小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高中實(shí)用數(shù)學(xué)教案

時(shí)間: 新華 數(shù)學(xué)教案

教案可以幫助教師更好地了解學(xué)生,從而更好地滿足學(xué)生的學(xué)習(xí)需求。什么才算好的高中實(shí)用數(shù)學(xué)教案?接下來(lái)給大家分享一些高中實(shí)用數(shù)學(xué)教案,供大家參考。

高中實(shí)用數(shù)學(xué)教案篇1

教學(xué)目標(biāo):

(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

(2)理解直線與二元一次方程的關(guān)系及其證明

(3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).

教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程(、不同時(shí)為0)的對(duì)應(yīng)關(guān)系及其證明.

教學(xué)用具:計(jì)算機(jī)

教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法

教學(xué)過(guò)程:

下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:

教學(xué)設(shè)計(jì)思路:

(一)引入的設(shè)計(jì)

前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:

問(wèn):說(shuō)出過(guò)點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:

問(wèn):求出過(guò)點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次.

肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”.

啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論.

學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:

【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)

這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路.

學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).

經(jīng)過(guò)一定時(shí)間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:

思路一:…

思路二:…

……

教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:

按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.

當(dāng)存在時(shí),直線的截距也一定存在,直線的方程可表示為,它是二元一次方程.

當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?

學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:

平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

綜合兩種情況,我們得出如下結(jié)論:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程.

至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如這樣,要么形如這樣的方程”.

同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?

學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.

這樣上邊的結(jié)論可以表述如下:

在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程.

啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問(wèn)題呢?

【問(wèn)題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?

不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個(gè)方面,這個(gè)問(wèn)題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?

師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):

回顧上邊解決問(wèn)題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程(其中、不同時(shí)為0)系數(shù)是否為0恰好對(duì)應(yīng)斜率是否存在,即

(1)當(dāng)時(shí),方程可化為

這是表示斜率為、在軸上的截距為的直線.

(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為

這表示一條與軸垂直的直線.

因此,得到結(jié)論:

在平面直角坐標(biāo)系中,任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線.

為方便,我們把(其中、不同時(shí)為0)稱作直線方程的一般式是合理的.

【動(dòng)畫演示】

演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線.

至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.

(三)練習(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計(jì)

高中實(shí)用數(shù)學(xué)教案篇2

在預(yù)習(xí)教材中的例4的基礎(chǔ)上,證明:若分別是橢圓的左、右焦點(diǎn),則橢圓上任一點(diǎn)p()到焦點(diǎn)的距離(焦半徑),同時(shí)思考當(dāng)橢圓的焦點(diǎn)在y軸上時(shí),結(jié)論如何?(此題意圖是引導(dǎo)學(xué)生去進(jìn)一步探究,為進(jìn)一步研究橢圓的性質(zhì)做準(zhǔn)備)

本堂課是在學(xué)生學(xué)習(xí)了橢圓的定義、標(biāo)準(zhǔn)方程的基礎(chǔ)上,根據(jù)方程研究曲線的性質(zhì)。按照學(xué)生的認(rèn)知特點(diǎn),改變了教材中原有安排順序,引導(dǎo)學(xué)生從觀察課前預(yù)習(xí)所作的圖形入手,從分析對(duì)稱開始,循序漸進(jìn)進(jìn)行探究。由教師點(diǎn)撥、指導(dǎo),學(xué)生研究、合作、體驗(yàn)來(lái)完成。

本節(jié)課借助多媒體手段創(chuàng)設(shè)問(wèn)題情境,指導(dǎo)學(xué)生研究式學(xué)習(xí)和體驗(yàn)式學(xué)習(xí)(興趣是前提)。例如導(dǎo)入,通過(guò)“神州五號(hào)”這樣一個(gè)人們關(guān)注的話題引入,有利于激發(fā)學(xué)生的興趣。再如,這節(jié)課是學(xué)生第一次利用曲線方程研究曲線性質(zhì),為了解決這一難點(diǎn),在課前設(shè)計(jì)中改變了教材原有研究順序,讓學(xué)生從觀察一個(gè)具體橢圓圖形入手,從觀察到對(duì)稱性這一宏觀特征開始研究,符合學(xué)生的認(rèn)知特點(diǎn),調(diào)動(dòng)了學(xué)生主動(dòng)參與教學(xué)的積極性,使他們進(jìn)行自主探究與合作交流,親身體驗(yàn)幾何性質(zhì)的形成與論證過(guò)程,變靜態(tài)教學(xué)為動(dòng)態(tài)教學(xué)。在研究范圍這一性質(zhì)時(shí),課前設(shè)計(jì)中,只要學(xué)生能根據(jù)不等式知識(shí)解出就可以了,但學(xué)生采用了多種方法研究,這時(shí)教師沒有打斷他的思路,而是引導(dǎo)幫助他研究,鼓勵(lì)學(xué)生創(chuàng)新,從而也實(shí)現(xiàn)了以學(xué)生為主,為學(xué)生服務(wù)。

在離心率這一性質(zhì)的教學(xué)中,充分利用多媒體手段,以輕松愉悅的動(dòng)畫演示,化解了知識(shí)的難點(diǎn)。

但也有不足的地方:在對(duì)具體例子的觀察分析中,設(shè)計(jì)的問(wèn)題過(guò)于具體,可能束縛了學(xué)生的思維,還沒有放開。還有就是少講多學(xué)方面也是我今后教學(xué)中努力的方向。

感悟:新課堂是活動(dòng)的課堂,討論、合作交流可課堂,德育教育的課堂,應(yīng)用現(xiàn)代技術(shù)的課堂,因此新教育理念、新課改下的新課堂需要教師和學(xué)生一起來(lái)培育。

高中實(shí)用數(shù)學(xué)教案篇3

高二數(shù)學(xué)《橢圓的幾何性質(zhì)1》教學(xué)反思

近期,我開設(shè)了一節(jié)公開課《橢圓的幾何性質(zhì)1》。在新課程背景下,如何有效利用課堂教學(xué)時(shí)間,如何盡可能地提高學(xué)生的學(xué)習(xí)興趣,提高學(xué)生在課堂上45分鐘的學(xué)習(xí)效率,是一個(gè)很重要的課題。要教好高中數(shù)學(xué),首先要對(duì)新課標(biāo)和新教材有整體的把握和認(rèn)識(shí),這樣才能將知識(shí)系統(tǒng)化,注意知識(shí)前后的聯(lián)系,形成知識(shí)框架;其次要了解學(xué)生的現(xiàn)狀和認(rèn)知結(jié)構(gòu),了解學(xué)生此階段的知識(shí)水平,以便因材施教;再次要處理好課堂教學(xué)中教師的教和學(xué)生的學(xué)的關(guān)系。課堂教學(xué)是實(shí)施高中新課程教學(xué)的主陣地,也是對(duì)學(xué)生進(jìn)行思想品德教育和素質(zhì)教育的主渠道。課堂教學(xué)不但要加強(qiáng)雙基而且要提高智力,發(fā)展學(xué)生的智力,而且要發(fā)展學(xué)生的創(chuàng)造力;不但要讓學(xué)生學(xué)會(huì),而且要讓學(xué)生會(huì)學(xué),特別是自學(xué)。尤其是在課堂上,不但要發(fā)展學(xué)生的智力因素,而且要提高學(xué)生在課堂45分鐘的學(xué)習(xí)效率,在有限的時(shí)間里,出色地完成教學(xué)任務(wù)。

一、要有明確的教學(xué)目標(biāo)

教學(xué)目標(biāo)分為三大領(lǐng)域,即認(rèn)知領(lǐng)域、情感領(lǐng)域和動(dòng)作技能領(lǐng)域。因此,在備課時(shí)要圍繞這些目標(biāo)選擇教學(xué)的策略、方法和媒體,把內(nèi)容進(jìn)行必要的重組。備課時(shí)要依據(jù)教材,但又不拘泥于教材,靈活運(yùn)用教材。在數(shù)學(xué)教學(xué)中,要通過(guò)師生的共同努力,使學(xué)生在知識(shí)、能力、技能、心理、思想品德等方面達(dá)到預(yù)定的目標(biāo),以提高學(xué)生的綜合素質(zhì)。

二、要能突出重點(diǎn)、化解難點(diǎn)

每一堂課都要有教學(xué)重點(diǎn),而整堂的教學(xué)都是圍繞著教學(xué)重點(diǎn)來(lái)逐步展開的。為了讓學(xué)生明確本堂課的重點(diǎn)、難點(diǎn),教師在上課開始時(shí),可以在黑板的一角將這些內(nèi)容簡(jiǎn)短地寫出來(lái),以便引起學(xué)生的重視。講授重點(diǎn)內(nèi)容,是整堂課的教學(xué)高潮。教師要通過(guò)聲音、手勢(shì)、板書等的變化或應(yīng)用模型、投影儀等直觀教具,刺激學(xué)生的大腦,使學(xué)生能夠興奮起來(lái),對(duì)所學(xué)內(nèi)容在大腦中刻下強(qiáng)烈的印象,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生對(duì)新知識(shí)的接受能力。尤其是在選擇例題時(shí),例題最好是呈階梯式展現(xiàn),我在準(zhǔn)備例2時(shí),就設(shè)置了三個(gè)小題,從易到難,便于學(xué)生理解接受。

三、要善于應(yīng)用現(xiàn)代化教學(xué)手段

在新課標(biāo)和新教材的背景下,教師掌握現(xiàn)代化的多媒體教學(xué)手段顯得尤為重要和迫切?,F(xiàn)代化教學(xué)手段的顯著特點(diǎn):

一是能有效地增大每一堂課的課容量;

二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;

三是直觀性強(qiáng),容易激發(fā)起學(xué)生的學(xué)習(xí)興趣,有利于提高學(xué)生的學(xué)習(xí)主動(dòng)性;

四是有利于對(duì)整堂課所學(xué)內(nèi)容進(jìn)行回顧和小結(jié)。

在課堂教學(xué)結(jié)束時(shí),教師引導(dǎo)學(xué)生總結(jié)本堂課的內(nèi)容,學(xué)習(xí)的重點(diǎn)和難點(diǎn)。同時(shí)通過(guò)投影儀,同步地將內(nèi)容在瞬間躍然“幕”上,使學(xué)生進(jìn)一步理解和掌握本堂課的內(nèi)容。在課堂教學(xué)中,對(duì)于板演量大的內(nèi)容,如解析幾何中的一些幾何圖形、一些簡(jiǎn)單但數(shù)量較多的小問(wèn)答題、文字量較多應(yīng)用題,復(fù)習(xí)課中章節(jié)內(nèi)容的總結(jié)、選擇題的訓(xùn)練等等都可以借助于投影儀來(lái)完成。

四、根據(jù)具體內(nèi)容,選擇恰當(dāng)?shù)慕虒W(xué)方法

每一堂課都有規(guī)定的教學(xué)任務(wù)和目標(biāo)要求。所謂“教學(xué)有法,但無(wú)定法”,教師要能隨著教學(xué)內(nèi)容的變化,教學(xué)對(duì)象的變化,教學(xué)設(shè)備的變化,靈活應(yīng)用教學(xué)方法。這節(jié)課是高三的復(fù)習(xí)課,我采取了讓學(xué)生自己回憶講述橢圓的幾何性質(zhì),教師補(bǔ)充的方法,改變了傳統(tǒng)的教師講,學(xué)生聽的模式,調(diào)動(dòng)了學(xué)生的積極性。在例題的解決過(guò)程中,我也盡量讓學(xué)生多動(dòng)手,多動(dòng)腦,激發(fā)學(xué)生的思維。此外,我們還可以結(jié)合課堂內(nèi)容,靈活采用談話、讀書指導(dǎo)、作業(yè)、練習(xí)等多種教學(xué)方法。在一堂課上,有時(shí)要同時(shí)使用多種教學(xué)方法?!敖虩o(wú)定法,貴要得法”。只要能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)積極性,有助于學(xué)生思維能力的培養(yǎng),有利于所學(xué)知識(shí)的.掌握和運(yùn)用,都是好的教學(xué)方法。

五、關(guān)愛學(xué)生,及時(shí)鼓勵(lì)

高中新課程的宗旨是著眼于學(xué)生的發(fā)展。對(duì)學(xué)生在課堂上的表現(xiàn),要及時(shí)加以總結(jié),適當(dāng)給予鼓勵(lì),并處理好課堂的偶發(fā)事件,及時(shí)調(diào)整課堂教學(xué)。在教學(xué)過(guò)程中,教師要隨時(shí)了解學(xué)的對(duì)所講內(nèi)容的掌握情況。如在講完一個(gè)概念后,讓學(xué)生復(fù)述;講完一個(gè)例題后,將解答擦掉,請(qǐng)中等水平學(xué)生上臺(tái)板演。有時(shí),對(duì)于基礎(chǔ)差的學(xué)生,可以對(duì)他們多提問(wèn),讓他們有較多的鍛煉機(jī)會(huì),同時(shí)教師根據(jù)學(xué)生的表現(xiàn),及時(shí)進(jìn)行鼓勵(lì),培養(yǎng)他們的自信心,讓他們能熱愛數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)。

六、切實(shí)重視基礎(chǔ)知識(shí)、基本技能和基本方法

眾所周知,近年來(lái)數(shù)學(xué)試題的新穎性、靈活性越來(lái)越強(qiáng),不少師生把主要精力放在難度較大的綜合題上,認(rèn)為只有通過(guò)解決難題才能培養(yǎng)能力,因而相對(duì)地忽視了基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué)。教學(xué)中急急忙忙把公式、定理推證拿出來(lái),或草草講一道例題就通過(guò)大量的題目來(lái)訓(xùn)練學(xué)生。

其實(shí)定理、公式推證的過(guò)程就蘊(yùn)含著重要的解題方法和規(guī)律,教師沒有充分暴露思維過(guò)程,沒有發(fā)掘其內(nèi)在的規(guī)律,就讓學(xué)生去做題,試圖通過(guò)讓學(xué)生大量地做題去“悟”出某些道理。結(jié)果是多數(shù)學(xué)生“悟”不出方法、規(guī)律,理解浮淺,記憶不牢,只會(huì)機(jī)械地模仿,思維水平較低,有時(shí)甚至生搬硬套;照葫蘆畫瓢,將簡(jiǎn)單問(wèn)題復(fù)雜化。如果教師在教學(xué)中過(guò)于粗疏或?qū)W生在學(xué)習(xí)中對(duì)基本知識(shí)不求甚解,都會(huì)導(dǎo)致在考試中判斷錯(cuò)誤。

不少學(xué)生說(shuō):現(xiàn)在的試題量過(guò)大,他們往往無(wú)法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低。可見,在切實(shí)重視基礎(chǔ)知識(shí)的落實(shí)中同時(shí)應(yīng)重視基本技能和基本方法的培養(yǎng)。

七、滲透教學(xué)思想方法,培養(yǎng)綜合運(yùn)用能力

常用的數(shù)學(xué)思想方法有:轉(zhuǎn)化的思想,類比歸納與類比聯(lián)想的思想,分類討論的思想,數(shù)形結(jié)合的思想以及配方法、換元法、待定系數(shù)法、反證法等。這些基本思想和方法分散地滲透在中學(xué)數(shù)學(xué)教材的條章節(jié)之中。在平時(shí)的教學(xué)中,教師要在傳授基礎(chǔ)知識(shí)的同時(shí),有意識(shí)地、恰當(dāng)在講解與滲透基本數(shù)學(xué)思想和方法,幫助學(xué)生掌握科學(xué)的方法,從而達(dá)到傳授知識(shí),培養(yǎng)能力的目的,只有這樣。學(xué)生才能靈活運(yùn)用和綜合運(yùn)用所學(xué)的知識(shí)。

總之,在新課程背景下的數(shù)學(xué)課堂教學(xué)中,要提高學(xué)生在課堂45分鐘的學(xué)習(xí)效率,要提高教學(xué)質(zhì)量,我們就應(yīng)該多思考、多準(zhǔn)備,充分做到用教材、備學(xué)生、備教法,提高自身的教學(xué)機(jī)智,發(fā)揮自身的主導(dǎo)作用。

高中實(shí)用數(shù)學(xué)教案篇4

[三維目標(biāo)]

一、知識(shí)與技能:

1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系

2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想

3、了解集合元素個(gè)數(shù)問(wèn)題的討論說(shuō)明

二、過(guò)程與方法

通過(guò)提問(wèn)匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法

三、情感態(tài)度與價(jià)值觀

培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維

[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀

[教學(xué)方法]:講練結(jié)合法

[授課類型]:復(fù)習(xí)課

[課時(shí)安排]:1課時(shí)

[教學(xué)過(guò)程]:集合部分匯總

本單元主要介紹了以下三個(gè)問(wèn)題:

1、集合的含義與特征

2、集合的表示與轉(zhuǎn)化

3、集合的基本運(yùn)算

高中實(shí)用數(shù)學(xué)教案篇5

教學(xué)目標(biāo)

1.掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.

(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象.

(2) 能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡(jiǎn)單的問(wèn)題.

2.通過(guò)對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過(guò)對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.

3.通過(guò)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡(jiǎn)潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.

教學(xué)建議

教材分析

(1) 對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過(guò)對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問(wèn)題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).

(2) 本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn).

(3) 本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問(wèn)題都應(yīng)圍繞著這條主線展開.而通過(guò)互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn).

教法建議

(1) 對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問(wèn)題出發(fā),通過(guò)對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù) 的分類討論而且對(duì)每一類問(wèn)題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

(2) 在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問(wèn)題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

高中實(shí)用數(shù)學(xué)教案篇6

一、指導(dǎo)思想

1、培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力.使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過(guò)程的能力.

2、根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神.

3、使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀.

二、目的要求

1.深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節(jié)知識(shí)的內(nèi)外結(jié)構(gòu),熟練把握知識(shí)的邏輯體系和網(wǎng)絡(luò)結(jié)構(gòu),細(xì)致領(lǐng)會(huì)教材改革的精髓,把握通性通法,逐步明確教材對(duì)教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響.

2.因材施教,以學(xué)生為學(xué)習(xí)的主體,構(gòu)建新的認(rèn)知體系,營(yíng)造有利于學(xué)生學(xué)習(xí)的氛圍.

3.加強(qiáng)課堂教學(xué)研究,科學(xué)設(shè)計(jì)教學(xué)方法,扎實(shí)有效的提高課堂教學(xué)效果,全面提高數(shù)學(xué)教學(xué)質(zhì)量.

三、具體措施

1.不孤立記憶和認(rèn)識(shí)各個(gè)知識(shí)點(diǎn),而要將其放到相應(yīng)的體系結(jié)構(gòu)中,在比較、辨析的過(guò)程中尋求其內(nèi)在聯(lián)系,達(dá)到理解層次,注意知識(shí)塊的復(fù)習(xí),構(gòu)建知識(shí)網(wǎng)路.注重基礎(chǔ)知識(shí)和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運(yùn)用;力求有意識(shí)的分析理解能力;尤其是數(shù)學(xué)語(yǔ)言的表達(dá)形式,推力論證要思路清晰、整體完整.

2.學(xué)會(huì)分析,首先是閱讀理解,側(cè)重于解題前對(duì)信息的捕捉和思路的探索;其次是解題回顧,側(cè)重于經(jīng)驗(yàn)及教訓(xùn)的總結(jié),重視常見題型及通法通解.

3.以“錯(cuò)”糾錯(cuò),查缺補(bǔ)漏,反思錯(cuò)誤,嚴(yán)格訓(xùn)練,規(guī)范解題,養(yǎng)成:想明白,寫清楚,算準(zhǔn)確的習(xí)慣,注意思路的清晰性、思維的嚴(yán)謹(jǐn)性、敘述的條理性、結(jié)果的準(zhǔn)確性,注重書寫過(guò)程,舉一反三,及時(shí)歸納,觸類旁通,加強(qiáng)數(shù)學(xué)思想和數(shù)學(xué)方法的應(yīng)用.

4.協(xié)調(diào)好講、練、評(píng)、輔之間的關(guān)系,追求數(shù)學(xué)復(fù)習(xí)的效果,注重實(shí)效,努力提高復(fù)習(xí)教學(xué)的效率和效益;精心設(shè)計(jì)教學(xué),做到精講精練,不加重學(xué)生的負(fù)擔(dān),避免“題海戰(zhàn)” ,精心準(zhǔn)備,講評(píng)到為,做到講評(píng)試卷或例題時(shí):講清考察了那些知識(shí)點(diǎn),怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關(guān)鍵步驟在那里,哪些是典型錯(cuò)誤,是知識(shí)和是邏輯,是方法、是心理上、策略上的錯(cuò)誤,針對(duì)學(xué)生的錯(cuò)誤調(diào)整復(fù)習(xí)策略,使復(fù)習(xí)更加有重點(diǎn)、針對(duì)性,加快教學(xué)節(jié)奏,提高教學(xué)效率.

5.周密計(jì)劃合理安排,現(xiàn)數(shù)學(xué)學(xué)科特點(diǎn),注重知識(shí)能力的提高,提升綜合解題能力,加強(qiáng)解題教學(xué),使學(xué)生在解題探究中提高能力.

6.多從“貼近教材、貼近學(xué)生、貼近實(shí)際”角度,選擇典型的數(shù)學(xué)聯(lián)系生活、生產(chǎn)、環(huán)境和科技方面的問(wèn)題,對(duì)學(xué)生進(jìn)行有計(jì)劃、針對(duì)性強(qiáng)的訓(xùn)練,多給學(xué)生鍛煉各種能力的機(jī)會(huì),從而達(dá)到提升學(xué)生數(shù)學(xué)綜合能力之目的.不脫離基礎(chǔ)知識(shí)來(lái)講學(xué)生的能力,基礎(chǔ)扎實(shí)的學(xué)生不一定能力 強(qiáng).教學(xué)中,不斷地將基礎(chǔ)知識(shí)運(yùn)用于數(shù)學(xué)問(wèn)題的解決中,努力提高學(xué)生的學(xué)科綜合能力.

新的學(xué)期是新的起點(diǎn),新的希望。通過(guò)這份高二數(shù)學(xué)上學(xué)期教學(xué)工作計(jì)劃,我相信自己在本學(xué)期一定能夠?qū)蓚€(gè)班的數(shù)學(xué)成績(jī)帶上去,我相信,我能行。

高中實(shí)用數(shù)學(xué)教案篇7

教學(xué)目標(biāo):

1·進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見問(wèn)題·

2·培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力·

教學(xué)重點(diǎn):

對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用·

教學(xué)難點(diǎn):

對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸·

教學(xué)過(guò)程:

一、問(wèn)題情境

1·復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì)·

2·回答下列問(wèn)題·

(1)函數(shù)y=log2x的值域是;

(2)函數(shù)y=log2x(x≥1)的值域是;

(3)函數(shù)y=log2x(0

3·情境問(wèn)題·

函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?

二、學(xué)生活動(dòng)

探究完成情境問(wèn)題·

三、數(shù)學(xué)運(yùn)用

例1求函數(shù)y=log2(x2+2x+2)的定義域和值域·

練習(xí):

(1)已知函數(shù)y=log2x的值域是[—2,3],則x的范圍是________________·

(2)函數(shù),x(0,8]的值域是·

(3)函數(shù)y=log(x2—6x+17)的值域·

(4)函數(shù)的.值域是_______________·

例2判斷下列函數(shù)的奇偶性:

(1)f(x)=lg(2)f(x)=ln(—x)

例3已知loga0·75>1,試求實(shí)數(shù)a取值范圍·

例4已知函數(shù)y=loga(1—ax)(a>0,a≠1)·

(1)求函數(shù)的定義域與值域;

(2)求函數(shù)的單調(diào)區(qū)間·

練習(xí):

1·下列函數(shù)(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域?yàn)镽的有(請(qǐng)寫出所有正確結(jié)論的序號(hào))·

2·函數(shù)y=lg(—1)的圖象關(guān)于對(duì)稱·

3·已知函數(shù)(a>0,a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱,那么實(shí)數(shù)m=·

4·求函數(shù),其中x[,9]的值域·

四、要點(diǎn)歸納與方法小結(jié)

(1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;

(2)換元法;

(3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合)·

五、作業(yè)

課本P70~71—4,5,10,11·

高中實(shí)用數(shù)學(xué)教案篇8

一、說(shuō)教材

(1)說(shuō)教材的內(nèi)容和地位

本次說(shuō)課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時(shí))。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識(shí)安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語(yǔ)言的基礎(chǔ)。從知識(shí)結(jié)構(gòu)上來(lái)說(shuō)是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。

(2)說(shuō)教學(xué)目標(biāo)

根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):

1.知識(shí)與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

2.過(guò)程與方法:通過(guò)情景設(shè)置提出問(wèn)題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣。并通過(guò)"自主、合作與探究"實(shí)現(xiàn)"一切以學(xué)生為中心"的理念。

3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡(jiǎn)潔美與和諧統(tǒng)一美。同時(shí)通過(guò)自主探究領(lǐng)略獲取新知識(shí)的喜悅。

(3)說(shuō)教學(xué)重點(diǎn)和難點(diǎn)

依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為

教學(xué)重點(diǎn):集合的基本概念及元素特征。

教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì)元素與集合的屬于關(guān)系。

二、說(shuō)教法和學(xué)法

接下來(lái)則是說(shuō)教法、學(xué)法

教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來(lái)相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節(jié)課而言,我采用"生活實(shí)例與數(shù)學(xué)實(shí)例"相結(jié)合,"師生互動(dòng)與課堂布白"相輔助的方法。通過(guò)不同層次的練習(xí)體驗(yàn),憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動(dòng),()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。

總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。

三、說(shuō)教學(xué)過(guò)程

接著我來(lái)說(shuō)一下最重要的部分,本節(jié)課的教學(xué)過(guò)程:

這節(jié)課的流程主要分為六個(gè)環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評(píng)價(jià))、作業(yè)布置(反饋矯正)。上述六個(gè)環(huán)節(jié)由淺入深,層層遞進(jìn)。多層次、多角度地加深對(duì)概念的理解。提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。

第一環(huán)節(jié):創(chuàng)設(shè)問(wèn)題情境,引入目標(biāo)

課堂開始我將提出兩個(gè)問(wèn)題:

問(wèn)題1:班級(jí)有20名男生,16名女生,問(wèn)班級(jí)一共多少人?

問(wèn)題2:某次運(yùn)動(dòng)會(huì)上,班級(jí)有20人參加田賽,16人參加徑賽,問(wèn)一共多少人參加比賽?

這里我會(huì)讓學(xué)生以小組討論的.形式進(jìn)行討論問(wèn)題,事實(shí)上小組合作的形式是本節(jié)課主要形式。

待學(xué)生討論完畢以后我將作歸納總結(jié):?jiǎn)栴}2已無(wú)法用學(xué)過(guò)的知識(shí)加以解釋,這是與集合有關(guān)的問(wèn)題,因此需用集合的語(yǔ)言加以描述(同時(shí)我將板書標(biāo)題:集合)。

安排這一過(guò)程的意圖是為了從實(shí)際問(wèn)題引入,讓學(xué)生了解數(shù)學(xué)來(lái)源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。

很自然地進(jìn)入到第二環(huán)節(jié):自主探究

讓學(xué)生閱讀教材,并思考下列問(wèn)題:

(1)有那些概念?

(2)有那些符號(hào)?

(3)集合中元素的特性是什么?

安排這一過(guò)程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構(gòu)自己的知識(shí)結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。

讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析

小組合作探究(1)

讓學(xué)生觀察下列實(shí)例

(1)1~20以內(nèi)的所有質(zhì)數(shù);

(2)所有的正方形;

(3)到直線的距離等于定長(zhǎng)的所有的點(diǎn);

(4)方程的所有實(shí)數(shù)根;

通過(guò)以上實(shí)例,辨析概念:

(1)集合含義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。而集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。

(2)表示方法:集合通常用大括號(hào){}或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

小組合作探究(2)——集合元素的特征

問(wèn)題3:任意一組對(duì)象是否都能組成一個(gè)集合?集合中的元素有什么特征?

問(wèn)題4:某單位所有的"帥哥"能否構(gòu)成一個(gè)集合?由此說(shuō)明什么?

集合中的元素必須是確定的

問(wèn)題5:在一個(gè)給定的集合中能否有相同的元素?由此說(shuō)明什么?

集合中的元素是不重復(fù)出現(xiàn)的

問(wèn)題6:咱班的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒有變化?由此說(shuō)明什么?集合中的元素是沒有順序的

我如此設(shè)計(jì)的意圖是因?yàn)椋簡(jiǎn)栴}是數(shù)學(xué)的心臟,感受問(wèn)題是學(xué)習(xí)數(shù)學(xué)的根本動(dòng)力。

小組合作探究(3)——元素與集合的關(guān)系

問(wèn)題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?

問(wèn)題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?

a屬于集合A,記作a∈A

問(wèn)題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?

a不屬于集合A,記作aA

小組合作探究(4)——常用數(shù)集及其表示方法

問(wèn)題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實(shí)數(shù)集等一些常用數(shù)集,分別用什么符號(hào)表示?

自然數(shù)集(非負(fù)整數(shù)集):記作N

正整數(shù)集:

整數(shù)集:記作Z

有理數(shù)集:記作Q實(shí)數(shù)集:記作R

設(shè)計(jì)意圖:由于不同的人對(duì)同一問(wèn)題有不同的體驗(yàn)和理解。讓學(xué)生通過(guò)合作交流相互得到啟發(fā),從而不斷完善自己的知識(shí)結(jié)構(gòu)。

第四環(huán)節(jié):理論遷移變式訓(xùn)練

1.下列指定的對(duì)象,能構(gòu)成一個(gè)集合的是

①很小的數(shù)

②不超過(guò)30的非負(fù)實(shí)數(shù)

③直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)

④π的近似值

⑤所有無(wú)理數(shù)

A、②③④⑤B、①②③⑤C、②③⑤D、②③④

第五環(huán)節(jié):課堂小結(jié),自我評(píng)價(jià)

1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?

設(shè)計(jì)意圖:引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)、思想方法進(jìn)行小結(jié),形成知識(shí)系統(tǒng)。教師用激勵(lì)性的語(yǔ)言加一點(diǎn)評(píng),讓學(xué)生的思想敞亮的發(fā)揮出來(lái)。

第六環(huán)節(jié):作業(yè)布置,反饋矯正

1.必做題課本習(xí)題1.1—1、2、3.

2.選做題已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數(shù)a的值。

設(shè)計(jì)意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗(yàn)。

四、板書設(shè)計(jì)

好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計(jì)得有條理性、概括性、指導(dǎo)性,所以我設(shè)計(jì)的板書如下:

集合

1.集合的概念

2.集合元素的特征

(學(xué)生板演)

3.常見集合的表示

4.范例研究

高中實(shí)用數(shù)學(xué)教案篇9

教學(xué)目標(biāo)

知識(shí)目標(biāo)等差數(shù)列定義等差數(shù)列通項(xiàng)公式

能力目標(biāo)掌握等差數(shù)列定義等差數(shù)列通項(xiàng)公式

情感目標(biāo)培養(yǎng)學(xué)生的觀察、推理、歸納能力

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn)等差數(shù)列的概念的理解與掌握

等差數(shù)列通項(xiàng)公式推導(dǎo)及應(yīng)用教學(xué)難點(diǎn)等差數(shù)列“等差”的理解、把握和應(yīng)用

教學(xué)過(guò)程

由__《紅高粱》主題曲“酒神曲”引入等差數(shù)列定義

問(wèn)題:多媒體演示,觀察————發(fā)現(xiàn)?

一、等差數(shù)列定義:

一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

例1:觀察下面數(shù)列是否是等差數(shù)列:…。

二、等差數(shù)列通項(xiàng)公式:

已知等差數(shù)列{an}的首項(xiàng)是a1,公差是d。

則由定義可得:

a2—a1=d

a3—a2=d

a4—a3=d

……

an—an—1=d

即可得:

an=a1+(n—1)d

例2已知等差數(shù)列的首項(xiàng)a1是3,公差d是2,求它的通項(xiàng)公式。

分析:知道a1,d,求an。代入通項(xiàng)公式

解:∵a1=3,d=2

∴an=a1+(n—1)d

=3+(n—1)×2

=2n+1

例3求等差數(shù)列10,8,6,4…的第20項(xiàng)。

分析:根據(jù)a1=10,d=—2,先求出通項(xiàng)公式an,再求出a20

解:∵a1=10,d=8—10=—2,n=20

由an=a1+(n—1)d得

∴a20=a1+(n—1)d

=10+(20—1)×(—2)

=—28

例4:在等差數(shù)列{an}中,已知a6=12,a18=36,求通項(xiàng)an。

分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項(xiàng)公式an=a1+(n—1)d中,可得兩個(gè)方程,都含a1與d兩個(gè)未知數(shù)組成方程組,可解出a1與d。

解:由題意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n—1)×2=2n

練習(xí)

1、判斷下列數(shù)列是否為等差數(shù)列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④—1,—8,—15,—22,—29;

答案:①不是②是①不是②是

2、等差數(shù)列{an}的前三項(xiàng)依次為a—6,—3a—5,—10a—1,則a等于

A、1B、—1C、—1/3D、5/11

提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)

3、在數(shù)列{an}中a1=1,an=an+1+4,則a10=。

提示:d=an+1—an=—4

教師繼續(xù)提出問(wèn)題

已知數(shù)列{an}前n項(xiàng)和為……

作業(yè)

P116習(xí)題3。21,2

高中實(shí)用數(shù)學(xué)教案篇10

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;

(2)使學(xué)生掌握組合數(shù)的計(jì)算公式、組合數(shù)的性質(zhì)用組合數(shù)與排列數(shù)之間的關(guān)系;

(3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;

(4)通過(guò)對(duì)排列、組合問(wèn)題求解與剖析,培養(yǎng)學(xué)生學(xué)習(xí)興趣和思維深刻性,學(xué)生具有嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)建議

一、知識(shí)結(jié)構(gòu)

二、重點(diǎn)難點(diǎn)分析

本小節(jié)的重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式,組合數(shù)的性質(zhì)。難點(diǎn)是解組合的應(yīng)用題。突破重點(diǎn)、難點(diǎn)的關(guān)鍵是對(duì)加法原理與乘法原理的掌握和應(yīng)用,并將這兩個(gè)原理的基本思想貫穿在解決組合應(yīng)用題當(dāng)中。

組合與組合數(shù),也有上面類似的關(guān)系。從n個(gè)不同元素中任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中任取m個(gè)元素的一個(gè)組合。所有這些不同的組合的個(gè)數(shù)叫做組合數(shù)。從集合的角度看,從n個(gè)元素的有限集中取出m個(gè)組成的一個(gè)集合(無(wú)序集),相當(dāng)于一個(gè)組合,而這種集合的個(gè)數(shù),就是相應(yīng)的組合數(shù)。

解排列組合應(yīng)用題時(shí)主要應(yīng)抓住是排列問(wèn)題還是組合問(wèn)題,其次要搞清需要分類,還是需要分步.切記:排組分清(有序排列、無(wú)序組合),加乘明確(分類為加、分步為乘).

三、教法設(shè)計(jì)

1.對(duì)于基礎(chǔ)較好的學(xué)生,建議把排列與組合的概念進(jìn)行對(duì)比的進(jìn)行學(xué)習(xí),這樣有利于搞請(qǐng)這兩組概念的區(qū)別與聯(lián)系.

2.學(xué)生與老師可以合編一些排列組合問(wèn)題,如“45人中選出5人當(dāng)班干部有多少種選法?”與“45人中選出5人分別擔(dān)任班長(zhǎng)、副班長(zhǎng)、體委、學(xué)委、生委有多少種選法?”這是兩個(gè)相近問(wèn)題,同學(xué)們會(huì)根據(jù)自己身邊的實(shí)際可以編出各種各樣的具有特色的問(wèn)題,教師要引導(dǎo)學(xué)生辨認(rèn)哪個(gè)是排列問(wèn)題,哪個(gè)是組合問(wèn)題.這樣既調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,又在編題辨題中澄清了概念.

為了理解排列與組合的概念,建議大家學(xué)會(huì)畫排列與組合的樹圖.如,從a,b,c,d 4個(gè)元素中取出3個(gè)元素的排列樹圖與組合樹圖分別為:

排列樹圖

由排列樹圖得到,從a,b,c,d 取出3個(gè)元素的所有排列有24個(gè),它們分別是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.

組合樹圖

由組合樹圖可得,從a,b,c,d中取出3個(gè)元素的組合有4個(gè),它們是(abc),(abd),(acd),(bcd).

從以上兩組樹圖清楚的告訴我們,排列樹圖是對(duì)稱的,組合圖式不是對(duì)稱的,之所以排列樹圖具有對(duì)稱性,是因?yàn)閷?duì)于a,b,c,d四個(gè)字母哪一個(gè)都有在第一位的機(jī)會(huì),哪一個(gè)都有在第二位的機(jī)會(huì),哪一個(gè)都有在第三位的機(jī)會(huì),而組合只考慮字母不考慮順序,為實(shí)現(xiàn)無(wú)順序的要求,我們可以限定a,b,c,d的順序是從前至后,固定了死順序等于無(wú)順序,這樣組合就有了自己的樹圖.

學(xué)會(huì)畫組合樹圖,不僅有利于理解排列與組合的概念,還有助于推導(dǎo)組合數(shù)的計(jì)算公式.

3.排列組合的應(yīng)用問(wèn)題,教師應(yīng)從簡(jiǎn)單問(wèn)題問(wèn)題入手,逐步到有一個(gè)附加條件的單純排列問(wèn)題或組合問(wèn)題,最后在設(shè)及排列與組合的綜合問(wèn)題.

對(duì)于每一道題目,教師必須先讓學(xué)生獨(dú)立思考,在進(jìn)行全班討論,對(duì)于學(xué)生的每一種解法,教師要先讓學(xué)生判斷正誤,在給予點(diǎn)播.對(duì)于排列、組合應(yīng)用問(wèn)題的解決我們提倡一題多解,這樣有利于培養(yǎng)學(xué)生的分析問(wèn)題解決問(wèn)題的能力,在學(xué)生的多種解法基礎(chǔ)上教師要引導(dǎo)學(xué)生選擇方案,總結(jié)解題規(guī)律.對(duì)于學(xué)生解題中的常見錯(cuò)誤,教師一定要講明道理,認(rèn)真分析錯(cuò)誤原因,使學(xué)生在是非的判斷得以提高.

4.兩個(gè)性質(zhì)定理教學(xué)時(shí),對(duì)定理1,可以用下例來(lái)說(shuō)明:從4個(gè)不同的元素a,b,c,d里每次取出3個(gè)元素的組合及每次取出1個(gè)元素的組合分別是

這就說(shuō)明從4個(gè)不同的元素里每次取出3個(gè)元素的組合與從4個(gè)元素里每次取出1個(gè)元素的組合是—一對(duì)應(yīng)的.

對(duì)定理2,可啟發(fā)學(xué)生從下面問(wèn)題的討論得出.從n個(gè)不同元素 , ,…, 里每次取出m個(gè)不同的元素( ),問(wèn):(1)可以組成多少個(gè)組合;(2)在這些組合里,有多少個(gè)是不含有 的;  (3)在這些組合里,有多少個(gè)是含有 的;(4)從上面的結(jié)果,可以得出一個(gè)怎樣的公式.在此基礎(chǔ)上引出定理2.

對(duì)于 ,和 一樣,是一種規(guī)定.而學(xué)生常常誤以為是推算出來(lái)的,因此,教學(xué)時(shí)要講清楚.

教學(xué)設(shè)計(jì)示例

教學(xué)目標(biāo)

(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問(wèn)題;

(2)使學(xué)生掌握組合數(shù)的計(jì)算公式;

(3)通過(guò)學(xué)習(xí)組合知識(shí),讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力;

教學(xué)重點(diǎn)難點(diǎn)

重點(diǎn)是組合的定義、組合數(shù)及組合數(shù)的公式;

難點(diǎn)是解組合的應(yīng)用題.

教學(xué)過(guò)程設(shè)計(jì)

(-)導(dǎo)入新課

(教師活動(dòng))提出下列思考問(wèn)題,打出字幕.

[字幕]一條鐵路線上有6個(gè)火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價(jià)的普通客車票?上面問(wèn)題中,哪一問(wèn)是排列問(wèn)題?哪一問(wèn)是組合問(wèn)題?

(學(xué)生活動(dòng))討論并回答.

答案提示:(1)排列;(2)組合.

[評(píng)述]問(wèn)題(1)是從6個(gè)火車站中任選兩個(gè),并按一定的順序排列,要求出排法的種數(shù),屬于排列問(wèn)題;(2)是從6個(gè)火車站中任選兩個(gè)并成一組,兩站無(wú)順序關(guān)系,要求出不同的組數(shù),屬于組合問(wèn)題.這節(jié)課著重研究組合問(wèn)題.

設(shè)計(jì)意圖:組合與排列所研究的問(wèn)題幾乎是平行的.上面設(shè)計(jì)的問(wèn)題目的是從排列知識(shí)中發(fā)現(xiàn)并提出新的問(wèn)題.

(二)新課講授

[提出問(wèn)題 創(chuàng)設(shè)情境]

(教師活動(dòng))指導(dǎo)學(xué)生帶著問(wèn)題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說(shuō)明一個(gè)組合是什么?

3.一個(gè)組合與一個(gè)排列有何區(qū)別?

(學(xué)生活動(dòng))閱讀回答.

(教師活動(dòng))對(duì)照課文,逐一評(píng)析.

設(shè)計(jì)意圖:激活學(xué)生的思維,使其將所學(xué)的知識(shí)遷移過(guò)渡,并盡快適應(yīng)新的環(huán)境.

【歸納概括 建立新知】

(教師活動(dòng))承接上述問(wèn)題的回答,展示下面知識(shí).

[字幕]模型:從 個(gè)不同元素中取出 個(gè)元素并成一組,叫做從 個(gè)不同元素中取出 個(gè)元素的一個(gè)組合.如前面思考題:6個(gè)火車站中甲站→乙站和乙站→甲站是票價(jià)相同的車票,是從6個(gè)元素中取出2個(gè)元素的一個(gè)組合.

組合數(shù):從 個(gè)不同元素中取出 個(gè)元素的所有組合的個(gè)數(shù),稱之,用符號(hào) 表示,如從6個(gè)元素中取出2個(gè)元素的組合數(shù)為 .

[評(píng)述]區(qū)分一個(gè)排列與一個(gè)組合的關(guān)鍵是:該問(wèn)題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問(wèn)題;若改變順序,仍得原來(lái)的取法,就是組合問(wèn)題.

(學(xué)生活動(dòng))傾聽、思索、記錄.

(教師活動(dòng))提出思考問(wèn)題.

[投影] 與 的關(guān)系如何?

(師生活動(dòng))共同探討.求從 個(gè)不同元素中取出 個(gè)元素的排列數(shù) ,可分為以下兩步:

第1步,先求出從這 個(gè)不同元素中取出 個(gè)元素的組合數(shù)為 ;

第2步,求每一個(gè)組合中 個(gè)元素的全排列數(shù)為 .

根據(jù)分步計(jì)數(shù)原理,得到

[字幕]公式1:

公式2:

(學(xué)生活動(dòng))驗(yàn)算 ,即一條鐵路上6個(gè)火車站有15種不同的票價(jià)的普通客車票.

設(shè)計(jì)意圖:本著以認(rèn)識(shí)概念為起點(diǎn),以問(wèn)題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識(shí)的形成過(guò)程,使學(xué)生思維層層被激活、逐漸深入到問(wèn)題當(dāng)中去.

【例題示范 探求方法】

(教師活動(dòng))打出字幕,給出示范,指導(dǎo)訓(xùn)練.

[字幕]例1 列舉從4個(gè)元素 中任取2個(gè)元素的所有組合.

例2 計(jì)算:(1) ;(2) .

(學(xué)生活動(dòng))板演、示范.

(教師活動(dòng))講評(píng)并指出用兩種方法計(jì)算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學(xué)生活動(dòng))思考分析.

解 首先,根據(jù)組合的定義,有

其次,由原不等式轉(zhuǎn)化為

解得 ②

綜合①、②,得 ,即

[點(diǎn)評(píng)]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.

設(shè)計(jì)意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識(shí),強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.

【反饋練習(xí) 學(xué)會(huì)應(yīng)用】

(教師活動(dòng))給出練習(xí),學(xué)生解答,教師點(diǎn)評(píng).

[課堂練習(xí)]課本P99練習(xí)第2,5,6題.

[補(bǔ)充練習(xí)]

[字幕]1.計(jì)算:

2.已知 ,求 .

(學(xué)生活動(dòng))板演、解答.

設(shè)計(jì)意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.

【點(diǎn)評(píng)矯正 交流提高】

(教師活動(dòng))依照學(xué)生的板演,給予指正并總結(jié).

補(bǔ)充練習(xí)答案:

1.解:原式:

2.解:由題設(shè)得

整理化簡(jiǎn)得 ,

解之,得 或 (因 ,舍去),

所以 ,所求

[字幕]小結(jié):

1.前一個(gè)公式主要用于計(jì)算具體的組合數(shù),而后一個(gè)公式則主要用于對(duì)含有字母的式子進(jìn)行化簡(jiǎn)和論證.

2.在解含組合數(shù)的方程或不等式時(shí),一定要注意組合數(shù)的上、下標(biāo)的限制條件.

(學(xué)生活動(dòng))交流討論,總結(jié)記錄.

設(shè)計(jì)意圖:由“實(shí)踐——認(rèn)識(shí)——一實(shí)踐”的認(rèn)識(shí)論,教學(xué)時(shí)抓住“學(xué)習(xí)—一練習(xí)——反饋———小結(jié)”這些環(huán)節(jié),使教學(xué)目標(biāo)得以強(qiáng)化和落實(shí).

(三)小結(jié)

(師生活動(dòng))共同小結(jié).

本節(jié)主要內(nèi)容有

1.組合概念.

2.組合數(shù)計(jì)算的兩個(gè)公式.

(四)布置作業(yè)

1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.

2.思考題:某學(xué)習(xí)小組有8個(gè)同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競(jìng)賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?

3.研究性題:

在 的 邊上除頂點(diǎn) 外有 5個(gè)點(diǎn),在 邊上有 4個(gè)點(diǎn),由這些點(diǎn)(包括 )能組成多少個(gè)四邊形?能組成多少個(gè)三角形?

(五)課后點(diǎn)評(píng)

在學(xué)習(xí)了排列知識(shí)的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時(shí)調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力.

作業(yè)參考答案

2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.

3.能組成 (注意不能用 點(diǎn)為頂點(diǎn))個(gè)四邊形, 個(gè)三角形.

探究活動(dòng)

同室四人各寫一張賀年卡,先集中起來(lái),然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬(wàn)式可有多少種?

解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來(lái)解.

解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

甲拿乙制作的賀卡時(shí),則賀卡有3種分配方法.

甲拿丙制作的賀卡時(shí),則賀卡有3種分配方法.

甲拿丁制作的賀卡時(shí),則賀卡有3種分配方法.

由加法原理得,賀卡分配方法有3+3+3=9種.

解法二 可從利用排列數(shù)和組合數(shù)公式角度來(lái)考慮.這時(shí)還存在正向與逆向兩種思考途徑.

正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對(duì)方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時(shí)即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

說(shuō)明(1)對(duì)一類元素不太多而利用排列或組合計(jì)算公式計(jì)算比較復(fù)雜,且容易重復(fù)遺漏計(jì)算的排列組合問(wèn)題,常可采用直接分類后用加法原理進(jìn)行計(jì)算,如本例采用解法一的做法.

(2)設(shè)集合 ,如果S中元素的一個(gè)排列 滿足

高中實(shí)用數(shù)學(xué)教案篇11

一、教學(xué)目標(biāo):

1、知識(shí)與技能:

了解平面向量基本定理及其意義,理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來(lái)表示;能夠在具體問(wèn)題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來(lái)表示。

2、過(guò)程與方法:

讓學(xué)生經(jīng)歷平面向量基本定理的探索與發(fā)現(xiàn)的形成過(guò)程,體會(huì)由特殊到一般和數(shù)形結(jié)合的數(shù)學(xué)思想,初步掌握應(yīng)用平面向量基本定理分解向量的方法,培養(yǎng)學(xué)生分析問(wèn)題與解決問(wèn)題的能力。

3、情感、態(tài)度和價(jià)值觀

通過(guò)對(duì)平面向量基本定理的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)習(xí)積極性,增強(qiáng)學(xué)生向量的應(yīng)用意識(shí),并培養(yǎng)學(xué)生合作交流的意識(shí)及積極探索勇于發(fā)現(xiàn)的學(xué)習(xí)品質(zhì)、

二、教學(xué)重點(diǎn):

平面向量基本定理、

三、教學(xué)難點(diǎn):

平面向量基本定理的理解與應(yīng)用、

四、教學(xué)方法:

探究發(fā)現(xiàn)、講練結(jié)合

五、授課類型:

新授課

六、教具:

電子白板、黑板和課件

七、教學(xué)過(guò)程:

(一)情境引課,板書課題

由導(dǎo)彈的發(fā)射情境,引出物理中矢量的分解,進(jìn)而探究我們數(shù)學(xué)中的向量是不是也可以沿兩個(gè)不同方向的向量進(jìn)行分解呢?

(二)復(fù)習(xí)鋪路,漸進(jìn)新課

在共線向量定理的復(fù)習(xí)中,自然地、漸進(jìn)地融入到平面向量基本定理的師生互動(dòng)合作的探究與發(fā)現(xiàn)中去,感受著從特殊到一般、分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想碰撞的火花,體驗(yàn)著學(xué)習(xí)的快樂(lè)。

(三)歸納總結(jié),形成定理

讓學(xué)生在發(fā)現(xiàn)學(xué)習(xí)的過(guò)程中歸納總結(jié)出平面向量基本定理,并給出基底的定義。

(四)反思定理,解讀要點(diǎn)

反思平面向量基本定理的實(shí)質(zhì)即向量分解,思考基底的不共線、不惟一和非零性及實(shí)數(shù)對(duì)

的存在性和唯一性。

(五)跟蹤練習(xí),反饋測(cè)試

及時(shí)跟蹤練習(xí),反饋測(cè)試定理的理解程度。

(六)講練結(jié)合,鞏固理解

即講即練定理的應(yīng)用,講練結(jié)合,進(jìn)一步鞏固理解平面向量基本定理。

(七)夾角概念,順勢(shì)得出

不共線向量的不同方向的位置關(guān)系怎么表示,夾角概念順勢(shì)得出。然后數(shù)形結(jié)合,講清本質(zhì):夾角共起點(diǎn)。再結(jié)合例題鞏固加深。

(八)課堂小結(jié),畫龍點(diǎn)睛

回顧本節(jié)的學(xué)習(xí)過(guò)程,小結(jié)學(xué)習(xí)要點(diǎn)及數(shù)學(xué)思想方法,老師的“教”與學(xué)生的“學(xué)”渾然一體,一氣呵成。

(九)作業(yè)布置,回味思考。

布置課后作業(yè),檢驗(yàn)教學(xué)效果?;匚端伎?,更加理解定理的實(shí)質(zhì)。

八、板書設(shè)計(jì):

1、平面向量基本定理:如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)

2、基底:

(1)不共線向量

叫做表示這一平面內(nèi)所有向量的一組基底;

(2)基底:不共線,不唯一,非零

(3)基底給定,分解形式唯一,實(shí)數(shù)對(duì)

存在且唯一;

(4)基底不同,分解形式不唯一,實(shí)數(shù)對(duì)

可同可異。

例1例2

3、夾角:

(1)兩向量共起點(diǎn);

(2)夾角范圍:

例3

4、小結(jié)

5、作業(yè)

高中實(shí)用數(shù)學(xué)教案篇12

教學(xué)目標(biāo)

知識(shí)與技能目標(biāo):

本節(jié)的中心任務(wù)是研究導(dǎo)數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個(gè)層次:

(1) 通過(guò)復(fù)習(xí)舊知“求導(dǎo)數(shù)的兩個(gè)步驟”以及“平均變化率與割線斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導(dǎo)數(shù)的幾何意義可以依據(jù)導(dǎo)數(shù)概念的形成尋求解決問(wèn)題的途徑。

(2) 從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。

(3) 依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導(dǎo)數(shù)的幾何意義教案在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案的幾何意義,使學(xué)生認(rèn)識(shí)到導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象在導(dǎo)數(shù)的幾何意義教案處的切線的斜率。即:

導(dǎo)數(shù)的幾何意義教案=曲線在導(dǎo)數(shù)的幾何意義教案處切線的斜率k

在此基礎(chǔ)上,通過(guò)例題和練習(xí)使學(xué)生學(xué)會(huì)利用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問(wèn)題,加深對(duì)導(dǎo)數(shù)內(nèi)涵的理解。在學(xué)習(xí)過(guò)程中感受逼近的思想方法,了解“以直代曲”的數(shù)學(xué)思想方法。

過(guò)程與方法目標(biāo):

(1) 學(xué)生通過(guò)觀察感知、動(dòng)手探究,培養(yǎng)學(xué)生的動(dòng)手和感知發(fā)現(xiàn)的能力。

(2) 學(xué)生通過(guò)對(duì)圓的切線和割線聯(lián)系的認(rèn)識(shí),再類比探索一般曲線的情況,完善對(duì)切線的認(rèn)知,感受逼近的思想,體會(huì)相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學(xué)思維能力的提高。

(3) 結(jié)合分層的探究問(wèn)題和分層練習(xí),期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨(dú)立解決問(wèn)題和發(fā)現(xiàn)新知、應(yīng)用新知。

情感、態(tài)度、價(jià)值觀:

(1) 通過(guò)在探究過(guò)程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過(guò)有限來(lái)認(rèn)識(shí)無(wú)限,體驗(yàn)數(shù)學(xué)中轉(zhuǎn)化思想的意義和價(jià)值;

(2) 在教學(xué)中向他們提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),如:探究活動(dòng),讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動(dòng)中激發(fā)學(xué)生的學(xué)習(xí)潛能,促進(jìn)他們真正理解和掌握基本的數(shù)學(xué)知識(shí)技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),提高綜合能力,學(xué)會(huì)學(xué)習(xí),進(jìn)一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。

教學(xué)重點(diǎn)與難點(diǎn)

重點(diǎn):理解和掌握切線的新定義、導(dǎo)數(shù)的幾何意義及應(yīng)用于解決實(shí)際問(wèn)題,體會(huì)數(shù)形結(jié)合、以直代曲的思想方法。

難點(diǎn):發(fā)現(xiàn)、理解及應(yīng)用導(dǎo)數(shù)的幾何意義。

教學(xué)過(guò)程

一、復(fù)習(xí)提問(wèn)

1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個(gè)步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).

定義:函數(shù)在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)在該點(diǎn)處的瞬時(shí)變化率。

求導(dǎo)數(shù)的步驟:

第一步:求平均變化率導(dǎo)數(shù)的幾何意義教案;

第二步:求瞬時(shí)變化率導(dǎo)數(shù)的幾何意義教案.

(即導(dǎo)數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點(diǎn)導(dǎo)數(shù))

2.觀察函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象,平均變化率導(dǎo)數(shù)的幾何意義教案 在圖形中表示什么?

生:平均變化率表示的是割線PQ的斜率.導(dǎo)數(shù)的幾何意義教案

師:這就是平均變化率(導(dǎo)數(shù)的幾何意義教案)的幾何意義,

3.瞬時(shí)變化率(導(dǎo)數(shù)的幾何意義教案)在圖中又表示什么呢?

如圖2-1,設(shè)曲線C是函數(shù)y=f(x)的圖象,點(diǎn)P(x0,y0)是曲線C上一點(diǎn).點(diǎn)Q(x0+Δx,y0+Δy)是曲線C上與點(diǎn)P鄰近的任一點(diǎn),作割線PQ,當(dāng)點(diǎn)Q沿著曲線C無(wú)限地趨近于點(diǎn)P,割線PQ便無(wú)限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點(diǎn)P處的切線.

導(dǎo)數(shù)的幾何意義教案

追問(wèn):怎樣確定曲線C在點(diǎn)P的切線呢?因?yàn)镻是給定的,根據(jù)平面解析幾何中直線的點(diǎn)斜式方程的知識(shí),只要求出切線的斜率就夠了.設(shè)割線PQ的傾斜角為導(dǎo)數(shù)的幾何意義教案,切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案,易知割線PQ的斜率為導(dǎo)數(shù)的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導(dǎo)數(shù)的幾何意義教案,即導(dǎo)數(shù)的幾何意義教案。

由導(dǎo)數(shù)的定義知導(dǎo)數(shù)的幾何意義教案 導(dǎo)數(shù)的幾何意義教案。

導(dǎo)數(shù)的幾何意義教案

由上式可知:曲線f(x)在點(diǎn)(x0,f(x0))處的切線的斜率就是y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).今天我們就來(lái)探究導(dǎo)數(shù)的幾何意義。

C類學(xué)生回答第1題,A,B類學(xué)生回答第2題在學(xué)生回答基礎(chǔ)上教師重點(diǎn)講評(píng)第3題,然后逐步引入導(dǎo)數(shù)的幾何意義.

二、新課

1、導(dǎo)數(shù)的幾何意義:

函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的斜率.

即:導(dǎo)數(shù)的幾何意義教案

口答練習(xí):

(1)如果函數(shù)y=f(x)在已知點(diǎn)x0處的導(dǎo)數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對(duì)應(yīng)點(diǎn)的切線的傾斜角,并說(shuō)明切線各有什么特征。

(C層學(xué)生做)

(2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過(guò)觀察確定函數(shù)在各點(diǎn)的導(dǎo)數(shù).(A、B層學(xué)生做)

導(dǎo)數(shù)的幾何意義教案

2、如何用導(dǎo)數(shù)研究函數(shù)的增減?

小結(jié):附近:瞬時(shí),增減:變化率,即研究函數(shù)在該點(diǎn)處的瞬時(shí)變化率,也就是導(dǎo)數(shù)。導(dǎo)數(shù)的正負(fù)即對(duì)應(yīng)函數(shù)的增減。作出該點(diǎn)處的切線,可由切線的升降趨勢(shì),得切線斜率的正負(fù)即導(dǎo)數(shù)的正負(fù),就可以判斷函數(shù)的增減性,體會(huì)導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

同時(shí),結(jié)合以直代曲的思想,在某點(diǎn)附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

例1 函數(shù)導(dǎo)數(shù)的幾何意義教案上有一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求該點(diǎn)處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。

導(dǎo)數(shù)的幾何意義教案

函數(shù)在定義域上任意點(diǎn)處的瞬時(shí)變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時(shí)任意點(diǎn)處的切線就是直線本身,斜率就是變化率)

3、利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.

例2 求曲線y=x2在點(diǎn)M(2,4)處的切線方程.

解:導(dǎo)數(shù)的幾何意義教案

∴y'|x=2=2×2=4.

∴點(diǎn)M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.

由上例可歸納出求切線方程的兩個(gè)步驟:

(1)先求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).

(2)根據(jù)直線方程的點(diǎn)斜式,得切線方程為 y-y0=f'(x0)(x-x0).

提問(wèn):若在點(diǎn)(x0,f(x0))處切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案,求切線方程。(因?yàn)檫@時(shí)切線平行于y軸,而導(dǎo)數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導(dǎo)數(shù)的幾何意義教案)

(先由C類學(xué)生來(lái)回答,再由A,B補(bǔ)充.)

例3 已知曲線導(dǎo)數(shù)的幾何意義教案上一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求:(1)過(guò)P點(diǎn)的切線的斜率;

(2)過(guò)P點(diǎn)的切線的方程。

解:(1)導(dǎo)數(shù)的幾何意義教案,

導(dǎo)數(shù)的幾何意義教案

y'|x=2=22=4. ∴ 在點(diǎn)P處的切線的斜率等于4.

(2)在點(diǎn)P處的切線方程為導(dǎo)數(shù)的幾何意義教案 即 12x-3y-16=0.

練習(xí):求拋物線y=x2+2在點(diǎn)M(2,6)處的切線方程.

(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).

B類學(xué)生做題,A類學(xué)生糾錯(cuò)。

三、小結(jié)

1.導(dǎo)數(shù)的幾何意義.(C組學(xué)生回答)

2.利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程的步驟.

(B組學(xué)生回答)

四、布置作業(yè)

1. 求拋物線導(dǎo)數(shù)的幾何意義教案在點(diǎn)(1,1)處的切線方程。

2.求拋物線y=4x-x2在點(diǎn)A(4,0)和點(diǎn)B(2,4)處的切線的斜率,切線的方程.

3. 求曲線y=2x-x3在點(diǎn)(-1,-1)處的切線的傾斜角

4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點(diǎn)的坐標(biāo); (2)拋物線在交點(diǎn)處的切線方程;

(C組學(xué)生完成1,2題;B組學(xué)生完成1,2,3題;A組學(xué)生完成2,3,4題)

教學(xué)反思:

本節(jié)內(nèi)容是在學(xué)習(xí)了“變化率問(wèn)題、導(dǎo)數(shù)的概念”等知識(shí)的基礎(chǔ)上,研究導(dǎo)數(shù)的幾何意義,由于新教材未設(shè)計(jì)極限,于是我盡量采用形象直觀的方式,讓學(xué)生通過(guò)動(dòng)手作圖,自我感受整個(gè)逼近的過(guò)程,讓學(xué)生更加深刻地體會(huì)導(dǎo)數(shù)的幾何意義及“以直代曲”的思想。

本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義”和“利用導(dǎo)數(shù) 的幾何意義解釋實(shí)際問(wèn)題”兩個(gè)教學(xué)重心展開。 先回憶導(dǎo)數(shù)的實(shí)際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導(dǎo)數(shù)的幾何意義;然后,類比“平均變化率——瞬時(shí)變化率”的研究思路,運(yùn)用逼近的思想定義了曲線上某點(diǎn)的切線,再引導(dǎo)學(xué)生從數(shù)形結(jié)合的角度思考,獲得導(dǎo)數(shù)的幾何意義——“導(dǎo)數(shù)是曲線上某點(diǎn)處切線的斜率”。

完成本節(jié)課第一階段的內(nèi)容學(xué)習(xí)后,教師點(diǎn)明,利用導(dǎo)數(shù)的幾何意義,在研究實(shí)際問(wèn)題時(shí),某點(diǎn)附近的曲線可以用過(guò)此點(diǎn)的切線近似代替,即“以直代曲”,從而達(dá)到“以簡(jiǎn)單的對(duì)象刻畫復(fù)雜對(duì)象”的目的,并通過(guò)兩個(gè)例題的研究,讓學(xué)生從不同的角度完整地體驗(yàn)導(dǎo)數(shù)與切線斜率的關(guān)系,并感受導(dǎo)數(shù)應(yīng)用的廣泛性。 本節(jié)課注重以學(xué)生為主體,每一個(gè)知識(shí)、每一個(gè)發(fā)現(xiàn),總設(shè)法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時(shí)間和空間,讓學(xué)生在動(dòng)手操作、動(dòng)筆演算等活動(dòng)后,再組織討論,本教師只是在關(guān)鍵處加以引導(dǎo)。從學(xué)生的作業(yè)看來(lái),效果較好。

高中實(shí)用數(shù)學(xué)教案篇13

教學(xué)過(guò)程:

一、復(fù)習(xí)引入:

1.簡(jiǎn)介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);

2.教材中的章頭引言;

3.集合論的創(chuàng)始人——康托爾(德國(guó)數(shù)學(xué)家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)。

二、講解新課:

閱讀教材第一部分,問(wèn)題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號(hào)?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有關(guān)概念:由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說(shuō),每一組對(duì)象的全體形成一個(gè)集合,或者說(shuō),某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。

定義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合。

1、集合的概念

(1)集合:某些指定的對(duì)象集在一起就形成一個(gè)集合(簡(jiǎn)稱集)

(2)元素:集合中每個(gè)對(duì)象叫做這個(gè)集合的元素

2、常用數(shù)集及記法

(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合,記作N,N={0,1,2,…}

(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集,記作N__或N+,N__={1,2,3,…}

(3)整數(shù)集:全體整數(shù)的集合,記作Z,Z={0,±1,±2,…}

(4)有理數(shù)集:全體有理數(shù)的集合,記作Q,Q={整數(shù)與分?jǐn)?shù)}

(5)實(shí)數(shù)集:全體實(shí)數(shù)的集合,記作R,R={數(shù)軸上所有點(diǎn)所對(duì)應(yīng)的數(shù)}

注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說(shuō),自然數(shù)集包括數(shù)0

(2)非負(fù)整數(shù)集內(nèi)排除0的集,記作N__或N+

Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z__

3、元素對(duì)于集合的隸屬關(guān)系

(1)屬于:如果a是集合A的元素,就說(shuō)a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說(shuō)a不屬于A,記作aA

4、集合中元素的特性

(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個(gè)元素或者在這個(gè)集合里,或者不在,不能模棱兩可

(2)互異性:集合中的元素沒有重復(fù)

(3)無(wú)序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的開口方向,不能把a(bǔ)∈A顛倒過(guò)來(lái)寫。

高中實(shí)用數(shù)學(xué)教案篇14

排列

教學(xué)目標(biāo)

(1)正確理解排列的意義。能利用樹形圖寫出簡(jiǎn)單問(wèn)題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問(wèn)題,寫出符合要求的排列;

(3)會(huì)分析與數(shù)字有關(guān)的排列問(wèn)題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

教學(xué)重點(diǎn)難點(diǎn)

重點(diǎn)是排列的定義、排列數(shù)并運(yùn)用這個(gè)公式去解決有關(guān)排列數(shù)的應(yīng)用問(wèn)題。

難點(diǎn)是解有關(guān)排列的應(yīng)用題。

教學(xué)過(guò)程設(shè)計(jì)

一、 復(fù)習(xí)引入

上節(jié)課我們學(xué)習(xí)了兩個(gè)基本原理,請(qǐng)大家完成以下兩題的練習(xí)(用投影儀出示):

1.書架上層放著50本不同的社會(huì)科學(xué)書,下層放著40本不同的自然科學(xué)的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會(huì)科學(xué)書與自然科學(xué)書各1本,有多少種不同的取法?

2.某農(nóng)場(chǎng)為了考察三個(gè)外地優(yōu)良品種A,B,C,計(jì)劃在甲、乙、丙、丁、戊共五種類型的土地上分別進(jìn)行引種試驗(yàn),問(wèn)共需安排多少個(gè)試驗(yàn)小區(qū)?

找一同學(xué)談解答并說(shuō)明怎樣思考的的過(guò)程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會(huì)科學(xué)書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學(xué)書,可以從40本中任取1本,有40種方法.根據(jù)加法原理,得到不同的取法種數(shù)是50+40=90.第(2)小題從書架上取社會(huì)科學(xué)、自然科學(xué)書各1本(共取出2本),可以分兩個(gè)步驟完成:第一步取一本社會(huì)科學(xué)書,第二步取一本自然科學(xué)書,根據(jù)乘法原理,得到不同的取法種數(shù)是: 50×40=2000.

第2題說(shuō),共有A,B,C三個(gè)優(yōu)良品種,而每個(gè)品種在甲類型土地上實(shí)驗(yàn)有三個(gè)小區(qū),在乙類型的土地上有三個(gè)小區(qū)……所以共需3×5=15個(gè)實(shí)驗(yàn)小區(qū).

二、 講授新課

學(xué)習(xí)了兩個(gè)基本原理之后,現(xiàn)在我們繼續(xù)學(xué)習(xí)排列問(wèn)題,這是我們本節(jié)討論的重點(diǎn).先從實(shí)例入手:

1.北京、上海、廣州三個(gè)民航站之間的直達(dá)航線,需要準(zhǔn)備多少種不同飛機(jī)票?

由學(xué)生設(shè)計(jì)好方案并回答.

(1)用加法原理設(shè)計(jì)方案.

首先確定起點(diǎn)站,如果北京是起點(diǎn)站,終點(diǎn)站是上海或廣州,需要制2種飛機(jī)票,若起點(diǎn)站是上海,終點(diǎn)站是北京或廣州,又需制2種飛機(jī)票;若起點(diǎn)站是廣州,終點(diǎn)站是北京或上海,又需要2種飛機(jī)票,共需要2+2+2=6種飛機(jī)票.

(2)用乘法原理設(shè)計(jì)方案.

首先確定起點(diǎn)站,在三個(gè)站中,任選一個(gè)站為起點(diǎn)站,有3種方法.即北京、上海、廣泛任意一個(gè)城市為起點(diǎn)站,當(dāng)選定起點(diǎn)站后,再確定終點(diǎn)站,由于已經(jīng)選了起點(diǎn)站,終點(diǎn)站只能在其余兩個(gè)站去選.那么,根據(jù)乘法原理,在三個(gè)民航站中,每次取兩個(gè),按起點(diǎn)站在前、終點(diǎn)站在后的順序排列不同方法共有3×2=6種.

根據(jù)以上分析由學(xué)生(板演)寫出所有種飛機(jī)票

再看一個(gè)實(shí)例.

在航海中,船艦常以“旗語(yǔ)”相互聯(lián)系,即利用不同顏色的旗子發(fā)送出各種不同的信號(hào).如有紅、黃、綠三面不同顏色的旗子,按一定順序同時(shí)升起表示一定的信號(hào),問(wèn)這樣總共可以表示出多少種不同的信號(hào)?

找學(xué)生談自己對(duì)這個(gè)問(wèn)題的想法.

事實(shí)上,紅、黃、綠三面旗子按一定順序的一個(gè)排法表示一種信號(hào),所以不同顏色的同時(shí)升起可以表示出來(lái)的信號(hào)種數(shù),也就是紅、黃、綠這三面旗子的所有不同順序的排法總數(shù).

首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個(gè),有3種方法;

其次,確定中間位置的旗子,當(dāng)位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據(jù)乘法原理,用紅、黃、綠這三面旗子同時(shí)升起表示出所有信號(hào)種數(shù)是:3×2×1=6(種).

根據(jù)學(xué)生的分析,由另外的同學(xué)(板演)寫出三面旗子同時(shí)升起表示信號(hào)的所有情況.(包括每個(gè)位置情況)

第三個(gè)實(shí)例,讓全體學(xué)生都參加設(shè)計(jì),把所有情況(包括每個(gè)位置情況)寫出來(lái).

由數(shù)字1,2,3,4可以組成多少個(gè)沒有重復(fù)數(shù)字的三位數(shù)?寫出這些所有的三位數(shù).

根據(jù)乘法原理,從四個(gè)不同的數(shù)字中,每次取出三個(gè)排成三位數(shù)的方法共有4×3×2=24(個(gè)).

請(qǐng)板演的學(xué)生談?wù)勗鯓酉氲?

第一步,先確定百位上的數(shù)字.在1,2,3,4這四個(gè)數(shù)字中任取一個(gè),有4種取法.

第二步,確定十位上的數(shù)字.當(dāng)百位上的數(shù)字確定以后,十位上的數(shù)字只能從余下的三個(gè)數(shù)字去取,有3種方法.

第三步,確定個(gè)位上的數(shù)字.當(dāng)百位、十位上的數(shù)字都確定以后,個(gè)位上的數(shù)字只能從余下的兩個(gè)數(shù)字中去取,有2種方法.

根據(jù)乘法原理,所以共有4×3×2=24種.

下面由教師提問(wèn),學(xué)生回答下列問(wèn)題

(1)以上我們討論了三個(gè)實(shí)例,這三個(gè)問(wèn)題有什么共同的地方?

都是從一些研究的對(duì)象之中取出某些研究的對(duì)象.

(2)取出的這些研究對(duì)象又做些什么?

實(shí)質(zhì)上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請(qǐng)大家看書,第×頁(yè)、第×行. 我們把被取的對(duì)象叫做雙元素,如上面問(wèn)題中的民航站、旗子、數(shù)字都是元素.

上面第一個(gè)問(wèn)題就是從3個(gè)不同的元素中,任取2個(gè),然后按一定順序排成一列,求一共有多少種不同的排法,后來(lái)又寫出所有排法.

第二個(gè)問(wèn)題,就是從3個(gè)不同元素中,取出3個(gè),然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個(gè)問(wèn)題呢?

從4個(gè)不同的元素中,任取3個(gè),然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請(qǐng)看課本,第×頁(yè),第×行.一般地說(shuō),從n個(gè)不同的元素中,任取m(m≤n)個(gè)元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.

下面由教師提問(wèn),學(xué)生回答下列問(wèn)題

(1)按著這個(gè)定義,結(jié)合上面的問(wèn)題,請(qǐng)同學(xué)們談?wù)勈裁词窍嗤呐帕?什么是不同的排列?

從排列的定義知道,如果兩個(gè)排列相同,不僅這兩個(gè)排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個(gè)條件中,只要有一個(gè)條件不符合,就是不同的排列.

如第一個(gè)問(wèn)題中,北京—廣州,上?!獜V州是兩個(gè)排列,第三個(gè)問(wèn)題中,213與423也是兩個(gè)排列.

再如第一個(gè)問(wèn)題中,北京—廣州,廣州—北京;第二個(gè)問(wèn)題中,紅黃綠與紅綠黃;第三個(gè)問(wèn)題中231和213雖然元素完全相同,但排列順序不同,也是兩個(gè)排列.

(2)還需要搞清楚一個(gè)問(wèn)題,“一個(gè)排列”是不是一個(gè)數(shù)?

生:“一個(gè)排列”不應(yīng)當(dāng)是一個(gè)數(shù),而應(yīng)當(dāng)指一件具體的事.如飛機(jī)票“北京—廣州”是一個(gè)排列,“紅黃綠”是一種信號(hào),也是一個(gè)排列.如果問(wèn)飛機(jī)票有多少種?能表示出多少種信號(hào).只問(wèn)種數(shù),不用把所有情況羅列出來(lái),才是一個(gè)數(shù).前面提到的第三個(gè)問(wèn)題,實(shí)質(zhì)上也是這樣的.

三、 課堂練習(xí)

大家思考,下面的排列問(wèn)題怎樣解?

有四張卡片,每張分別寫著數(shù)碼1,2,3,4.有四個(gè)空箱,分別寫著號(hào)碼1,2,3,4.把卡片放到空箱內(nèi),每箱必須并且只能放一張,而且卡片數(shù)碼與箱子號(hào)碼必須不一致,問(wèn)有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個(gè)位置上,只要交換卡片位置,就是不同的放法,是個(gè)附有條件的排列問(wèn)題.

解法是:第一步把數(shù)碼卡片四張中2,3,4三張任選一個(gè)放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業(yè)

課本:P232練習(xí)1,2,3,4,5,6,7.

高中實(shí)用數(shù)學(xué)教案篇15

學(xué)習(xí)目標(biāo)

明確排列與組合的聯(lián)系與區(qū)別,能判斷一個(gè)問(wèn)題是排列問(wèn)題還是組合問(wèn)題;能運(yùn)用所學(xué)的排列組合知識(shí),正確地解決的實(shí)際問(wèn)題.

學(xué)習(xí)過(guò)程

一、學(xué)前準(zhǔn)備

復(fù)習(xí):

(課本P28A13)填空:

(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;

(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是;

(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;

(4)集合A有個(gè)元素,集合B有個(gè)元素,從兩個(gè)集合中各取1個(gè)元素,不同方法的種數(shù)是;

二、新課導(dǎo)學(xué)

探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)

問(wèn)題1:判斷下列問(wèn)題哪個(gè)是排列問(wèn)題,哪個(gè)是組合問(wèn)題:

(1)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè)安排游覽,有多少種不同的方法?

(2)從4個(gè)風(fēng)景點(diǎn)中選出2個(gè),并確定這2個(gè)風(fēng)景點(diǎn)的游覽順序,有多少種不同的方法?

應(yīng)用示例:

例1:從10個(gè)不同的文藝節(jié)目中選6個(gè)編成一個(gè)節(jié)目單,如果某女演員的獨(dú)唱節(jié)目一定不能排在第二個(gè)節(jié)目的位置上,則共有多少種不同的排法?

例2:7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).

(1)甲站在中間;

(2)甲、乙必須相鄰;

(3)甲在乙的左邊(但不一定相鄰);

(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

(5)甲、乙、丙相鄰;

(6)甲、乙不相鄰;

(7)甲、乙、丙兩兩不相鄰。

反饋練習(xí)

1、(課本P40A4)某學(xué)生邀請(qǐng)10位同學(xué)中的6位參加一項(xiàng)活動(dòng),其中兩位同學(xué)要么都請(qǐng),要么都不請(qǐng),共有多少種邀請(qǐng)方法?

2、5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列

3、馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.

當(dāng)堂檢測(cè)

1、某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()

A.42B.30C.20D.12

2、(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?

課后作業(yè)

1、(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問(wèn):(1)能夠組成多少個(gè)六位奇數(shù)?(2)能夠組成多少個(gè)大于201345的正整數(shù)?

2、(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過(guò)5道工序,問(wèn):(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?

高中實(shí)用數(shù)學(xué)教案篇16

一.課標(biāo)要求:

1.分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理

通過(guò)實(shí)例,總結(jié)出分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理;能根據(jù)具體問(wèn)題的特征,選擇分類加法計(jì)數(shù)原理或分步乘法計(jì)數(shù)原理解決一些簡(jiǎn)單的實(shí)際問(wèn)題;

2.排列與組合

通過(guò)實(shí)例,理解排列、組合的概念;能利用計(jì)數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式,并能解決簡(jiǎn)單的實(shí)際問(wèn)題;

3.二項(xiàng)式定理

能用計(jì)數(shù)原理證明二項(xiàng)式定理;會(huì)用二項(xiàng)式定理解決與二項(xiàng)展開式有關(guān)的簡(jiǎn)單問(wèn)題。

二.命題走向

本部分內(nèi)容主要包括分類計(jì)數(shù)原理、分步計(jì)數(shù)原理、排列與組合、二項(xiàng)式定理三部分;考查內(nèi)容:(1)兩個(gè)原理;(2)排列、組合的概念,排列數(shù)和組合數(shù)公式,排列和組合的應(yīng)用;(3)二項(xiàng)式定理,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)及二項(xiàng)式系數(shù)和。

排列、組合不僅是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,而且在實(shí)際中有廣泛的應(yīng)用,因此新高考會(huì)有題目涉及;二項(xiàng)式定理是高中數(shù)學(xué)的重點(diǎn)內(nèi)容,也是高考每年必考內(nèi)容,新高考會(huì)繼續(xù)考察。

考察形式:?jiǎn)为?dú)的考題會(huì)以選擇題、填空題的形式出現(xiàn),屬于中低難度的題目,排列組合有時(shí)與概率結(jié)合出現(xiàn)在解答題中難度較小,屬于高考題中的中低檔題目。

三.要點(diǎn)精講

1.排列、組合、二項(xiàng)式知識(shí)相互關(guān)系表

2.兩個(gè)基本原理

(1)分類計(jì)數(shù)原理中的分類;

(2)分步計(jì)數(shù)原理中的分步;

正確地分類與分步是學(xué)好這一章的關(guān)鍵。

3.排列

(1)排列定義,排列數(shù)

(2)排列數(shù)公式:系==n·(n-1)…(n-m+1);

(3)全排列列:=n!;

(4)記住下列幾個(gè)階乘數(shù):1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;

4.組合

(1)組合的定義,排列與組合的區(qū)別;

(2)組合數(shù)公式:Cnm==;

(3)組合數(shù)的性質(zhì)

①Cnm=Cnn-m;②;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;

5.二項(xiàng)式定理

(1)二項(xiàng)式展開公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;

(2)通項(xiàng)公式:二項(xiàng)式展開式中第k+1項(xiàng)的通項(xiàng)公式是:Tk+1=Cnkan-kbk;

6.二項(xiàng)式的應(yīng)用

(1)求某些多項(xiàng)式系數(shù)的和;

(2)證明一些簡(jiǎn)單的組合恒等式;

(3)證明整除性。

①求數(shù)的末位;

②數(shù)的整除性及求系數(shù)

;③簡(jiǎn)單多項(xiàng)式的整除問(wèn)題;

(4)近似計(jì)算。當(dāng)x充分小時(shí),我們常用下列公式估計(jì)近似值:

①(1+x)n≈1+nx

;②(1+x)n≈1+nx+x2;

(5)證明不等式。

四.典例解析

題型1:計(jì)數(shù)原理

例1.完成下列選擇題與填空題

(1)有三個(gè)不同的信箱,今有四封不同的信欲投其中,則不同的投法有種。

A.81B.64C.24D.4

(2)四名學(xué)生爭(zhēng)奪三項(xiàng)冠軍,獲得冠軍的可能的種數(shù)是()

A.81B.64C.24D.4

(3)有四位學(xué)生參加三項(xiàng)不同的競(jìng)賽,

①每位學(xué)生必須參加一項(xiàng)競(jìng)賽,則有不同的參賽方法有;

②每項(xiàng)競(jìng)賽只許有一位學(xué)生參加,則有不同的參賽方法有;

③每位學(xué)生最多參加一項(xiàng)競(jìng)賽,每項(xiàng)競(jìng)賽只許有一位學(xué)生參加,則不同的參賽方法有。

例2.(06江蘇卷)今有2個(gè)紅球、3個(gè)黃球、4個(gè)白球,同色球不加以區(qū)分,將這9個(gè)球排成一列有種不同的方法(用數(shù)字作答)。

點(diǎn)評(píng):分步計(jì)數(shù)原理與分類計(jì)數(shù)原理是排列組合中解決問(wèn)題的重要手段,也是基礎(chǔ)方法,在高中數(shù)學(xué)中,只有這兩個(gè)原理,尤其是分類計(jì)數(shù)原理與分類討論有很多相通之處,當(dāng)遇到比較復(fù)雜的問(wèn)題時(shí),用分類的方法可以有效的將之化簡(jiǎn),達(dá)到求解的目的。

題型2:排列問(wèn)題

例3.(1)(20__四川理卷13)

展開式中的系數(shù)為?_______________。

【點(diǎn)評(píng)】:此題重點(diǎn)考察二項(xiàng)展開式中指定項(xiàng)的系數(shù),以及組合思想;

(2).20__湖南省長(zhǎng)沙云帆實(shí)驗(yàn)學(xué)校理科限時(shí)訓(xùn)練

若n展開式中含項(xiàng)的系數(shù)與含項(xiàng)的系數(shù)之比為-5,則n等于()

A.4B.6C.8D.10

點(diǎn)評(píng):合理的應(yīng)用排列的公式處理實(shí)際問(wèn)題,首先應(yīng)該進(jìn)入排列問(wèn)題的情景,想清楚我處理時(shí)應(yīng)該如何去做。

例4.(1)用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字的五位數(shù),則其中數(shù)字1,2相鄰的偶數(shù)有個(gè)(用數(shù)字作答);

(2)電視臺(tái)連續(xù)播放6個(gè)廣告,其中含4個(gè)不同的商業(yè)廣告和2個(gè)不同的公益廣告,要求首尾必須播放公益廣告,則共有種不同的播放方式(結(jié)果用數(shù)值表示).

點(diǎn)評(píng):排列問(wèn)題不可能解決所有問(wèn)題,對(duì)于較復(fù)雜的問(wèn)題都是以排列公式為輔助。

題型三:組合問(wèn)題

例5.荊州市20__屆高中畢業(yè)班質(zhì)量檢測(cè)(Ⅱ)

(1)將4個(gè)相同的白球和5個(gè)相同的黑球全部放入3個(gè)不同的盒子中,每個(gè)盒子既要有白球,又要有黑球,且每個(gè)盒子中都不能同時(shí)只放入2個(gè)白球和2個(gè)黑球,則所有不同的放法種數(shù)為(C)A.3B.6C.12D.18

(2)將4個(gè)顏色互不相同的球全部放入編號(hào)為1和2的兩個(gè)盒子里,使得放入每個(gè)盒子里的球的個(gè)數(shù)不小于該盒子的編號(hào),則不同的放球方法有()

A.10種B.20種C.36種D.52種

點(diǎn)評(píng):計(jì)數(shù)原理是解決較為復(fù)雜的排列組合問(wèn)題的基礎(chǔ),應(yīng)用計(jì)數(shù)原理結(jié)合

例6.(1)某校從8名教師中選派4名教師同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1人),其中甲和乙不同去,則不同的選派方案共有種;

(2)5名志愿者分到3所學(xué)校支教,每個(gè)學(xué)校至少去一名志愿者,則不同的分派方法共有()

(A)150種(B)180種(C)200種(D)280種

點(diǎn)評(píng):排列組合的交叉使用可以處理一些復(fù)雜問(wèn)題,諸如分組問(wèn)題等;

題型4:排列、組合的綜合問(wèn)題

例7.平面上給定10個(gè)點(diǎn),任意三點(diǎn)不共線,由這10個(gè)點(diǎn)確定的`直線中,無(wú)三條直線交于同一點(diǎn)(除原10點(diǎn)外),無(wú)兩條直線互相平行。求:(1)這些直線所交成的點(diǎn)的個(gè)數(shù)(除原10點(diǎn)外)。(2)這些直線交成多少個(gè)三角形。

點(diǎn)評(píng):用排列、組合解決有關(guān)幾何計(jì)算問(wèn)題,除了應(yīng)用排列、組合的各種方法與對(duì)策之外,還要考慮實(shí)際幾何意義。

例8.已知直線ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個(gè)不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數(shù)。

點(diǎn)評(píng):本題是1999年全國(guó)高中數(shù)學(xué)聯(lián)賽中的一填空題,據(jù)抽樣分析正確率只有0.37。錯(cuò)誤原因沒有對(duì)c=0與c≠0正確分類;沒有考慮c=0中出現(xiàn)重復(fù)的直線。

題型5:二項(xiàng)式定理

例9.(1)(20__湖北卷)

在的展開式中,的冪的指數(shù)是整數(shù)的項(xiàng)共有

A.3項(xiàng)B.4項(xiàng)C.5項(xiàng)D.6項(xiàng)

(2)的展開式中含x的正整數(shù)指數(shù)冪的項(xiàng)數(shù)是

(A)0(B)2(C)4(D)6

點(diǎn)評(píng):多項(xiàng)式乘法的進(jìn)位規(guī)則。在求系數(shù)過(guò)程中,盡量先化簡(jiǎn),降底數(shù)的運(yùn)算級(jí)別,盡量化成加減運(yùn)算,在運(yùn)算過(guò)程可以適當(dāng)注意令值法的運(yùn)用,例如求常數(shù)項(xiàng),可令.在二項(xiàng)式的展開式中,要注意項(xiàng)的系數(shù)和二項(xiàng)式系數(shù)的區(qū)別。

例10.(20__湖南文13)

記的展開式中第m項(xiàng)的系數(shù)為,若,則=____5______.

題型6:二項(xiàng)式定理的應(yīng)用

例11.(1)求4×6n+5n+1被20除后的余數(shù);

(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余數(shù)是多少?

(3)根據(jù)下列要求的精確度,求1.025的近似值。①精確到0.01;②精確到0.001。

點(diǎn)評(píng):(1)用二項(xiàng)式定理來(lái)處理余數(shù)問(wèn)題或整除問(wèn)題時(shí),通常把底數(shù)適當(dāng)?shù)夭鸪蓛身?xiàng)之和或之差再按二項(xiàng)式定理展開推得所求結(jié)論;

(2)用二項(xiàng)式定理來(lái)求近似值,可以根據(jù)不同精確度來(lái)確定應(yīng)該取到展開式的第幾項(xiàng)。

五.思維總結(jié)

解排列組合應(yīng)用題的基本規(guī)律

1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理使用方法有兩種:①單獨(dú)使用;②聯(lián)合使用。

2.將具體問(wèn)題抽象為排列問(wèn)題或組合問(wèn)題,是解排列組合應(yīng)用題的關(guān)鍵一步。

3.對(duì)于帶限制條件的排列問(wèn)題,通常從以下三種途徑考慮:

(1)元素分析法:先考慮特殊元素要求,再考慮其他元素;

(2)位置分析法:先考慮特殊位置的要求,再考慮其他位置;

(3)整體排除法:先算出不帶限制條件的排列數(shù),再減去不滿足限制條件的排列數(shù)。

4.對(duì)解組合問(wèn)題,應(yīng)注意以下三點(diǎn):

(1)對(duì)“組合數(shù)”恰當(dāng)?shù)姆诸愑?jì)算,是解組合題的常用方法;

(2)是用“直接法”還是“間接法”解組合題,其原則是“正難則反”;

(3)設(shè)計(jì)“分組方案”是解組合題的關(guān)鍵所在。

高中實(shí)用數(shù)學(xué)教案篇17

一、教學(xué)內(nèi)容分析

二面角是我們?nèi)粘I钪薪?jīng)常見到的一個(gè)圖形,它是在學(xué)生學(xué)過(guò)空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進(jìn)一步完善了空間角的概念.掌握好本節(jié)課的知識(shí),對(duì)學(xué)生系統(tǒng)地理解直線和平面的知識(shí)、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義.

二、教學(xué)目標(biāo)設(shè)計(jì)

理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運(yùn)用它們解決相關(guān)問(wèn)題.

三、教學(xué)重點(diǎn)及難點(diǎn)

二面角的平面角的概念的形成以及二面角的平面角的作法.

四、教學(xué)流程設(shè)計(jì)

五、教學(xué)過(guò)程設(shè)計(jì)

一、 新課引入

1.復(fù)習(xí)和回顧平面角的有關(guān)知識(shí).

平面中的角

定義 從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角圖形

結(jié)構(gòu) 射線—點(diǎn)—射線

表示法 ∠AOB,∠O等

2.復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征.(空間角轉(zhuǎn)化為平面角)

3.觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個(gè)平面所成的角.在實(shí)際生活當(dāng)中,能夠轉(zhuǎn)化為兩個(gè)平面所成角例子非常多,比如在這間教室里,誰(shuí)能舉出能夠體現(xiàn)兩個(gè)平面所成角的實(shí)例?(如圖1,課本的開合、門或窗的開關(guān).)從而,引出“二面角”的定義及相關(guān)內(nèi)容.

二、學(xué)習(xí)新課

(一)二面角的定義

平面中的角 二面角

定義 從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角 課本P17

圖形

結(jié)構(gòu) 射線—點(diǎn)—射線 半平面—直線—半平面

表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

(二)二面角的圖示

1.畫出直立式、平臥式二面角各一個(gè),并分別給予表示.

2.在正方體中認(rèn)識(shí)二面角.

(三)二面角的平面角

平面幾何中的“角”可以看作是一條射線繞其端點(diǎn)旋轉(zhuǎn)而成,它有一個(gè)旋轉(zhuǎn)量,它的大小可以度量,類似地,"二面角"也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個(gè)旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?

1.二面角的平面角的定義(課本P17).

2.∠AOB的大小與點(diǎn)O在棱上的位置無(wú)關(guān).

[說(shuō)明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,有必要來(lái)研究二面角的度量問(wèn)題.

②與兩條異面直線所成的角、直線和平面所成的角做類比,用“平面角”去度量.

③二面角的平面角的三個(gè)主要特征:角的頂點(diǎn)在棱上;角的兩邊分別在兩個(gè)半平面內(nèi);角的兩邊分別與棱垂直.

3.二面角的平面角的范圍:

(四)例題分析

例1 一張邊長(zhǎng)為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個(gè) 的二面角,求此時(shí)B、C兩點(diǎn)間的距離.

[說(shuō)明] ①檢查學(xué)生對(duì)二面角的平面角的定義的掌握情況.

②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化, 哪些沒變?

例2 如圖,已知邊長(zhǎng)為a的等邊三角形 所在平面外有一點(diǎn)P,使PA=PB=PC=a,求二面角 的大小.

[說(shuō)明] ①求二面角的步驟:作—證—算—答.

②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法).

例3 已知正方體 ,求二面角 的大小.(課本P18例1)

[說(shuō)明] 使學(xué)生進(jìn)一步熟悉作二面角的平面角的方法.

(五)問(wèn)題拓展

例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?

[說(shuō)明]使學(xué)生明白數(shù)學(xué)既來(lái)源于實(shí)際又服務(wù)于實(shí)際.

三、鞏固練習(xí)

1.在棱長(zhǎng)為1的正方體 中,求二面角 的大小.

2. 若二面角 的大小為 ,P在平面 上,點(diǎn)P到 的距離為h,求點(diǎn)P到棱l的距離.

四、課堂小結(jié)

1.二面角的定義

2.二面角的平面角的定義及其范圍

3.二面角的平面角的常用作圖方法

4.求二面角的大小(作—證—算—答)

五、作業(yè)布置

1.課本P18練習(xí)14.4(1)

2.在 二面角的一個(gè)面內(nèi)有一個(gè)點(diǎn),它到另一個(gè)面的距離是10,求它到棱的距離.

3.把邊長(zhǎng)為a的正方形ABCD以BD為軸折疊,使二面角A-BD-C成 的二面角,求A、C兩點(diǎn)的距離.

六、教學(xué)設(shè)計(jì)說(shuō)明

本節(jié)課的設(shè)計(jì)不是簡(jiǎn)單地將概念直接傳受給學(xué)生,而是考慮到知識(shí)的形成過(guò)程,設(shè)法從學(xué)生的數(shù)學(xué)現(xiàn)實(shí)出發(fā),調(diào)動(dòng)學(xué)生積極參與探索、發(fā)現(xiàn)、問(wèn)題解決全過(guò)程.“二面角”及“二面角的平面角”這兩大概念的引出均運(yùn)用了類比的手段和方法.教學(xué)過(guò)程中通過(guò)教師的層層鋪墊,學(xué)生的主動(dòng)探究,使學(xué)生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過(guò)程,有意識(shí)地加強(qiáng)了知識(shí)形成過(guò)程的教學(xué).

高中實(shí)用數(shù)學(xué)教案篇18

1、教材分析:

集合是現(xiàn)代數(shù)學(xué)的基本語(yǔ)言,可以簡(jiǎn)潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容。本節(jié)是讓學(xué)生學(xué)會(huì)用集合的語(yǔ)言來(lái)描述對(duì)象,章末我們會(huì)用集合和對(duì)應(yīng)的語(yǔ)言來(lái)描述函數(shù)的概念,可見它是今后數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),也是培養(yǎng)學(xué)生抽象概括能力的重要素材。

2、教材目標(biāo):

根據(jù)素質(zhì)教育的要求和新課改的精神,我確定教學(xué)目標(biāo)如下:

①知識(shí)與技能:

(1)了解集合的含義與集合中元素的特征

(2)熟記常用數(shù)集符號(hào)

(3)能用列舉、描述法表示具體集合

②過(guò)程與方法:讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過(guò)程,感知集合的含義.讓學(xué)生通過(guò)觀察、歸納、總結(jié)的過(guò)程,提高抽象概括能力。

③情感態(tài)度與價(jià)值觀:使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.

3、教學(xué)重點(diǎn)、難點(diǎn)

教學(xué)重點(diǎn):集合的基本概念與表示方法;

教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合;說(shuō)教法

1.學(xué)情分析

《集合的含義及表示》這一課時(shí)是學(xué)生進(jìn)入高中階段學(xué)習(xí)、接觸到高中數(shù)學(xué)的第一堂課,它直接影響到了學(xué)生對(duì)高中階段數(shù)學(xué)學(xué)習(xí)的認(rèn)識(shí);如果我們教學(xué)上過(guò)于草率,學(xué)生很容易對(duì)數(shù)學(xué)失去學(xué)習(xí)興趣。再者,這是高中數(shù)學(xué)課程的第一章的第一課時(shí),是整個(gè)高中數(shù)學(xué)的奠基部分,所以我們不僅要正確地傳授知識(shí),更要把握好教學(xué)的難度。如果傳授得過(guò)于簡(jiǎn)單,那么學(xué)生容易麻痹大意,對(duì)今后的學(xué)習(xí)埋下隱患;如果講得太深,那么學(xué)生會(huì)有畏難心理,也會(huì)對(duì)今后的學(xué)習(xí)造成影響。

2.方法選擇

在教學(xué)中注意啟發(fā)引導(dǎo),通過(guò)預(yù)習(xí)學(xué)案的形式把知識(shí)問(wèn)題化,通過(guò)實(shí)例引導(dǎo)學(xué)生觀察歸納,上課組織學(xué)生分組討論,讓他們經(jīng)歷觀察、猜測(cè)、推理、交流、反思的理性思維的基本過(guò)程,切實(shí)改變學(xué)生的學(xué)習(xí)方法。

說(shuō)學(xué)法

讓學(xué)生通過(guò)課前結(jié)合學(xué)案,閱讀教材,自主預(yù)習(xí),課上交流、討論、概括,課后復(fù)習(xí)鞏固三個(gè)環(huán)節(jié),更好地完成本節(jié)課的教學(xué)目標(biāo)。值得提出的是:集合作為一種數(shù)學(xué)語(yǔ)言,最好的學(xué)習(xí)方法是使用,所以應(yīng)該多做轉(zhuǎn)換練習(xí),

說(shuō)教學(xué)程序

(一)創(chuàng)設(shè)情境,揭示課題

軍訓(xùn)前學(xué)校通知:x月x日x點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。

通過(guò)學(xué)生熟悉的實(shí)際生活問(wèn)題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動(dòng)了學(xué)生主動(dòng)參與的積極性。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光去關(guān)注生活。

(二)研探新知,建構(gòu)概念

讓學(xué)生閱讀課本P2內(nèi)容,讓小組思考討論,代表發(fā)言,師生共同補(bǔ)充答案它們的共同特征:它們都是指定的一組對(duì)象。這時(shí)我借此引入集合的概念,把一些元素組成的總體叫做集合,簡(jiǎn)稱集,通常用大寫字母A,B,C,?表示。把研究的對(duì)象稱為元素,通常用小寫拉丁字母a,b,c,?表示;

接下來(lái),我引導(dǎo)學(xué)生把集合的涵義進(jìn)行拓展,期間結(jié)合一些師生互動(dòng):我們班上的女生能不能構(gòu)成一個(gè)集合,班上身高在1.75米以上的男生能不能構(gòu)成一個(gè)集合,班上高的男生能不能構(gòu)成一個(gè)集合??,通過(guò)身邊這些大量例子,讓學(xué)生了解集合的概念,并切實(shí)感受到學(xué)習(xí)集合語(yǔ)言的重要性。

對(duì)于集合元素的特征:確定性、互異性、無(wú)序性。我則在學(xué)生了解集合概念基礎(chǔ)上,通過(guò)設(shè)置三個(gè)問(wèn)題(1)班里個(gè)子高的同學(xué)能否構(gòu)成一個(gè)集合?(2)在一個(gè)給定的集合中能否有相同的元素?(3)班里的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒有變化?調(diào)整后的集合和原來(lái)的集合是什么關(guān)系?讓學(xué)生思考:任意一組對(duì)象是否都能組成一個(gè)集合?集合中的元素有什么特征?

這樣設(shè)計(jì)將知識(shí)問(wèn)題化,問(wèn)題生活化,激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性,引導(dǎo)學(xué)生歸納出集合中元素的三大特性,用簡(jiǎn)練的語(yǔ)言概括為——確定性、互異性、無(wú)序性用兩集合相等的概念。

思考3:(1)設(shè)集合A表示“1~20以內(nèi)的所有質(zhì)數(shù)”,那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?

(2)對(duì)于一個(gè)給定的集合A,那么某元素a與集合A有哪幾種可能關(guān)系?

(3)如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?

(4)如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?用符號(hào)∈或?填空:

[設(shè)計(jì)說(shuō)明]這幾個(gè)問(wèn)題比較簡(jiǎn)單,直接提問(wèn)同學(xué)回答,并師生一起完善答案。通過(guò)問(wèn)題的層層深入,目的是引導(dǎo)學(xué)生歸納出元素與集合的關(guān)系及表示方法。

反饋練習(xí):

(1)設(shè)A為所有亞洲國(guó)家組成的集合,則

中國(guó)____A,美國(guó)____A,

印度____A,英國(guó)____A;

對(duì)于集合中常用的符號(hào),我做了這樣處理:簡(jiǎn)要介紹后,讓學(xué)生用兩三分鐘的時(shí)間結(jié)合符號(hào)特點(diǎn)記憶。目的在于給學(xué)生一個(gè)信號(hào):課堂上能消化的東西要及時(shí)記住。

2.集合的表示法:列舉法和描述法

讓學(xué)生自習(xí)閱讀課本P3——P4的內(nèi)容5-7分鐘,接著讓同學(xué)試著解決如下三個(gè)問(wèn)題

(1)由大于10小于20的所有整數(shù)組成的集合;

(2)表示不等式x-7《3的解集;

(3)由1——20以內(nèi)的所有素?cái)?shù)組成的集合;

把集合的元素一一列舉出來(lái),并用花括號(hào)“{}”括起來(lái)表示的方法叫做列舉法。用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號(hào)內(nèi)先寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。

通過(guò)三個(gè)問(wèn)題不僅檢驗(yàn)了學(xué)生的自學(xué)效果,同時(shí)也讓學(xué)生明白列舉法和描述法兩種方法各自的優(yōu)缺點(diǎn),更重要的是對(duì)集合的列舉法和描述法的規(guī)范表達(dá)做進(jìn)一步強(qiáng)調(diào),最后,我?guī)ьI(lǐng)學(xué)生分析了課本P4的例題,對(duì)集合的列舉法和描述法的規(guī)范表達(dá)做進(jìn)一

步的強(qiáng)調(diào),讓學(xué)生完成書上的習(xí)題,并請(qǐng)幾個(gè)學(xué)生上臺(tái)來(lái)演練,通過(guò)練習(xí)達(dá)到及時(shí)的反饋。

(四)歸納整理,整體認(rèn)識(shí)

1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容?

2.你認(rèn)為學(xué)習(xí)集合有什么意義?

3.比較列舉法與描述法的優(yōu)缺點(diǎn)。

(五)布置作業(yè)

作業(yè):習(xí)題1.1A組:2、3、4.

作業(yè)的布置是要突出本節(jié)課的重點(diǎn)——集合概念的理解以及集合的表示法,讓學(xué)生對(duì)數(shù)學(xué)符號(hào)的適用在課外進(jìn)行延伸和鞏固。

說(shuō)板書

在教學(xué)中我把黑板分為三部分,把知識(shí)要點(diǎn)寫在左側(cè),中間是課本例題演練,右側(cè)是實(shí)例應(yīng)用。在左側(cè)的知識(shí)要點(diǎn)主要列出了集合、元素的概念、元素的特性:確定性,互異性,無(wú)序性,和集合的表示法:列舉法和描述法。

以上是我對(duì)《集合的含義與表示》這節(jié)教材的認(rèn)識(shí)和對(duì)教學(xué)過(guò)程的設(shè)計(jì)。對(duì)這節(jié)課的設(shè)計(jì),我始終在努力貫徹一教師為主導(dǎo),以學(xué)生為主題,以問(wèn)題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力為指導(dǎo)思想,利用各種教學(xué)手段激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對(duì)學(xué)生創(chuàng)新意識(shí)的培養(yǎng)。

69475 主站蜘蛛池模板: 安徽千住锡膏_安徽阿尔法锡膏锡条_安徽唯特偶锡膏_卡夫特胶水-芜湖荣亮电子科技有限公司 | 上海风淋室_上海风淋室厂家_上海风淋室价格_上海伯淋 | 山东锐智科电检测仪器有限公司_超声波测厚仪,涂层测厚仪,里氏硬度计,电火花检漏仪,地下管线探测仪 | 泰国试管婴儿_泰国第三代试管婴儿费用|成功率|医院—新生代海外医疗 | 杭州中策电线|中策电缆|中策电线|杭州中策电缆|杭州中策电缆永通集团有限公司 | 医疗仪器模块 健康一体机 多参数监护仪 智慧医疗仪器方案定制 血氧监护 心电监护 -朗锐慧康 | 扫地车厂家-山西洗地机-太原电动扫地车「大同朔州吕梁晋中忻州长治晋城洗地机」山西锦力环保科技有限公司 | 镀锌角钢_槽钢_扁钢_圆钢_方矩管厂家_镀锌花纹板-海邦钢铁(天津)有限公司 | 气动|电动调节阀|球阀|蝶阀-自力式调节阀-上海渠工阀门管道工程有限公司 | 天津次氯酸钠酸钙溶液-天津氢氧化钠厂家-天津市辅仁化工有限公司 | 深圳善跑体育产业集团有限公司_塑胶跑道_人造草坪_运动木地板 | 东莞市海宝机械有限公司-不锈钢分选机-硅胶橡胶-生活垃圾-涡电流-静电-金属-矿石分选机 | 恒压供水控制柜|无负压|一体化泵站控制柜|PLC远程调试|MCGS触摸屏|自动控制方案-联致自控设备 | 外贸资讯网 - 洞悉全球贸易,把握市场先机 | 蔬菜清洗机_环速洗菜机_异物去除清洗机_蔬菜清洗机_商用洗菜机 - 环速科技有限公司 | 专业生物有机肥造粒机,粉状有机肥生产线,槽式翻堆机厂家-郑州华之强重工科技有限公司 | 理化生实验室设备,吊装实验室设备,顶装实验室设备,实验室成套设备厂家,校园功能室设备,智慧书法教室方案 - 东莞市惠森教学设备有限公司 | 防潮防水通风密闭门源头实力厂家 - 北京酷思帝克门窗 | 培训一点通 - 合肥驾校 - 合肥新亚驾校 - 合肥八一驾校 | 制氮设备_PSA制氮机_激光切割制氮机_氮气机生产厂家-苏州西斯气体设备有限公司 | 不锈钢酒柜|恒温酒柜|酒柜定制|酒窖定制-上海啸瑞实业有限公司 | 河南橡胶接头厂家,河南波纹补偿器厂家,河南可曲挠橡胶软连接,河南套筒补偿器厂家-河南正大阀门 | 东莞海恒试验仪器设备有限公司 | 纸塑分离机-纸塑分离清洗机设备-压力筛-碎浆机厂家金双联环保 | 国产离子色谱仪,红外分光测油仪,自动烟尘烟气测试仪-青岛埃仑通用科技有限公司 | 纸塑分离机-纸塑分离清洗机设备-压力筛-碎浆机厂家金双联环保 | 深圳宣传片制作-企业宣传视频制作-产品视频拍摄-产品动画制作-短视频拍摄制作公司 | 济南电缆桥架|山东桥架-济南航丰实业有限公司 | 活性氧化铝|无烟煤滤料|活性氧化铝厂家|锰砂滤料厂家-河南新泰净水材料有限公司 | 精密机械零件加工_CNC加工_精密加工_数控车床加工_精密机械加工_机械零部件加工厂 | 真空干燥烘箱_鼓风干燥箱 _高低温恒温恒湿试验箱_光照二氧化碳恒温培养箱-上海航佩仪器 | 国际船舶网 - 船厂、船舶、造船、船舶设备、航运及海洋工程等相关行业综合信息平台 | 天津试验仪器-电液伺服万能材料试验机,恒温恒湿标准养护箱,水泥恒应力压力试验机-天津鑫高伟业科技有限公司 | 网站优化公司_北京网站优化_抖音短视频代运营_抖音关键词seo优化排名-通则达网络 | 小小作文网_中小学优秀作文范文大全 | 旗杆生产厂家_不锈钢锥形旗杆价格_铝合金电动旗杆-上海锥升金属科技有限公司 | 太空舱_民宿太空舱厂家_移动房屋太空舱价格-豪品建筑 | 废水处理-废气处理-工业废水处理-工业废气处理工程-深圳丰绿环保废气处理公司 | 胀套-锁紧盘-风电锁紧盘-蛇形联轴器「厂家」-瑞安市宝德隆机械配件有限公司 | 衡阳耐适防护科技有限公司——威仕盾焊接防护用品官网/焊工手套/焊接防护服/皮革防护手套 | 软启动器-上海能曼电气有限公司 真空搅拌机-行星搅拌机-双行星动力混合机-广州市番禺区源创化工设备厂 |