷一個三角形是直角三角形;②滿足的三個正整數,稱為勾股數;

2.從今天所學內容及所作練習中總結出的經驗與方法:①數學是源于生活又服務于生活的;②數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律;③利用三角形三邊數量關系判斷一個三角形是直角三角形時,當遇見數據較大時,要懂得將作適當變形,便于計算。

意圖:

鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識。

效果:

學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數量關系判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。

第七環節:布置作業

課本習題1.4第1,2,4題。

五、教學反思:

1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長,滿足,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現的例題和練習。

2.注重引導學生積極參與實驗活動,從中體驗任何一個數學結論的發現總是要經歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發展規律。

3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。

4.注重對學習新知理解應用偏困難的學生的進一步關注。

5.對于勾股定理的逆定理的論證可根據學生的實際情況做適當調整,不做要求。

由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據自己班級學生的狀況進行適當的刪減或調整。

附:板書設計

能得到直角三角形嗎

情景引入小試牛刀:登高望遠

60129 主站蜘蛛池模板: 工业用品一站式采购平台|南创工品汇-官网|广州南创 | 杭州厂房降温,车间降温设备,车间通风降温,厂房降温方案,杭州嘉友实业爽风品牌 | 道康宁消泡剂-瓦克-大川进口消泡剂供应商| (中山|佛山|江门)环氧地坪漆,停车场地板漆,车库地板漆,聚氨酯地板漆-中山永旺地坪漆厂家 | 超声波清洗机_超声波清洗机设备_超声波清洗机厂家_鼎泰恒胜 | 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 派财经_聚焦数字经济内容服务平台 | 探鸣起名网-品牌起名-英文商标起名-公司命名-企业取名包满意 | 青海电动密集架_智能密集架_密集架价格-盛隆柜业青海档案密集架厂家 | 山东齐鲁漆业有限公司【官网】-工业漆专业生产厂家 | 云南丰泰挖掘机修理厂-挖掘机维修,翻新,再制造的大型企业-云南丰泰工程机械维修有限公司 | 硅胶管挤出机厂家_硅胶挤出机生产线_硅胶条挤出机_臣泽智能装备 贵州科比特-防雷公司厂家提供贵州防雷工程,防雷检测,防雷接地,防雷设备价格,防雷产品报价服务-贵州防雷检测公司 | 仓储笼_仓储货架_南京货架_仓储货架厂家_南京货架价格低-南京一品仓储设备制造公司 | R507制冷剂,R22/R152a制冷剂厂家-浙江瀚凯制冷科技有限公司 | 知网论文检测系统入口_论文查重免费查重_中国知网论文查询_学术不端检测系统 | 海德莱电力(HYDELEY)-无功补偿元器件生产厂家-二十年专业从事电力电容器 | 塑料薄膜_PP薄膜_聚乙烯薄膜-常州市鑫美新材料包装厂 | 伊卡洛斯软装首页-电动窗帘,别墅窗帘,定制窗帘,江浙沪1000+别墅窗帘案例 | 半容积式换热器_北京浮动盘管换热器厂家|北京亿丰上达 | 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 广州展览设计公司_展台设计搭建_展位设计装修公司-众派展览装饰 广州展览制作工厂—[优简]直营展台制作工厂_展会搭建资质齐全 | 深圳VI设计-画册设计-LOGO设计-包装设计-品牌策划公司-[智睿画册设计公司] | 杭州代理记账费用-公司注销需要多久-公司变更监事_杭州福道财务管理咨询有限公司 | 水冷散热器_水冷电子散热器_大功率散热器_水冷板散热器厂家-河源市恒光辉散热器有限公司 | R507制冷剂,R22/R152a制冷剂厂家-浙江瀚凯制冷科技有限公司 | 无负压供水设备,消防稳压供水设备-淄博创辉供水设备有限公司 | 电渗析,废酸回收,双极膜-山东天维膜技术有限公司 | 医疗仪器模块 健康一体机 多参数监护仪 智慧医疗仪器方案定制 血氧监护 心电监护 -朗锐慧康 | 高博医疗集团上海阿特蒙医院 | 济南侦探调查-济南调查取证-山东私家侦探-山东白豹调查咨询公司 密集架|电动密集架|移动密集架|黑龙江档案密集架-大量现货厂家销售 | 并网柜,汇流箱,电控设备,中高低压开关柜,电气电力成套设备,PLC控制设备订制厂家,江苏昌伟业新能源科技有限公司 | 在线钠离子分析仪-硅酸根离子浓度测定仪-油液水分测定仪价格-北京时代新维测控设备有限公司 | 消泡剂_水处理消泡剂_切削液消泡剂_涂料消泡剂_有机硅消泡剂_广州中万新材料生产厂家 | 蓄电池在线监测系统|SF6在线监控泄露报警系统-武汉中电通电力设备有限公司 | 重庆网站建设,重庆网站设计,重庆网站制作,重庆seo,重庆做网站,重庆seo,重庆公众号运营,重庆小程序开发 | 网络推广公司_网络营销方案策划_企业网络推广外包平台-上海澜推网络 | 捆扎机_气动捆扎机_钢带捆扎机-沈阳海鹞气动钢带捆扎机公司 | 液压升降货梯_导轨式升降货梯厂家_升降货梯厂家-河南东圣升降设备有限公司 | 垃圾压缩设备_垃圾处理设备_智能移动式垃圾压缩设备--山东明莱环保设备有限公司 | 北京西风东韵品牌与包装设计公司,创造视觉销售力! | VOC检测仪-甲醛检测仪-气体报警器-气体检测仪厂家-深恒安科技有限公司 |