初二數學教案模板表格
編寫教案可以幫助教師養成嚴謹的工作態度和認真的辦事習慣,同時可以使備課更加充分,上課有條不紊。怎樣寫初二數學教案模板表格?這里提供初二數學教案模板表格分享,供大家參考。
初二數學教案模板表格篇1
一、讀一讀學習目標:1、熟練證明的基本步驟和書寫格式;
2、會根據“同位角相等,兩直線平行”(公理)證明“同旁內角互補,兩直線平行”“內錯角相等,兩直線平行”(定理),并能應用這些結論。
二、試一試
自學指導:平行線判定公理:同位角相等,兩直線平行
1、自學教材P229-231,學完后合上課本完成下列各題:
(1)已知:如右圖所示,∠1和∠2是直線a,b被直線c截出的同旁內角,且∠1和∠2互補。利用平行線判定公理證明a∥b
由此得,平行線判定定理1:;
(2)已知:如右圖所示,∠1和∠2是直線a,b被直線c截出的內錯角,且∠1=∠2利用平行線判定公理或上述已證明的判定定理證明a∥b
由此得,平行線判定定理2:.
三、練一練
1、在教材上完成P231隨堂練習1;P232知識技能1;P233問題解決
2、已知:如右圖所示,直線a,b被直線c所截,且∠1+∠2=180°
求證:a∥b你有幾種證明方法?請選擇其中兩種方法來證明
五、記一記:證明命題的一般步驟:
(1)根據題意畫出圖形(若已給出圖形,則可省略)
(2)根據題設和結論,結合圖形,寫出已知和求證;
(3)經過分析,找出已知退出求證的途徑,寫出證明過程;
(4)檢查證明過程是否正確完善。
初二數學教案模板表格篇2
一、教學目標
1.掌握矩形的定義,知道矩形與平行四邊形的關系.
2.掌握矩形的性質定理.
3.使學生能應用矩形定義、性質等知識,解決簡單的證明題和計算題,進一步培養學生的分析能力.
4.通過性質的學習,體會矩形的應用美.
二、教法設計
觀察、啟發、總結、提高,類比探討,討論分析,啟發式.
三、重點、難點及解決辦法
1.教學重點:矩形的性質及其推論.
2.教學難點:矩形的本質屬性及性質定理的綜合應用.
四、課時安排
1課時
五、教具學具準備
教具(一個活動的平行四邊形),投影儀及膠片,常用畫圖工具
六、師生互動活動設計
教具演示、創設情境,觀察猜想,推理論證
七、教學步驟
【復習提問】
什么叫平行四邊形?它和四邊形有什么區別?
【引入新課】
我們已經知道平行四邊形是特殊的四邊形,因此平行四邊形除具有四邊形的性質外,還有它的特殊性質,同樣對于平行四邊形來說,也有特殊情況即特殊的平行四邊形,堂課我們就來研究一種特殊的平行四邊形矩形(寫出課題).
【講解新課】
制一個活動的平行四邊形教具,堂上進行演示圖,使學生注意觀察四邊形角的變化,當變到一個角是直角時,指出這時平行四邊形是矩形,使學生明確矩形是特殊的平行四邊形(特殊之處就在于一個角是直角,深刻理解矩形與平行四邊形的聯系和區別).
矩形的性質:
既然矩形是一種特殊的平行四邊形,就應具有平行四邊形性質,同時矩形又是特殊的平行四邊形,比平行四邊形多了一個角是直角的條件,因而它就增加了一些特殊性質.
繼續演示教具,當它變成矩形時,學生容易看到它的四個角都是直角;它的對角線也相等(寫出這兩個結論),指出觀察出來的結論不能做為定理,需要證明.引導學生利用平行四邊形角的性質證明得出.
矩形性質定理1:矩形的四個角都是直角.
矩形性質定理2:矩形對角線相等.
由矩形性質定理2我們可以得到
推論:直角三角形斜邊上的中線等于斜邊的一半.
(這實際上是△的一個重要性質,即△斜邊中點到三頂點的距離相等,它在求線段長或線段部分關系時經常用到)
例1已知如圖1矩形的兩條對角線相交于點,,,求矩形對角線的長.(按教材的格式)
(強調這種計算題的解題格式,防止學生離開幾何元素之間的關系,而單純進行代數計算)
【總結、擴展】
1.小結:(用投影打出)
(1)矩形、平行四邊形、四邊形從屬關系如圖.
(2)矩形性質.
1.具有平行四邊形的所有性質.
2.特有性質:四個角都是直角,對角線相等.
3.思考題:已知如圖,是矩形對角線交點,平分,,求的度數
八、布置作業
教材P158中2、5,P195中7.
九、板書設計
十、隨堂練習
教材P146中1、2、3、4
初二數學教案模板表格篇3
設計意圖
認識三角形是幼兒幾何形體教育的內容之一,幼兒的幾何形體教育是幼兒數學教育的重點內容。學習一些幾何形體的簡單知識能幫助他們對客觀世界中形形色色的物體做出辨別和區分。發展它們的空間知覺能力和初步的空間想象力從而為小學學習幾何形體做些準備。根據小班幼兒的思維特點和活潑好動的性格,我將三角形的圖形特征編成簡短的故事,再結合圖形拼擺,讓孩子在玩中學、學中樂、樂中做。使幼兒養成動手、動口、動腦的好習慣,培養幼兒的創新意識。
活動目標
1、知道三角形的主要特征,即三角形由三條邊,三個角組成。
2、能找出生活中和三角形相似的物體。
3、發展幼兒邏輯思維能力。
4、樂意參與活動,體驗成功后的樂趣。
活動準備
1、小白兔、蘿卜、蘑菇圖片各一個,
2、圖形組成的實物圖片4張。
3、孩子人手3個三角形。
活動過程
一、故事:小白兔過生日今天是小白兔的生日,早晨小白兔高高興興的從家里出來,它要去采蘑菇,走著走著它看到一個大蘿卜,小白兔撿起大蘿卜繼續往前走,走到蘑菇地里采了一個大蘑菇高興的回家了。
二、觀察小白兔的出行路線請一個小朋友將路線用線連接起來,觀察像什么圖形。
三、引導幼兒觀察比較圖形,幼兒每人一個三角形。
1、通過自己數一數,試一試,感知圖形特征,并充分讓幼兒表述,得出圖形的特征。
2、老師小結三角形特征,使幼兒獲得的知識完整化。
四、復習鞏固三角形的特征
1、給圖形寶寶找朋友,讓幼兒從眾多幾何圖形卡片中找出三角形。
并一一出示三角形,并說出為什么?
2、觀察圖形拼圖,找出三角形,數一數用了幾個三角形?
3、請幼兒在周圍環境中找出象三角形的東西。
活動反思:
小班幼兒的思維是具體形象思維,用故事引出開頭吸引孩的注意,在拼拼擺擺的過程中加深孩子對三角形的認識,老師及時的小結使孩子獲得知識的完整性。由于生活中屬于三角形的物體少一些,所以孩子豐富的不是很多。
初二數學教案模板表格篇4
教學目標
1、知道解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。
2、學會用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。
3、引導學生體會“降次”化歸的思路。
重點難點
重點:掌握用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。
難點:通過分解因式或直接開平方將一元二次方程降次為一元一次方程。
教學過程
(一)復習引入
1、判斷下列說法是否正確
(1)若p=1,q=1,則pq=l(),若pq=l,則p=1,q=1();
(2)若p=0,g=0,則pq=0(),若pq=0,則p=0或q=0();
(3)若x+3=0或x-6=0,則(x+3)(x-6)=0(),
若(x+3)(x-6)=0,則x+3=0或x-6=0();
(4)若x+3=或x-6=2,則(x+3)(x-6)=1(),
若(x+3)(x-6)=1,則x+3=或x-6=2()。
答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。
2、填空:若x2=a;則x叫a的,x=;若x2=4,則x=;
若x2=2,則x=。
答案:平方根,±,±2,±。
(二)創設情境
前面我們已經學了一元一次方程和二元一次方程組的解法,解二元一次方程組的基本思路是什么?(消元、化二元一次方程組為一元一次方程)。由解二元一次方程組的基本思路,你能想出解一元二次方程的基本思路嗎?
引導學生思考得出結論:解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。
給出1.1節問題一中的方程:(35-2x)2-900=0。
問:怎樣將這個方程“降次”為一元一次方程?
(三)探究新知
讓學生對上述問題展開討論,教師再利用“復習引入”中的內容引導學生,按課本P.6那樣,用因式分解法和直接開平方法,將方程(35-2x)2-900=0“降次”為兩個一元一次方程來解。讓學生知道什么叫因式分解法和直接開平方法。
(四)講解例題
展示課本P.7例1,例2。
按課本方式引導學生用因式分解法和直接開平方法解一元二次方程。
引導同學們小結:對于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接開平方法解。
因式分解法的基本步驟是:把方程化成一邊為0,另一邊是兩個一次因式的乘積(本節課主要是用平方差公式分解因式)的形式,然后使每一個一次因式等于0,分別解兩個一元一次方程,得到的兩個解就是原一元二次方程的解。
直接開平方法的步驟是:把方程變形成(ax+b)2=k(k≥0),然后直接開平方得ax+b=和ax+b=-,分別解這兩個一元一次方程,得到的解就是原一元二次方程的解。
注意:(1)因式分解法適用于一邊是0,另一邊可分解成兩個一次因式乘積的一元二次方程;
(2)直接開平方法適用于形如(ax+b)2=k(k≥0)的方程,由于負數沒有平方根,所以規定k≥0,當k<0時,方程無實數解。
(五)應用新知
課本P.8,練習。
(六)課堂小結
1、解一元二次方程的基本思路是什么?
2、通過“降次”,把—元二次方程化為兩個一元一次方程的方法有哪些?基本步驟是什么?
3、因式分解法和直接開平方法適用于解什么形式的一元二次方程?
(七)思考與拓展
不解方程,你能說出下列方程根的情況嗎?
(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。
答案:(1)有兩個不相等的實數根;(2)和(4)沒有實數根;(3)有兩個相等的實數根
通過解答這個問題,使學生明確一元二次方程的解有三種情況。
布置作業
初二數學教案模板表格篇5
學習目標:
1、了解平行線性質定理和判定定理在條件和結論上的區別,體會互逆的思維過程;
2、能熟練應用平行線的性質公理及定理。
二、試一試
自學指導:平行線性質公理:兩直線平行,同位角相等
1、思考下列各題,你能利用平行線性質公理解決它們嗎?
2、充分思考后自學教材P229-231,學完后合上課本完成下列各題,注意邏輯和書寫。
(1)已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的內錯角。請根據平行線性質公理證明∠1=∠2
由此得平行線性質定理1:
(2)已知,如圖,直線a∥b,∠1和∠2是直線a,b被直線c截出的同旁內角。請根據平行線性質公理或上題已證的定理證明∠1+∠2=180°
由此得平行線性質定理2:
三、練一練
1、已知:如圖,直線a,b,c被直線d所截,且a∥b,c∥b
(1)求證:a∥c
(2)請將(1)題證得的結論用一句話總結出來
2、利用“兩直線平行,同旁內角互補”證明“平行四邊形對角線相等”。
五、記一記
1、兩直線平行的性質公理及兩個性質定理;
2、平行線的性質補充結論
(1)垂直于兩平行線之一的直線必垂直于另一條直線
(2)夾在兩平行線之間的平行線段相等;
(3)兩條平行線間的距離處處相等;
(4)經過直線外一點,有且只有一條直線和已知直線平行;
(5)如果一個角的兩邊分別平行于另一個角的兩邊,那么這兩個角相等或者互補
B組:請在補充結論中選擇你感興趣的進行證明:
初二數學教案模板表格篇6
一、學習目標:讓學生了解多項式公因式的意義,初步會用提公因式法分解因式
二、重點難點
重點:能觀察出多項式的公因式,并根據分配律把公因式提出來
難點:讓學生識別多項式的公因式.
三、合作學習:
公因式與提公因式法分解因式的概念.
三個矩形的長分別為a、b、c,寬都是m,則這塊場地的面積為ma+mb+mc,或m(a+b+c)
既ma+mb+mc=m(a+b+c)
由上式可知,把多項式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當于把公因式m從各項中提出來,作為多項式ma+mb+mc的一個因式,把m從多項式ma+mb+mc各項中提出后形成的多項式(a+b+c),作為多項式ma+mb+mc的另一個因式,這種分解因式的方法叫做提公因式法。
四、精講精練
例1、將下列各式分解因式:
(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3)a(x-3)+2b(x-3)
通過剛才的練習,下面大家互相交流,總結出找公因式的一般步驟.
首先找各項系數的____________________,如8和12的公約數是4.
其次找各項中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數取次數最___________的.
課堂練習
1.寫出下列多項式各項的公因式.
(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72(2)a2b-5ab
(3)4m3-6m2(4)a2b-5ab+9b
(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2
五、小結:
總結出找公因式的一般步驟.:
首先找各項系數的大公約數,
其次找各項中含有的相同的字母,相同字母的指數取次數最小的.
注意:(a-b)2=(b-a)2
六、作業1、教科書習題
2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)20__+(-2)20__
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
初二數學教案模板表格篇7
【教學目標】
知識與技能
會推導平方差公式,并且懂得運用平方差公式進行簡單計算。
過程與方法
經歷探索特殊形式的多項式乘法的過程,發展學生的符號感和推理能力,使學生逐漸掌握平方差公式。
情感、態度與價值觀
通過合作學習,體會在解決具體問題過程中與他人合作的重要性,體驗數學活動充滿著探索性和創造性。
【教學重難點】
重點:平方差公式的推導和運用,以及對平方差公式的幾何背景的了解。
難點:平方差公式的應用。
關鍵:對于平方差公式的推導,我們可以通過教師引導,學生觀察、總結、猜想,然后得出結論來突破;抓住平方差公式的本質特征,是正確應用公式來計算的關鍵。
【教學過程】
一、創設情境,故事引入
【情境設置】教師請一位學生講一講《狗熊掰棒子》的故事
【學生活動】1位學生有聲有色地講述著《狗熊掰棒子》的故事,其他學生認真聽著,不時補充。
【教師歸納】聽了這則故事之后,同學們應該懂得這么一個道理,學習千萬不能像狗熊掰棒子一樣,前面學,后面忘,那么,上節課我們學習了什么呢?還記得嗎?
【學生回答】多項式乘以多項式。
【教師激發】大家是不是已經掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯誤呢?下面我們就來做這幾道題,看看你是否掌握了以前的知識。
【問題牽引】計算:
(1)(x+2)(x—2);(2)(1+3a)(1—3a);
(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,觀察以上算式及運算結果,你能發現什么規律?再舉兩個例子驗證你的發現。
【學生活動】分四人小組,合作學習,獲得以下結果:
(1)(x+2)(x—2)=x2—4;
(2)(1+3a)(1—3a)=1—9a2;
(3)(x+5y)(x—5y)=x2—25y2;
(4)(y+3z)(y—3z)=y2—9z2。
【教師活動】請一位學生上臺演示,然后引導學生仔細觀察以上算式及其運算結果,尋找規律。
【學生活動】討論
【教師引導】剛才同學們從上述算式中找到了這一組整式乘法的結果的規律,這些是一類特殊的多項式相乘,那么如何用字母來表示剛才同學們所歸納出來的特殊多項式相乘的規律呢?
【學生回答】可以用(a+b)(a—b)表示左邊,那么右邊就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
用語言描述就是:兩個數的和與這兩個數的差的積,等于這兩個數的平方差。
【教師活動】表揚學生的探索精神,引出課題──平方差,并說明這是一個平方差公式和公式中的字母含義。
二、范例學習,應用所學
【教師講述】
平方差公式的運用,關鍵是正確尋找公式中的a和b,只有正確找到a和b,一切就變得容易了。現在大家來看看下面幾個例子,從中得到啟發。
例1:運用平方差公式計算:
(1)(2x+3)(2x—3);
(2)(b+3a)(3a—b);
(3)(—m+n)(—m—n)。
《乘法公式》同步練習
二、填空題
5、冪的乘方,底數______,指數______,用字母表示這個性質是______。
6、若32×83=2n,則n=______。
《乘法公式》同步測試題
25、利用正方形的面積公式和梯形的面積公式即可求解;
根據所得的兩個式子相等即可得到。
此題考查了平方差公式的幾何背景,根據正方形的面積公式和梯形的面積公式得出它們之間的關系是解題的關鍵,是一道基礎題。
26、由等式左邊兩數的底數可知,兩底數是相鄰的兩個自然數,右邊為兩底數的和,由此得出規律;
等式左邊減數的底數與序號相同,由此得出第n個式子;
初二數學教案模板表格篇8
教學目標:
1、通過操作活動,使學生體會所學平面圖形的特征,并能用自己的語言描述長方形、正方形邊的特征。
1、通過觀察、操作,使學生初步感知所學圖形之間的關系。
3、能根據要求自己操作學具。
4、培養學生團結協作的精神。
教學重難點:
平面圖形之間的關系。
教具、學具準備:教師:各種平面圖形的圖片;學生:學具袋中的平面圖形。
教學過程:
一、基礎訓練。
20以內退位減法的練習。(20題,學生獨立在練習紙上完成,電腦計時2分鐘。)
二、情景引入。
小朋友們,老師今天要領你們去圖形王國參觀學習,你們想去嗎?
三、探究交流,獲取新知。
1、引舊入新,初步感知長方形和正方形的特征。
(1)出示圖形王國的向導,引出所學過的圖形,學生認一認。
(2)先后出示長短不同的5條線段,讓學生選其中的4條分別拼成一個長方形并說說選擇它們的理由。
在學生說出理由的同時講解“對邊”的含義。
2、動手操作,具體感知長方形和正方形的特征
(1)設難:你如何證明長方形的對邊一樣長呢?
先讓學生自由說說自己的方法,之后再讓學生看書第27面例1中的對折方法,引導學生對折證明。
(2)老師小結并板書:長方形的對邊相等。
(3)引導學生通過動手折疊證明正方形的四條邊一樣長。
(4)老師小結并板書:正方形的四條邊都相等。
3、動手拼圖,感知平面圖形之間的關系。
(1)用兩個同樣的長方形拼一拼,你能拼成什么圖形?
學生先動手拼,再分別展示學生的作品。
(2)教師提出要求:用四個大小相同的正方形你可以拼成什么圖形呢。
先讓學生動手拼,再分別展示學生的圖形。
(3)用四個三角形可能拼出什么圖形?
把拼法不同的圖案展示出來,并加以表揚肯定。
4、課中操:《小手拍拍》
5、平面圖形之間的相互轉換。
(1)正方形轉換成三角形。
(2)長方形轉換成正方形。
(3)圓形轉換成正方形。
四、應用知識,體驗成功。
1、說出圖中是用哪些圖形拼出來的。
2、出示兩個大小不同的長方形,問:它們能否拼成一個正方形呢?為什么?
3、生活中的拼圖。
出示幾組生活中的圖案,讓學生感受圖形拼組的實用、美觀,激發學習興趣。
五、質疑問難
長方形和正方形有什么不同?
六、小結本課內容。
1、小朋友們,今天我們一起學習了什么內容?
2、談一談你的收獲。
初二數學教案模板表格篇9
一、教學目標:
1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;
2、能力目標:
①,在實踐操作過程中,逐步探索圖形之間的平移關系;
②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;
3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。
二、重點與難點:
重點:圖形連續變化的特點;
難點:圖形的劃分。
三、教學方法:
講練結合。使用多媒體課件輔助教學。
四、教具準備:
多媒體、磁性板,若干小正六邊形,“工”字的&39;磚,組合圖形。
五、教學設計:
創設情景,探究新知:
(演示課件):教材上小狗的圖案。提問:
(1)這個圖案有什么特點?
(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?
(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?
小組討論,派代表回答。(答案可以多種)
讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。
看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?
小組討論,派代表到臺上給大家講解。
氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。
暢所欲言,互相補充。
課堂小結:
在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。
課堂練習:
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對于每種答案,教師都要給予充分的肯定。
六、教學反思:
本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。
初二數學教案模板表格篇10
教學目標
1.知識與技能
領會運用完全平方公式進行因式分解的方法,發展推理能力。
2.過程與方法
經歷探索利用完全平方公式進行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟。
3.情感、態度與價值觀
培養良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應用能力。
重、難點與關鍵
1.重點:理解完全平方公式因式分解,并學會應用。
2.難點:靈活地應用公式法進行因式分解。
3.關鍵:應用“化歸”、“換元”的思想方法,把問題進行形式上的轉化,達到能應用公式法分解因式的目的。
教學方法
采用“自主探究”教學方法,在教師適當指導下完成本節課內容。
教學過程
一、回顧交流,導入新知
【問題牽引】
1.分解因式:
(1)-9x2+4y2;
(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知識遷移】
2.計算下列各式:
(1)(m-4n)2;
(2)(m+4n)2;
(3)(a+b)2;
(4)(a-b)2.
【教師活動】引導學生完成下面兩道題,并運用數學“互逆”的思想,尋找因式分解的規律。
3.分解因式:
(1)m2-8mn+16n2
(2)m2+8mn+16n2;
(3)a2+2ab+b2;
(4)a2-2ab+b2.
【學生活動】從逆向思維的角度入手,很快得到下面答案:
解:(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.
【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例學習,應用所學
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;
(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值。
【思路點撥】根據完全平方式的定義,解此題時應分兩種情況,即兩數和的平方或者兩數差的平方,由此相應求出a的值,即可求出a3。
三、隨堂練習,鞏固深化
課本P170練習第1、2題。
【探研時空】
1.已知x+y=7,xy=10,求下列各式的值。
(1)x2+y2;
(2)(x-y)2
2.已知x+=-3,求x4+的值。
四、課堂總結,發展潛能
由于多項式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項式因式分解的公式,主要的有以下三個:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2。
在運用公式因式分解時,要注意:
(1)每個公式的形式與特點,通過對多項式的項數、次數等的總體分析來確定,是否可以用公式分解以及用哪個公式分解,通常是,當多項式是二項式時,考慮用平方差公式分解;當多項式是三項時,應考慮用完全平方公式分解;
(2)在有些情況下,多項式不一定能直接用公式,需要進行適當的組合、變形、代換后,再使用公式法分解;
(3)當多項式各項有公因式時,應該首先考慮提公因式,然后再運用公式分解。
五、布置作業,專題突破