小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 教案模板 > 優秀教案 >

初二數學怎么教案

時間: 新華 優秀教案

編寫教案可以幫助教師更好地掌握教學目標和教學內容,從而提高教學質量和效果。初二數學怎么教案規范是怎樣的?下面給大家整理了一些初二數學怎么教案,供大家參考。

初二數學怎么教案篇1

教學目標:

1.知識目標:通過折疊探索等腰三角形、等邊三角形的性質。

2.能力目標:進行操作、觀察、分析、比較、交流等教學活動,讓學生在親身經歷類似的創造活動過程中學習數學知識。

3.情感目標:培養學生用事實驗證事物的能力,而不是用主觀臆斷事物的屬性。

教學過程:

一、反饋作業

1.師:昨天我們學習了哪些知識?對于等腰三角形和等邊三角形,大家回家也做了探究型作業,對他們有了更深的了解。誰來說說你還知道些什么?

2.師:剛才也有同學談到其實等腰三角形和等邊三角形是對稱圖形。老師說它們可以稱為軸對稱圖形。

二、新課探究

1.師:你能不能把一個等腰

三角形折一折分成2個部分,使這2部分完全重合?

2.師:大家都可以這樣做到,那么誰能指一指我們是沿著哪一條線對折才能使圖形對折后完全重合的嗎?(學生指)

師:我們把這條能使圖形對折

后重合的直線稱為對稱軸。(板書)我們通常用虛線來表示對稱軸。(學生用虛線表示)

3.學生探究

師:你能不能用找到等腰三角形對稱軸的方法來找一找等邊三角形的對稱軸?

(學生嘗試)學生交流:你是怎樣找的?你找到幾條?

(圖形對折,是否完全重合)

3.小結:等腰三角形有一條對稱軸,等邊三角形有三條對稱軸。而三條邊都不相等的三角形卻一條對稱軸也沒有。

三、探究作業

1.在生活中還有哪些是軸對稱圖形,也有對稱軸,我請同學們回家去找一下,用剪刀和紙把它剪出來,看誰剪得最多。

2.想不出的同學可以問問現在5年級的同學,他們會給你們幫助的。

初二數學怎么教案篇2

學習重點:函數的概念及確定自變量的取值范圍。

學習難點:認識函數,領會函數的意義。

【自主復習知識準備】

請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。

【自主探究知識應用】

請看書72——74頁內容,完成下列問題:

1、思考書中第72頁的問題,歸納出變量之間的關系。

2、完成書上第73頁的思考,體會圖形中體現的變量和變量之間的關系。

3、歸納出函數的定義,明確函數定義中必須要滿足的條件。

歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應,那么我們就說x是__________,y是x的________。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數值。

補充小結:

(1)函數的定義:

(2)必須是一個變化過程;

(3)兩個變量;其中一個變量每取一個值,另一個變量有且有唯一值對它對應。

三、鞏固與拓展:

例1:一輛汽車的油箱中現有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

(1)寫出表示y與x的函數關系式.

(2)指出自變量x的取值范圍.

(3)汽車行駛200千米時,油箱中還有多少汽油?

【當堂檢測知識升華】

1、判斷下列變量之間是不是函數關系:

(1)長方形的寬一定時,其長與面積;

(2)等腰三角形的底邊長與面積;

(3)某人的年齡與身高;

2、寫出下列函數的解析式.

(1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數關系的式子.

(2)汽車加油時,加油槍的流量為10L/min.

①如果加油前,油箱里還有5L油,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數關系;

②如果加油時,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數關系.

(3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規定,取款時,應繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數x之間的關系式.

(4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數是S,求S與n之間的關系式.

八年級變量與函數(2)數學教案的全部內容由數學網提供,教材中的每一個問題,每一個環節,都有教師依據學生學習的實際和教材的實際進行有針對性的設置,希望大家喜歡!

初二數學怎么教案篇3

教學目標

1、理解用配方法解一元二次方程的基本步驟。

2、會用配方法解二次項系數為1的一元二次方程。

3、進一步體會化歸的思想方法。

重點難點

重點:會用配方法解一元二次方程.

難點:使一元二次方程中含未知數的項在一個完全平方式里。

教學過程

(一)復習引入

1、用配方法解方程x2+x-1=0,學生練習后再完成課本P.13的“做一做”.

2、用配方法解二次項系數為1的一元二次方程的基本步驟是什么?

(二)創設情境

現在我們已經會用配方法解二次項系數為1的一元二次方程,而對于二次項系數不為1的一元二次方程能不能用配方法解?

怎樣解這類方程:2x2-4x-6=0

(三)探究新知

讓學生議一議解方程2x2-4x-6=0的方法,然后總結得出:對于二次項系數不為1的一元二次方程,可將方程兩邊同除以二次項的系數,把二次項系數化為1,然后按上一節課所學的方法來解。讓學生進一步體會化歸的思想。

(四)講解例題

1、展示課本P.14例8,按課本方式講解。

2、引導學生完成課本P.14例9的填空。

3、歸納用配方法解一元二次方程的基本步驟:首先將方程化為二次項系數是1的一般形式;其次加上一次項系數的一半的平方,再減去這個數,使得含未知數的項在一個完全平方式里;最后將配方后的一元二次方程用因式分解法或直接開平方法來解。

(五)應用新知

課本P.15,練習。

(六)課堂小結

1、用配方法解一元二次方程的基本步驟是什么?

2、配方法是一種重要的數學方法,它的重要性不僅僅表現在一元二次方程的解法中,在今后學習二次函數,高中學習二次曲線時都要經常用到。

3、配方法是解一元二次方程的通法,但是由于配方的過程要進行較繁瑣的運算,在解一元二次方程時,實際運用較少。

4、按圖1—l的框圖小結前面所學解

一元二次方程的算法。

(七)思考與拓展

不解方程,只通過配方判定下列方程解的

情況。

(1)4x2+4x+1=0;(2)x2-2x-5=0;

(3)–x2+2x-5=0;

[解]把各方程分別配方得

(1)(x+)2=0;

(2)(x-1)2=6;

(3)(x-1)2=-4

由此可得方程(1)有兩個相等的實數根,方程(2)有兩個不相等的實數根,方程(3)沒有實數根。

點評:通過解答這三個問題,使學生能靈活運用“配方法”,并強化學生對一元二次方程解的三種情況的認識。

初二數學怎么教案篇4

理解一元二次方程求根公式的推導過程,了解公式法的概念,會熟練應用公式法解一元二次方程.

復習具體數字的一元二次方程配方法的解題過程,引入ax2+bx+c=0(a≠0)的求根公式的推導,并應用公式法解一元二次方程.

重點

求根公式的推導和公式法的應用.

難點

一元二次方程求根公式的推導.

一、復習引入

1.前面我們學習過解一元二次方程的“直接開平方法”,比如,方程

(1)x2=4 (2)(x-2)2=7

提問1 這種解法的(理論)依據是什么?

提問2 這種解法的局限性是什么?(只對那種“平方式等于非負數”的特殊二次方程有效,不能實施于一般形式的二次方程.)

2.面對這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開平方”的形式.)

(學生活動)用配方法解方程 2x2+3=7x

(老師點評)略

總結用配方法解一元二次方程的步驟(學生總結,老師點評).

(1)先將已知方程化為一般形式;

(2)化二次項系數為1;

(3)常數項移到右邊;

(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

二、探索新知

用配方法解方程:

(1)ax2-7x+3=0 (2)ax2+bx+3=0

如果這個一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請同學獨立完成下面這個問題.

問題:已知ax2+bx+c=0(a≠0),試推導它的兩個根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個方程一定有解嗎?什么情況下有解?)

分析:因為前面具體數字已做得很多,我們現在不妨把a,b,c也當成一個具體數字,根據上面的解題步驟就可以一直推下去.

解:移項,得:ax2+bx=-c

二次項系數化為1,得x2+bax=-ca

配方,得:x2+bax+(b2a)2=-ca+(b2a)2

即(x+b2a)2=b2-4ac4a2

∵4a2>0,當b2-4ac≥0時,b2-4ac4a2≥0

∴(x+b2a)2=(b2-4ac2a)2

直接開平方,得:x+b2a=±b2-4ac2a

即x=-b±b2-4ac2a

∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a

由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數a,b,c而定,因此:

(1)解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當b2-4ac≥0時,將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.

(2)這個式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

公式的理解

(4)由求根公式可知,一元二次方程最多有兩個實數根.

例1 用公式法解下列方程:

(1)2x2-x-1=0 (2)x2+1.5=-3x

(3)x2-2x+12=0 (4)4x2-3x+2=0

分析:用公式法解一元二次方程,首先應把它化為一般形式,然后代入公式即可.

補:(5)(x-2)(3x-5)=0

三、鞏固練習

教材第12頁 練習1.(1)(3)(5)或(2)(4)(6).

四、課堂小結

本節課應掌握:

(1)求根公式的概念及其推導過程;

(2)公式法的概念;

(3)應用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項要變號,盡量讓a>0;2)找出系數a,b,c,注意各項的系數包括符號;3)計算b2-4ac,若結果為負數,方程無解;4)若結果為非負數,代入求根公式,算出結果.

(4)初步了解一元二次方程根的情況.

五、作業布置

教材第17頁 習題4

初二數學怎么教案篇5

一、學生學情分析

學生的技能基礎:學生通過對本章前幾節課的學習,已經學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節課的學習奠定了基礎.

學生活動經驗基礎:在平方差公式一節的學習中,學生已經經歷了探索和應用的過程,獲得了一些數學活動的經驗,培養了一定的符號感和推理能力;同時在相關知識的學習過程中,學生經歷了很多探究學習的過程,具有了一定的獨立探究意識以及與同伴合作交流的能力.

二、教學目標

知識與技能:

(1)讓學生會推導完全平方公式,并能進行簡單的應用.

(2)了解完全平方公式的幾何背景.

數學能力:

(1)由學生經歷探索完全平方公式的過程,進一步發展學生的符號感與推理能力.

(2)發展學生的數形結合的數學思想.

情感與態度:

將學生頭腦中的前概念暴露出來進行分析,避免形成教學上的“相異構想”.

三、教學重難點

教學重點:1、完全平方公式的推導;

2、完全平方公式的應用;

教學難點:1、消除學生頭腦中的前概念,避免形成“相異構想”;

2、完全平方公式結構的認知及正確應用.

四、教學設計分析

本節課設計了十一個教學環節:學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數形結合——進一步拓廣——總結口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.

第一環節:學生練習、暴露問題

活動內容:計算:(a+2)2

設想學生的做法有以下幾種可能:

①(a+2)2=a2+22

②(a+2)2=a2+2a+22

③正確做法;

針對這幾種結果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?

活動目的:在很多學生的頭腦中,認為兩數和的完全平方與兩數的平方和等同,即:

(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個正確的概念;這一環節的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構建新的思維模式埋下伏筆.

第二環節:驗證(a+2)2=a2–4a+22

活動內容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22

活動目的:在前一環節已經打破了學生的原有的思維定式的基礎上,給學生建立正確的思維方法,避免形成“相異構想”.

第三環節:推廣到一般情況,形成公式

活動內容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

活動目的:讓學生經歷從特殊到一般的探究過程,體驗到發現的快樂.

第四環節:數形結合

活動內容:設問:在多項式的乘法中,很多公式都都可以用幾何圖形進行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?

展示動畫,用幾何圖形詮釋完全平方公式的幾何意義.

學生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)

活動目的:讓學生進一步認識到數與形都不是孤立存在的,數與形是可以有機地結合在一起,從而發展學生的數形結合的數學思想.

第五環節:進一步拓廣

活動內容:推導兩數差的完全平方公式:(a–b)2=a2–2ab+b2

方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2

方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2

活動目的:讓學生經歷由兩數和的完全平方公式拓廣到兩數差的完全平方公式的過程,體會到符號差異帶來的結果差異,由第二種推導方法體會到兩數差的完全平方公式是兩數和的完全平方公式的應用.

第六環節:總結口訣、認識特征

活動內容:比較兩個公式的共同點與不同點:(a+b)2=a2+2ab+b2

(a–b)2=a2–2ab+b2

特征:①左邊都是一個二項式的完全平方,兩者僅有一個符號不同;右邊都是二次三項式,其中第一、三項是公式左邊二項式中每一項的平方,中間一項是左邊二項式中兩項乘積的兩倍,兩者也僅一個符號不同;

②公式中的a、b可以是任意一個代數式(數、字母、單項式、多項式)

口訣:首平方,尾平方,首尾相乘的兩倍在中央.

活動目的:認識完全平方公式的特征,總結出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現錯誤.

第七環節:公式應用

活動內容:例:計算:①(2x–3)2;②(4x+)2

解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9

②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+

活動目的:在前幾個環節中,學生對完全平方公式已經有了感性認識,通過本環節的講解以及下一環節的練習,使學生逐步經歷認識——模仿——再認識.從而上升到理性認識的階段.

第八環節:隨堂練習

活動內容:計算:①;②;③(n+1)2–n2

活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.

第九環節:學生PK

活動內容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.

活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.

第十環節:學生反思

活動內容:通過今天這堂課的學習,你有哪些收獲?

收獲1:認識了完全平方公式,并能簡單應用;

收獲2:了解了兩數和與兩數差的完全平方公式之間的差異;

收獲3:感受到數形結合的數學思想在數學中的作用.

活動目的:通過對一堂課的歸納與總結,鞏固學生對完全平方公式的認識,體會數學思想的精妙.

第十一環節:布置作業:

課本P43習題1.13

初二數學怎么教案篇6

一、內容和內容解析

1.內容

二次根式的性質。

2.內容解析

本節教材是在學生學習二次根式概念的基礎上,結合二次根式的概念和算術平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質.

對于二次根式的性質,教材沒有直接從算術平方根的意義得到,而是考慮學生的年齡特征,先通過“探究”欄目中給出四個具體問題,讓學生學生根據算術平方根的意義,就具體數字進行分析得出結果,再分析這些結果的共同特征,由特殊到一般地歸納出結論.基于以上分析,確定本節課的教學重點為:理解二次根式的性質.

二、目標和目標解析

1.教學目標

(1)經歷探索二次根式的性質的過程,并理解其意義;

(2)會運用二次根式的性質進行二次根式的化簡;

(3)了解代數式的概念.

2.目標解析

(1)學生能根據具體數字分析和算術平方根的意義,由特殊到一般地歸納出二次根式的性質,會用符號表述這一性質;

(2)學生能靈活運用二次根式的性質進行二次根式的化簡;

(3)學生能從已學過的各種式子中,體會其共同特點,得出代數式的概念.

三、教學問題診斷分析

二次根式的性質是二次根式化簡和運算的重要基礎.學生根據二次根式的概念和算術平方根的意義,由特殊到一般地得出二次根式的性質后,重在能靈活運用二次根式的性質進行二次根式的化簡和解決一些綜合性較強的問題.由于學生初次學習二次根式的性質,對二次根式性質的靈活運用存在一定的困難,突破這一難點需要教師精心設計好每一道習題,讓學生在練習中進一步掌握二次根式的性質,培養其靈活運用的能力.

本節課的教學難點為:二次根式性質的靈活運用.

四、教學過程設計

1.探究性質1

問題1你能解釋下列式子的含義嗎?

師生活動:教師引導學生說出每一個式子的含義.

【設計意圖】讓學生初步感知,這些式子都表示一個非負數的算術平方根的平方.

問題2根據算術平方根的意義填空,并說出得到結論的依據.

師生活動學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質1作鋪墊.

問題3從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

師生活動:引導學生歸納得出二次根式的性質:(≥0).

【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質1,培養學生抽象概括的能力.

例2計算

(1);(2).

師生活動:學生獨立完成,集體訂正.

【設計意圖】鞏固二次根式的性質1,學會靈活運用.

2.探究性質2

問題4你能解釋下列式子的含義嗎?

師生活動:教師引導學生說出每一個式子的含義.

【設計意圖】讓學生初步感知,這些式子都表示一個數的平方的算術平方根.

問題5根據算術平方根的意義填空,并說出得到結論的依據.

師生活動學生獨立完成填空后,讓學生展示其思維過程,說出得到結論的依據.

【設計意圖】學生通過計算或根據算術平方根的意義得出結論,為歸納二次根式的性質2作鋪墊.

問題6從以上的結論中你能發現什么規律?你能用一個式子表示這個規律嗎?

師生活動:引導學生歸納得出二次根式的性質:(≥0)

【設計意圖】讓學生經歷從特殊到一般的過程,概括出二次根式的性質2,培養學生抽象概括的能力.

例3計算

(1);(2).

師生活動:學生獨立完成,集體訂正.

【設計意圖】鞏固二次根式的性質2,學會靈活運用.

3.歸納代數式的概念

問題7回顧我們學過的式子,如,(≥0),這些式子有哪些共同特征?

師生活動:學生概括式子的共同特征,得出代數式的概念.

【設計意圖】學生通過觀察式子的共同特征,形成代數式的概念,培養學生的概括能力.

4.綜合運用

(1)算一算:

【設計意圖】設計有一定綜合性的題目,考查學生的靈活運用的能力,第(2)、(3)、(4)小題要特別注意結果的符號.

(2)想一想:中,的取值范圍是什么?當≥0時,等于多少?當時,又等于多少?

【設計意圖】通過此問題的設計,加深學生對的理解,開闊學生的視野,訓練學生的思維.

(3)談一談你對與的認識.

【設計意圖】加深學生對二次根式性質的理解.

5.總結反思

(1)你知道了二次根式的哪些性質?

(2)運用二次根式性質進行化簡需要注意什么?

(3)請談談發現二次根式性質的思考過程?

(4)想一想,到現在為止,你學習了哪幾類字母表示數得到的式子?說說你對代數式的認識.

6.布置作業:教科書習題16.1第2,4題.

五、目標檢測設計

1.;;.

【設計意圖】考查對二次根式性質的理解.

2.下列運算正確的是()

A.B.C.D.

【設計意圖】考查學生運用二次根式的性質進行化簡的能力.

3.若,則的取值范圍是.

【設計意圖】考查學生對一個數非負數的算術平方根的理解.

4.計算:.

【設計意圖】考查二次根式性質的靈活運用.

初二數學怎么教案篇7

方差

一. 教學目標:

1. 了解方差的定義和計算公式。

2. 理解方差概念的產生和形成的過程。

3. 會用方差計算公式來比較兩組數據的波動大小。

二. 重點、難點和難點的突破方法:

1. 重點:方差產生的必要性和應用方差公式解決實際問題。

2. 難點:理解方差公式

3. 難點的突破方法:

方差公式:S = [( - ) +( - ) +…+( - ) ]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現計算的錯誤,為突破這一難點,我安排了幾個環節,將難點化解。

(1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節課內容產生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質量穩定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經常要去了解一組數據的波動程度,僅僅知道平均數是不夠的。

(2)波動性可以通過什么方式表現出來?第一環節中點明了為什么去了解數據的波動性,第二環節則主要使學生知道描述數據,波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當波動大小區別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現一種數量來描述數據波動大小,這就引出方差產生的必要性。

(3)第三環節 教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統計量。

三. 例習題的意圖分析:

1. 教材P125的討論問題的意圖:

(1).創設問題情境,引起學生的學習興趣和好奇心。

(2).為引入方差概念和方差計算公式作鋪墊。

(3).介紹了一種比較直觀的衡量數據波動大小的方法——畫折線法。

(4).客觀上反映了在解決某些實際問題時,求平均數或求極差等方法的局限性,使學生體會到學習方差的意義和目的。

2. 教材P154例1的設計意圖:

(1).例1放在方差計算公式和利用方差衡量數據波動大小的規律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的掌握。

(2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。

四.課堂引入:

除采用教材中的引例外,可以選擇一些更時代氣息、更有現實意義的引例。例如,通過學生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。

五. 例題的分析:

教材P154例1在分析過程中應抓住以下幾點:

1. 題目中“整齊”的含義是什么?說明在這個問題中要研究一組數據的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數據波動大小,這一環節是明確題意。

2. 在求方差之前先要求哪個統計量,為什么?學生也可以得出先求平均數,因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。

3. 方差怎樣去體現波動大小?

這一問題的提出主要復習鞏固方差,反映數據波動大小的規律。

六. 隨堂練習:

1. 從甲、乙兩種農作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

問:(1)哪種農作物的苗長的比較高?

(2)哪種農作物的苗長得比較整齊?

2. 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?

測試次數 1 2 3 4 5

段巍 13 14 13 12 13

金志強 10 13 16 14 12

參考答案:1.(1)甲、乙兩種農作物的苗平均高度相同;(2)甲整齊

2.段巍的成績比金志強的成績要穩定。

七. 課后練習:

1.已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。

2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

經過計算,兩人射擊環數的平均數相同,但S S ,所以確定 去參加比賽。

3. 甲、乙兩臺機床生產同種零件,10天出的次品分別是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分別計算出兩個樣本的平均數和方差,根據你的計算判斷哪臺機床的性能較好?

4. 小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好

4. =10.9、S =0.02;

=10.9、S =0.008

選擇小兵參加比賽。

初二數學怎么教案篇8

一、學習目標:1.多項式除以單項式的運算法則及其應用.

2.多項式除以單項式的運算算理.

二、重點難點:

重點:多項式除以單項式的運算法則及其應用

難點:探索多項式與單項式相除的運算法則的過程

三、合作學習:

(一)回顧單項式除以單項式法則

(二)學生動手,探究新課

1.計算下列各式:

(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy.

2.提問:①說說你是怎樣計算的②還有什么發現嗎?

(三)總結法則

1.多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______

2.本質:把多項式除以單項式轉化成______________

四、精講精練

例:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x(4)(-6a3b3+8a2b4+10a2b3+2ab2)÷(-2ab2)

隨堂練習:教科書練習

五、小結

1、單項式的除法法則

2、應用單項式除法法則應注意:

A、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號

B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;

C、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;

D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.

E、多項式除以單項式法則

初二數學怎么教案篇9

一、教學目標:

1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.

2、會求一組數據的極差.

二、重點、難點和難點的突破方法

1、重點:會求一組數據的極差.

2、難點:本節課內容較容易接受,不存在難點、

三、課堂引入:

下表顯示的是上海20__年2月下旬和20__年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

從表中你能得到哪些信息?

比較兩段時間氣溫的`高低,求平均氣溫是一種常用的方法、

經計算可以看出,對于2月下旬的這段時間而言,20__年和20__年上海地區的平均氣溫相等,都是12度、

這是不是說,兩個時段的氣溫情況沒有什么差異呢?

根據兩段時間的氣溫情況可繪成的折線圖、

觀察一下,它們有區別嗎?說說你觀察得到的結果、

用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍、用這種方法得到的差稱為極差(range)、

四、例習題分析

本節課在教材中沒有相應的例題,教材P152習題分析

問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大、問題2涉及前一個學期統計知識首先應回憶復習已學知識、問題3答案并不唯一,合理即可。

初二數學怎么教案篇10

學習目標

1、通過運算多項式乘法,來推導平方差公式,學生的認識由一般法則到特殊法則的能力。

2、通過親自動手、觀察并發現平方差公式的結構特征,并能從廣義上理解公式中字母的含義。

3、初步學會運用平方差公式進行計算。

學習重難點重點是平方差公式的推導及應用。

難點是對公式中a,b的廣泛含義的理解及正確運用。

自學過程設計教學過程設計

看一看

認真閱讀教材,記住以下知識:

文字敘述平方差公式:_________________

用字母表示:________________

做一做:

1、完成下列練習:

①(m+n)(p+q)

②(a+b)(x-y)

③(2x+3y)(a-b)

④(a+2)(a-2)

⑤(3-x)(3+x)

⑥(2m+n)(2m-n)

想一想

你還有哪些地方不是很懂?請寫出來。

_______________________________

_______________________________

________________________________.

1.下列計算對不對?若不對,請在橫線上寫出正確結果.

(1)(x-3)(x+3)=x2-3(),__________;

(2)(2x-3)(2x+3)=2x2-9(),_________;

(3)(-x-3)(x-3)=x2-9(),_________;

(4)(2xy-1)(2xy+1)=2xy2-1(),________.

2.(1)(3a-4b)()=9a2-16b2;(2)(4+2x)()=16-4x2;

(3)(-7-x)()=49-x2;(4)(-a-3b)(-3b+a)=_________.

3.計算:50×49=_________.

應用探究

1.幾何解釋平方差公式

展示:邊長a的大正方形中有一個邊長為b的小正方形。

(1)請計算圖的陰影部分的面積(讓學生用正方形的面積公式計算)。

(2)小明將陰影部分拼成一個長方形,這個長方形長與寬是多少?你能表示出它的面積嗎?

圖2

2.用平方差公式計算

(1)103×93(2)59.8×60.2

拓展提高

1.閱讀題:

我們在計算(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)時,發現直接運算很麻煩,如果在算式前乘以(2-1),即1,原算式的值不變,而且還使整個算式能用乘法公式計算.解答過程如下:

原式=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

=(24-1)(24+1)(28+1)(216+1)(232+1)

=……=264-1

你能用上述方法算出(3+1)(32+1)(34+1)(38+1)(316+1)的值嗎?請試試看!

2.仔細觀察,探索規律:

(x-1)(x+1)=x2-1

(x-1)(x2+x+1)=x3-1

(x-1)(x3+x2+x+1)=x4-1

(x-1)(x4+x3+x2+x+1)=x5-1

……

(1)試求25+24+23+22+2+1的值;

(2)寫出22006+22005+22004+…+2+1的個位數.

堂堂清

一、選擇題

1.下列各式中,能用平方差公式計算的是()

(1)(a-2b)(-a+2b);

(2)(a-2b)(-a-2b);

(3)(a-2b)(a+2b);

(4)(a-2b)(2a+b).

A.(1)(2)B.(2)(3)

C.(3)(4)D.(1)(4)

2.計算(-4x-5y)(5y-4x)的結果是()

A.16x2-25y2B.25y2-16x2C.-16x2-25y2D.16x2+25y2

3.下列計算錯誤的是()

A.(6a+1)(6a-1)=36a2-1

B.(-m-n)(m-n)=n2-m2

C.(a3-8)(-a3+8)=a9-64D.(-a2+1)(-a2-1)=a4-1

4.下列計算正確的是()

A.(a-b)2=a2-b2

B.(a-b)(b-a)=a2-b2

C.(a+b)(-a-b)=a2-b2D.(-a-b)(-a+b)=a2-b2

5.下列算式能連續兩次用平方差公式計算的是()

A.(x-y)(x2+y2)(x-y)B.(x+1)(x2-1)(x+1)

C.(x+y)(x2-y2)(x-y)D.(x+y)(x2+y2)(x-y)

二、計算:

(1)(5ab-3x)(-3x-5ab)

(2)(-y2+x)(x+y2)

教后反思本節課是運算多項式乘法,來推導平方差公式,使學生的認識由一般法則到特殊法則的能力,并能歸納總結出平方差公式的結構特征,利用平方差公式來進行運算。

初二數學怎么教案篇11

一、學習目標:1.添括號法則.

2.利用添括號法則靈活應用完全平方公式

二、重點難點

重 點: 理解添括號法則,進一步熟悉乘法公式的合理利用

難 點: 在多項式與多項式的乘法中適當添括號達到應用公式的目的.

三、合作學習

Ⅰ.提出問題,創設情境

請同學們完成下列運算并回憶去括號法則.

(1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c)

去括號法則:

去括號時,如果括號前是正號,去掉括號后,括號里的每一項都不變號;

如果括號前是負號,去掉括號后,括號里的各項都要變號。

1.在等號右邊的括號內填上適當的項:

(1)a+b-c=a+( ) (2)a-b+c=a-( )

(3)a-b-c=a-( ) (4)a+b+c=a-( )

2.判斷下列運算是否正確.

(1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b)

(3)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5)

添括號法則:添上一個正括號,擴到括號里的不變號,添上一個負括號,擴到括號里的要變號。

五、精講精練

例:運用乘法公式計算

(1)(x+2y-3)(x-2y+3) (2)(a+b+c)2

(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3)

隨堂練習:教科書練習

五、小結:去括號法則

六、作業:教科書習題

初二數學怎么教案篇12

一、學習目標

1、使學生了解運用公式法分解因式的意義;

2、使學生掌握用平方差公式分解因式

二、重點難點

重點:掌握運用平方差公式分解因式。

難點:將單項式化為平方形式,再用平方差公式分解因式。

學習方法:歸納、概括、總結。

三、合作學習

創設問題情境,引入新課

在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的&39;形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。

如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。

1、請看乘法公式

左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?

利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。

a2—b2=(a+b)(a—b)

2、公式講解

如x2—16

=(x)2—42

=(x+4)(x—4)。

9m2—4n2

=(3m)2—(2n)2

=(3m+2n)(3m—2n)。

四、精講精練

例1、把下列各式分解因式:

(1)25—16x2;(2)9a2—b2。

例2、把下列各式分解因式:

(1)9(m+n)2—(m—n)2;(2)2x3—8x。

補充例題:判斷下列分解因式是否正確。

(1)(a+b)2—c2=a2+2ab+b2—c2。

(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

五、課堂練習

教科書練習。

六、作業

1、教科書習題。

2、分解因式:x4—16x3—4x4x2—(y—z)2。

3、若x2—y2=30,x—y=—5求x+y。

初二數學怎么教案篇13

一、教學內容:

本節內容是人教版教材八年級上冊,第十四章第2節乘法公式的第二課時——完全平方公式。

二、教材分析:

完全平方公式是乘法公式的重要組成部分,也是乘法運算知識的升華,它是在學生學習整式乘法后,對多項式乘法中出現的一種特殊的算式的總結,體現了從一般到特殊的思想方法。完全平方公式是學生后續學好因式分解、分式運算的必備知識,它還是配方法的基本模式,為以后學習一元二次方程、函數等知識奠定了基礎,所以說完全平方公式屬于代數學的基礎地位。

本節課內容是在學生掌握了平方差公式的基礎上,研究完全平方公式的推導和應用,公式的發現與驗證為學生體驗規律探索提供了一種較好的模式,培養學生逐步形成嚴密的邏輯推理能力。完全平方公式的學習對簡化某些代數式的.運算,培養學生的求簡意識很有幫助。使學生了解到完全平方公式是有力的數學工具。

重點:掌握完全平方公式,會運用公式進行簡單的計算。

難點:理解公式中的字母含義,即對公式中字母a、b的理解與正確應用。

三、教學目標

(1)經歷探索完全平方公式的推導過程,掌握完全平方公式,并能正確運用公式進行簡單計算。

(2)進一步發展學生的符號感和推理能力,了解公式的幾何背景,感受數與形之間的聯系,學會獨立思考。

(3)通過推導完全平方公式及分析結構特征,培養學生觀察、分析、歸納的能力,學會與他人合作交流,體驗解決問題的多樣性。

(4)體驗完全平方公式可以簡化運算從而激發學生的學習興趣;在自主探究、合作交流的學習過程中獲得體驗成功的喜悅,增強學習數學的自信心。

四、學情分析與教法學法

學情分析:課程標準提出數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上,本節課就是在前面的學習中,學生已經掌握了整式的乘法運算及平方差公式的基礎上開展的,具備了初步的總結歸納能力。另外,14歲的中學生充滿了好奇心,有較強的求知欲、創造欲、表現欲,所以只有能調動學生的學習熱情,本節內容才較易掌握。但八年級學生的探究能力有差異,邏輯推理能力也有待于提高,而且易粗心馬虎,這都是本節課要注意的問題。

學法:以自主探究為主要學習方式,使學生在獨立思考、歸納總結、合作交流

總結反思中獲得數學知識與技能。

教法:以啟發引導式為主要教學方式,在引導探究、歸納總結、典例精析、合作交流的教學過程中,教師做好組織者和引導者,讓學生在老師的指導下處于主動探究的學習狀態。

五、教學過程

(略)

六、教學評價

在教學中,教師在精心設置教學環節中,做到以學生為主體,做好組織者和引導者,全面評價學生在知識技能、數學思考、問題解決和情感態度等方面的表現。教師通過情境引入、提供問題引導學生從已有的知識為出發點,自主探究,發現問題,深入思考。學生解決問題要以獨立思考為主,當遇到困難時學會求助交流,教師也要給學生思考交流的時間,讓學生經歷得出結論的過程,培養發現問題解決問題的能力。

在整個學習過程中,通過對學生參與自主探究的程度、合作交流的意識以及獨立思考的習慣,發現問題的能力進行評價,并對學生的想法或結論給予鼓勵評價。

初二數學怎么教案篇14

教學目標:1、使學生在現實情境中理解有理數加法的意義

2、經歷探索有理數加法法則的過程,掌握有理數加法法則,并能準確地進行加法運算。[]

3、在教學中適當滲透分類討論思想。

重點:有理數的加法法則

重點:異號兩數相加的法則

教學過程:

二、講授新課

1、同號兩數相加的法則

問題:一個物體作左右方向的運動,我們規定向左為負,向右為正。向右運動5m記作5m,向左運動5m記作-5m。如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是多少?

學生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)

教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少?

學生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)

師生共同歸納法則:同號兩數相加,取與加數相同的符號,并把絕對值相加。

2、異號兩數相加的法則

教師:如果物體先向右運動5m,再向左運動3m,那么兩次運動后物體從起點向哪個方向運動了多少米?

學生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)

師生借此結論引導學生歸納異號兩數相加的法則:異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。

3、互為相反數的兩個數相加得零。

教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少?

學生回答:經過兩次運動后,物體又回到了原點。也就是物體運動了0m。

師生共同歸納出:互為相反數的兩個數相加得零

教師:你能用加法法則來解釋這個法則嗎?

學生回答:可用異號兩數相加的法則來解釋。

一般地,還有一個數同0相加,仍得這個數。

三、鞏固知識

課本P18例1,例2、課本P118練習1、2題

四、總結

運算的關鍵:先分類,再按法則運算;

運算的步驟:先確定符號,再計算絕對值。

注意:要借用數軸來進一步驗證有理數的加法法則;異號兩數相加,首先要確定符號,再把絕對值相加。

五、布置作業

課本P24習題1.3第1、7題。

初二數學怎么教案篇15

教學目標:

1.通過把長方形或正方形折、剪、拼等活動,直觀認識三角形和平行四邊形,知道這兩個圖形的名稱;并能識別三角形和平行四邊形,初步知道它們在日常生活中的應用。

2.在折圖形、剪圖形、拼圖形等活動中,體會圖形的變換,發展對圖形的空間想象能力。

3.在學習活動中積累對數學的興趣,增強與同學交往、合作的意識。

教學重點:直觀認識三角形和平行四邊形,知道它們的名稱,并能識別這些圖形,知道它們在日常生活中的應用。

教學難點:讓學生動手在釘子板上圍、用小棒拼平行四邊形。

教學用具:長方形模型、長方形和正方形的紙、課件、小棒。

教學方法:實踐操作法

教學過程:

一、復習鋪墊

出示長方形問“小朋友們,誰愿意來介紹一下這位老朋友?他介紹得對嗎?”接著出示第二個圖形(正方形),問:“這個老朋友又是誰呢?”再出示圓:“它叫什么名字?這是我們已經認識的長方形、正方形和圓三位老朋友。我發現你們很喜歡折紙,是嗎?今天我特意為大家準備了一個折紙的游戲,高興嗎?

二、啟發思維、引出新知

1.認識三角形

(1)教師出示一張正方形紙,提問:這是什么圖形?

學生回答:這是正方形。

師:你能把一張正方形紙對折成一樣的兩部分嗎?

學生活動,教師巡視,了解學生折紙的情況。

組織學生交流你是怎樣折的,折出了什么圖形?

師:我們現在折出來的是一個什么圖形呢?

生答:三角形。

師:小朋友們一下就認識了我們的新朋友。對了,這就是三角形。出示并貼上三角形。

板書:三角形

(2)提問:這樣的圖形好像在哪兒也看到過?想一想?

①先在小組里交流。

②學生回答。

③老師也帶來了幾個三角形。

(3)師小結:在我們的生活中有許多物體的面是三角形面,只要小朋友多觀察,就會有更多的發現。

2.認識平行四邊形

(1)這是一張什么形狀的紙?(演示長方形紙)怎樣折一下,把它折成兩個完全一樣的三角形?

(2)學生先想一想,然后同桌商量著試折。教師巡視

(3)交流。你們會像他一樣折嗎?

(4)折好后把兩個三角形剪下來。要想知道這兩個三角形是不是完全一樣,你能有什么辦法?(把它們疊在一起)這就是完全一樣。

(5)現在我們手里都有這樣兩個一樣的三角形,用它們拼一拼,看看能拼出什么圖形?學生分組活動,教師巡視。

交流探討。同學們可能拼出以下幾種圖形:三角形、長方形、四邊形、平行四邊形。每出現一種拼法,請一位同學在投影儀上向大家展示。師:這個圖形真漂亮,它叫什么名字呀!這個圖形就是我們要認識的另一個新朋友——平行四邊形。(出示圖形,并板書:平行四邊形)(板書)

出示一個長方形的模型,提問:“這個圖形的面是一個什么圖形?”學生回答后,老師將這個長方形輕輕拉動,這時出現的是一個平行四邊形。提問:“現在這個圖形的面變成了一個什么圖形?”

小結:我們已經認識了長方形,其實只要把它稍微變一變,就是一個平行四邊形了,你看:(演示長方形變平行四邊形)。對我們生活中有很多地方就利用了平行四邊形可以變的特點制作了很多東西,如:籬笆、樓梯、伸縮門、可拉伸的衣架等。

三、體驗深化

板書設計

認識圖形(二)

認識三角形平行四邊形

三角形平行四邊形

初二數學怎么教案篇16

一、復習引入

(學生活動)解下列方程:

(1)x2-4x+7=0(2)2x2-8x+1=0

老師點評:我們上一節課,已經學習了如何解左邊不含有x的完全平方形式的一元二次方程以及不可以直接開方降次解方程的轉化問題,那么這兩道題也可以用上面的方法進行解題.

解:略.(2)與(1)有何關聯?

二、探索新知

討論:配方法解一元二次方程的一般步驟:

(1)先將已知方程化為一般形式;

(2)化二次項系數為1;

(3)常數項移到右邊;

(4)方程兩邊都加上一次項系數的一半的平方,使左邊配成一個完全平方式;

(5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無實根.

例1解下列方程:

(1)2x2+1=3x(2)3x2-6x+4=0(3)(1+x)2+2(1+x)-4=0

分析:我們已經介紹了配方法,因此,我們解這些方程就可以用配方法來完成,即配一個含有x的完全平方式.

解:略.

三、鞏固練習

教材第9頁練習2.(3)(4)(5)(6).

四、課堂小結

本節課應掌握:

1.配方法的概念及用配方法解一元二次方程的步驟.

2.配方法是解一元二次方程的通法,它的重要性,不僅僅表現在一元二次方程的解法中,也可通過配方,利用非負數的性質判斷代數式的正負性.在今后學習二次函數,到高中學習二次曲線時,還將經常用到.

五、作業布置

教材第17頁

初二數學怎么教案篇17

學習目標:

1、了解平行線性質定理和判定定理在條件和結論上的區別,體會互逆的思維過程;

2、能熟練應用平行線的性質公理及定理。

二、試一試

自學指導:平行線性質公理:兩直線平行,同位角相等

1、思考下列各題,你能利用平行線性質公理解決它們嗎?

2、充分思考后自學教材P229-231,學完后合上課本完成下列各題,注意邏輯和書寫。

(1)已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的內錯角。請根據平行線性質公理證明∠1=∠2

由此得平行線性質定理1:

(2)已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的同旁內角。請根據平行線性質公理或上題已證的定理證明∠1+∠2=180°

由此得平行線性質定理2:

三、練一練

1、已知:如圖,直線a,b,c被直線d所截,且a∥b,c∥b

(1)求證:a∥c

(2)請將(1)題證得的結論用一句話總結出來

2、利用“兩直線平行,同旁內角互補”證明“平行四邊形對角線相等”。

五、記一記

1、兩直線平行的性質公理及兩個性質定理;

2、平行線的性質補充結論

(1)垂直于兩平行線之一的直線必垂直于另一條直線

(2)夾在兩平行線之間的平行線段相等;

(3)兩條平行線間的距離處處相等;

(4)經過直線外一點,有且只有一條直線和已知直線平行;

(5)如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等或者互補

B組:請在補充結論中選擇你感興趣的進行證明:

初二數學怎么教案篇18

教學目標

1.通過實際操作,了解什么叫做軸對稱變換.

2.如何作出一個圖形關于一條直線的軸對稱圖形.

教學重點

1.軸對稱變換的定義.

2.能夠按要求作出簡單平面圖形經過軸對稱后的圖形.

教學難點

1.作出簡單平面圖形關于直線的軸對稱圖形.

2.利用軸對稱進行一些圖案設計.

教學過程

Ⅰ.設置情境,引入新課

在前一個章節,我們學習了軸對稱圖形以及軸對稱圖形的一些相關的性質問題.在上節課的作業中,我們有個要求,讓同學們自己思考一種作軸對稱圖形的方法,現在來看一下同學們完成的怎么樣.

將一張紙對折后,用針尖在紙上扎出一個圖案,將紙打開后鋪平,得到的兩個圖案是關于折痕成軸對稱的圖形.

準備一張質地較軟,吸水性能好的紙或報紙,在紙的一側上滴上一滴墨水,將紙迅速對折,壓平,并且手指壓出清晰的折痕.再將紙打開后鋪平,位于折痕兩側的墨跡圖案也是對稱的.

這節課我們就是來作簡單平面圖形經過軸對稱后的圖形.

Ⅱ.導入新課

由我們已經學過的知識知道,連結任意一對對應點的線段被對稱軸垂直平分.

類似地,我們也可以由一個圖形得到與它成軸對稱的另一個圖形,重復這個過程,可以得到美麗的圖案.

對稱軸方向和位置發生變化時,得到的圖形的方向和位置也會發生變化.大家看大屏幕,從電腦演示的圖案變化中找出對稱軸的方向和位置,體會對稱軸方

向和位置的變化在圖案設計中的奇妙用途.

下面,同學們自己動手在一張紙上畫一個圖形,將這張紙折疊描圖,再打開看看,得到了什么?改變折痕的位置并重復幾次,又得到了什么?同學們互相交流一下.

結論:由一個平面圖形呆以得到它關于一條直線L對稱的圖形,這個圖形與原圖形的形狀、大小完全相同;新圖形上的每一點,都是原圖形上的某一點關于直線L的對稱點;

連結任意一對對應點的線段被對稱軸垂直平分.

我們把上面由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換.

成軸對稱的兩個圖形中的任何一個可以看作由另一個圖形經過軸對稱變換后得到.一個軸對稱圖形也可以看作以它的一部分為基礎,經軸對稱變換擴展而成的.

取一張長30厘米,寬6厘米的紙條,將它每3厘米一段,一正一反像“手風琴”那樣折疊起來,并在折疊好的紙上畫上字母E,用小刀把畫出的字母E挖去,拉開“手風琴”,你就可以得到以字母E為圖案的花邊.回答下列問題.

(1)在你所得的花邊中,相鄰兩個圖案有什么關系?相間的兩個圖案又有什么關系?說說你的理由.

(2)如果以相鄰兩個圖案為一組,每一組圖案之間有什么關系?三個圖案為一組呢?為什么?

(3)在上面的活動中,如果先將紙條縱向對折,再折成“手風琴”,然后繼續上面的步驟,此時會得到怎樣的花邊?它是軸對稱圖形嗎?先猜一猜,再做一做.

注:為了保證剪開后的紙條保持連結,畫出的圖案應與折疊線稍遠一些.

Ⅲ.隨堂練習

(一)如圖(1),將一張正六邊形紙沿虛線對折折3次,得到一個多層的60°角形紙,用剪刀在折疊好的紙上隨意剪出一條線,如圖(2).

(1)猜一猜,將紙打開后,你會得到怎樣的圖形?

(2)這個圖形有幾條對稱軸?

(3)如果想得到一個含有5條對稱軸的圖形,你應取什么形狀的紙?應如何折疊?

答案:(1)軸對稱圖形.

(2)這個圖形至少有3條對稱軸.

(3)取一個正十邊形的紙,沿它通過中心的五條對角線折疊五次,得到一個多層的36°角形紙,用剪刀在疊好的紙上任意剪出一條線,打開即可得到一個至少含有5條對稱軸的軸對稱圖形.

(二)回顧本節課內容,然后小結.

Ⅳ.課時小結

本節課我們主要學習了如何通過軸對稱變換來作出一個圖形的軸對稱圖形,并且利用軸對稱變換來設計一些美麗的圖案.在利用軸對稱變換設計圖案時,要注意運用對稱軸位置和方向的變化,使我們設計出更新疑獨特的美麗圖案.

104818 主站蜘蛛池模板: TMT观察网_独特视角观察TMT行业| YAGEO国巨电容|贴片电阻|电容价格|三星代理商-深圳市巨优电子有限公司 | 广州展台特装搭建商|特装展位设计搭建|展会特装搭建|特装展台制作设计|展览特装公司 | 论文查重_免费论文查重_知网学术不端论文查重检测系统入口_论文查重软件 | CNC机加工-数控加工-精密零件加工-ISO认证厂家-鑫创盟 | 定时排水阀/排气阀-仪表三通旋塞阀-直角式脉冲电磁阀-永嘉良科阀门有限公司 | 浙江自考_浙江自学考试网 | 外贮压-柜式-悬挂式-七氟丙烷-灭火器-灭火系统-药剂-价格-厂家-IG541-混合气体-贮压-非贮压-超细干粉-自动-灭火装置-气体灭火设备-探火管灭火厂家-东莞汇建消防科技有限公司 | 粉末包装机,拆包机厂家,价格-上海强牛包装机械设备有限公司 | 开业庆典_舞龙舞狮_乔迁奠基仪式_开工仪式-神挚龙狮鼓乐文化传媒 | 好杂志网-首页| 智慧食堂_食堂管理系统_食堂订餐_食堂消费系统—客易捷 | 江西自考网-江西自学考试网 | 【灵硕展览集团】展台展会设计_展览会展台搭建_展览展示设计一站式服务公司 | 口臭的治疗方法,口臭怎么办,怎么除口臭,口臭的原因-口臭治疗网 | 气动隔膜阀_气动隔膜阀厂家_卫生级隔膜阀价格_浙江浙控阀门有限公司 | led冷热冲击试验箱_LED高低温冲击试验箱_老化试验箱-爱佩百科 | 测试治具|过炉治具|过锡炉治具|工装夹具|测试夹具|允睿自动化设备 | 洗石机-移动滚筒式,振动,螺旋,洗矿机-青州冠诚重工机械有限公司 | 工作心得_读书心得_学习心得_找心得体会范文就上学道文库 | 太阳能发电系统-太阳能逆变器,控制器-河北沐天太阳能科技首页 | 紧急切断阀_气动切断阀_不锈钢阀门_截止阀_球阀_蝶阀_闸阀-上海上兆阀门制造有限公司 | 【德信自动化】点胶机_全自动点胶机_自动点胶机厂家_塑料热压机_自动螺丝机-深圳市德信自动化设备有限公司 | 灌木树苗-绿化苗木-常绿乔木-价格/批发/基地 - 四川成都途美园林 | 淄博不锈钢无缝管,淄博不锈钢管-鑫门物资有限公司 | 体检车_移动CT车_CT检查车_CT车_深圳市艾克瑞电气有限公司移动CT体检车厂家-深圳市艾克瑞电气有限公司 | 胶水,胶粘剂,AB胶,环氧胶,UV胶水,高温胶,快干胶,密封胶,结构胶,电子胶,厌氧胶,高温胶水,电子胶水-东莞聚力-聚厉胶粘 | 轴流风机-鼓风机-离心风机-散热风扇-罩极电机,生产厂家-首肯电子 | 中山市派格家具有限公司【官网】 | 高温高压釜(氢化反应釜)百科| 平面钻,法兰钻,三维钻-山东兴田阳光智能装备股份有限公司 | 河南卓美创业科技有限公司-河南卓美防雷公司-防雷接地-防雷工程-重庆避雷针-避雷器-防雷检测-避雷带-避雷针-避雷塔、机房防雷、古建筑防雷等-山西防雷公司 | 玉米加工设备,玉米深加工机械,玉米糁加工设备.玉米脱皮制糁机 华豫万通粮机 | 盐城网络公司_盐城网站优化_盐城网站建设_盐城市启晨网络科技有限公司 | 领先的大模型技术与应用公司-中关村科金 | 硬齿面减速机[型号全],ZQ减速机-淄博久增机械 | 论文查重_免费论文查重_知网学术不端论文查重检测系统入口_论文查重软件 | hc22_hc22价格_hc22哈氏合金—东锜特殊钢 | 扬尘监测_扬尘监测系统_带证扬尘监测设备 - 郑州港迪科技有限公司 | 深圳市宏康仪器科技有限公司-模拟高空低压试验箱-高温防爆试验箱-温控短路试验箱【官网】 | 手持式3d激光扫描仪-便携式三维立体扫描仪-北京福禄克斯 |