高中數學教案模板萬能
編寫教案可以幫助教師吸引學生的注意力,激發他們的學習興趣,提升教學效果。如何撰寫優秀的高中數學教案模板萬能?這里分享一些高中數學教案模板萬能寫作案例,供大家參考。
高中數學教案模板萬能篇1
尊敬的各位專家、評委:
下午好!
我的抽簽序號是___,今天我說課的課題是《______》第__課時。我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、教法學法分析、教學過程分析和評價分析四方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
(一)地位與作用
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4)學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據__在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點
本節課的教學重點是________,教學難點是_________。
三、教法、學法分析
(一)教法
基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.
(二)學法在學法上我重視了:1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
四、教學過程分析
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創設情境,提出問題。新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的
設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程.
(3)自我嘗試,初步應用。有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
(4)當堂訓練,鞏固深化。通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計
作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.
我設計了以下作業:(1)必做題(2)選做題
(三)板書設計板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。謝謝!
高中數學教案模板萬能篇2
各位老師你們好!今天我要為大家講的課題是
首先,我對本節教材進行一些分析:
一、教材分析(說教材):
1.教材所處的地位和作用:
本節內容在全書和章節中的作用是:《__》是中數學教材第冊第章第節內容。在此之前學生已學習了基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在中,占據的地位。以及為其他學科和今后的學習打下基礎。
2.教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:
(1)知識目標:
(2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,
(3)情感目標:通過的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。
3.重點,難點以及確定依據:
本著課程標準,在吃透教材基礎上,我確立了如下的教學重點、難點
重點:通過突出重點
難點:通過突破難點
關鍵:
下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:
二、教學策略(說教法)
1.教學手段:
如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節課的特點:應著重采用的教學方法。
2.教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。
3.學情分析:(說學法)
我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。
(1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學
生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散
(2)知識障礙上:知識掌握上,學生原有的知識,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙,知識學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力
最后我來具體談談這一堂課的教學過程:
4.教學程序及設想:
(1)由引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實例得出本課新的知識點
(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。
(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
(5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。
(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的效果。
(7)板書
(8)布置作業。針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,
教學程序:
課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分
高中數學教案模板萬能篇3
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
二、目標分析:
教學重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當選擇.
教學目標
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;
(2)知道常用數集及其專用記號;
(3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關數學對象;
2.過程與方法
(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學生歸納整理本節所學知識.
3.情感.態度與價值觀
使學生感受到學習集合的必要性,增強學習的積極性.
三.教法分析
1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.
四.過程分析
(一)創設情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學校、現在的班級。
(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?
引導學生互相交流.與此同時,教師對學生的活動給予評價.
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節要學的內容。
設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊
(二)研探新知,建構概念
1.教師利用多媒體設備向學生投影出下面7個實例:
(1)1—20以內的所有質數;
(2)我國古代的.四大發明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學2004年9月入學的高一學生的全體.
2.教師組織學生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神
(三)質疑答辯,發展思維
1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導學生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數;
(2)我國的小河流.讓學生充分發表自己的建解.
3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.
4.教師提出問題,讓學生思考
b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,
高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.
(3)讓學生完成教材第6頁練習第1題.
5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.
6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據問題選擇適當的集合表示法?
使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。
設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學習:
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A?{x?N1?x?8}
(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.
設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結,布置作業
小結:在師生互動中,讓學生了解或體會下例問題:
1.本節課我們學習了哪些知識內容?2.你認為學習集合有什么意義?
3.選擇集合的表示法時應注意些什么?
設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。
作業:1.課后書面作業:第13頁習題1.1A組第4題.
2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種
呢?如何表示?請同學們通過預習教材.
五.板書分析
略
高中數學教案模板萬能篇4
1.如圖,已知直線L:的右焦點F,且交橢圓C于A、B兩點,點A、B在直線上的射影依次為點D、E。
(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;
(2)(理)連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;否則說明理由。
(文)若為x軸上一點,求證:
2.如圖所示,已知圓定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足,點N的軌跡為曲線E。
(1)求曲線E的方程;
(2)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足的取值范圍。
3.設橢圓C:的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交x軸正半軸于點Q,且
⑴求橢圓C的離心率;
⑵若過A、Q、F三點的圓恰好與直線
l:相切,求橢圓C的方程.
4.設橢圓的離心率為e=
(1)橢圓的左、右焦點分別為F1、F2、A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程.
(2)求b為何值時,過圓x2+y2=t2上一點M(2,)處的切線交橢圓于Q1、Q2兩點,而且OQ1OQ2.
5.已知曲線上任意一點P到兩個定點F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線的方程;
(2)設過(0,-2)的直線與曲線交于C、D兩點,且為坐標原點),求直線的方程.
6.已知橢圓的左焦點為F,左、右頂點分別為A、C,上頂點為B.過F、B、C作⊙P,其中圓心P的坐標為(m,n).
(Ⅰ)當m+n0時,求橢圓離心率的范圍;
(Ⅱ)直線AB與⊙P能否相切?證明你的結論.
7.有如下結論:圓上一點處的切線方程為,類比也有結論:橢圓處的切線方程為,過橢圓C:的右準線l上任意一點M引橢圓C的兩條切線,切點為A、B.
(1)求證:直線AB恒過一定點;(2)當點M在的縱坐標為1時,求△ABM的面積
8.已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;
(Ⅱ)設Q為橢圓E上的一個動點,求的取值范圍.
9.橢圓的對稱中心在坐標原點,一個頂點為,右焦點與點的距離為。
(1)求橢圓的方程;
(2)是否存在斜率的直線:,使直線與橢圓相交于不同的兩點滿足,若存在,求直線的傾斜角;若不存在,說明理由。
10.橢圓方程為的一個頂點為,離心率。
(1)求橢圓的方程;
(2)直線:與橢圓相交于不同的兩點滿足,求。
11.已知橢圓的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作,其中圓心P的坐標為.
(1)若橢圓的離心率,求的方程;
(2)若的圓心在直線上,求橢圓的方程.
12.已知直線與曲線交于不同的兩點,為坐標原點.
(Ⅰ)若,求證:曲線是一個圓;
(Ⅱ)若,當且時,求曲線的離心率的取值范圍.
13.設橢圓的左、右焦點分別為、,A是橢圓C上的一點,且,坐標原點O到直線的距離為.
(1)求橢圓C的方程;
(2)設Q是橢圓C上的一點,過Q的直線l交x軸于點,較y軸于點M,若,求直線l的方程.
14.已知拋物線的頂點在原點,焦點在y軸的負半軸上,過其上一點的切線方程為為常數).
(I)求拋物線方程;
(II)斜率為的直線PA與拋物線的另一交點為A,斜率為的直線PB與拋物線的另一交點為B(A、B兩點不同),且滿足,求證線段PM的中點在y軸上;
(III)在(II)的條件下,當時,若P的坐標為(1,-1),求PAB為鈍角時點A的縱坐標的取值范圍.
15.已知動點A、B分別在x軸、y軸上,且滿足AB=2,點P在線段AB上,且
設點P的軌跡方程為c。
(1)求點P的軌跡方程C;
(2)若t=2,點M、N是C上關于原點對稱的兩個動點(M、N不在坐標軸上),點Q
坐標為求△QMN的面積S的最大值。
16.設上的兩點,
已知,,若且橢圓的離心率短軸長為2,為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線AB過橢圓的焦點F(0,c),(c為半焦距),求直線AB的斜率k的值;
(Ⅲ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由
17.如圖,F是橢圓(a0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為.點C在x軸上,BCBF,B,C,F三點確定的圓M恰好與直線l1:相切.
(Ⅰ)求橢圓的方程:
(Ⅱ)過點A的直線l2與圓M交于PQ兩點,且,求直線l2的方程.
18.如圖,橢圓長軸端點為,為橢圓中心,為橢圓的右焦點,且.
(1)求橢圓的標準方程;
(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.
19.如圖,已知橢圓的中心在原點,焦點在軸上,離心率為,且經過點.直線交橢圓于兩不同的點.
20.設,點在軸上,點在軸上,且
(1)當點在軸上運動時,求點的軌跡的方程;
(2)設是曲線上的點,且成等差數列,當的垂直平分線與軸交于點時,求點坐標.
21.已知點是平面上一動點,且滿足
(1)求點的軌跡對應的方程;
(2)已知點在曲線上,過點作曲線的兩條弦和,且,判斷:直線是否過定點?試證明你的結論.
22.已知橢圓的中心在坐標原點,焦點在坐標軸上,且經過、、三點.
(1)求橢圓的方程:
(2)若點D為橢圓上不同于、的任意一點,,當內切圓的面積最大時。求內切圓圓心的坐標;
(3)若直線與橢圓交于、兩點,證明直線與直線的交點在直線上.
23.過直角坐標平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點。
(1)用表示A,B之間的距離;
(2)證明:的大小是與無關的定值,
并求出這個值。
24.設分別是橢圓C:的左右焦點
(1)設橢圓C上的點到兩點距離之和等于4,寫出橢圓C的方程和焦點坐標
(2)設K是(1)中所得橢圓上的動點,求線段的中點B的軌跡方程
(3)設點P是橢圓C上的任意一點,過原點的直線L與橢圓相交于M,N兩點,當直線PM,PN的斜率都存在,并記為試探究的值是否與點P及直線L有關,并證明你的結論。
25.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(I)求橢圓的方程;
(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.
26.如圖所示,已知橢圓:,、為
其左、右焦點,為右頂點,為左準線,過的直線:與橢圓相交于、
兩點,且有:(為橢圓的半焦距)
(1)求橢圓的離心率的最小值;
(2)若,求實數的取值范圍;
(3)若,,
求證:、兩點的縱坐標之積為定值;
27.已知橢圓的左焦點為,左右頂點分別為,上頂點為,過三點作圓,其中圓心的坐標為
(1)當時,橢圓的離心率的取值范圍
(2)直線能否和圓相切?證明你的結論
28.已知點A(-1,0),B(1,-1)和拋物線.,O為坐標原點,過點A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點Q,如圖.
(I)證明:為定值;
(II)若△POM的面積為,求向量與的夾角;
(Ⅲ)證明直線PQ恒過一個定點.
29.已知橢圓C:上動點到定點,其中的距離的最小值為1.
(1)請確定M點的坐標
(2)試問是否存在經過M點的直線,使與橢圓C的兩個交點A、B滿足條件(O為原點),若存在,求出的方程,若不存在請說是理由。
30.已知橢圓,直線與橢圓相交于兩點.
(Ⅰ)若線段中點的橫坐標是,求直線的方程;
(Ⅱ)在軸上是否存在點,使的值與無關?若存在,求出的值;若不存在,請說明理由.
31.直線AB過拋物線的焦點F,并與其相交于A、B兩點。Q是線段AB的中點,M是拋物線的準線與y軸的交點.O是坐標原點.
(I)求的取值范圍;
(Ⅱ)過A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證:∥;
(Ⅲ)若P是不為1的正整數,當,△ABN的面積的取值范圍為時,求該拋物線的方程.
32.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.
(Ⅰ)當時,求橢圓的方程及其右準線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,與拋物線交于、,如果以線段為直徑作圓,試判斷點與圓的位置關系,并說明理由;
(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.
33.已知點和動點滿足:,且存在正常數,使得。
(1)求動點P的軌跡C的方程。
(2)設直線與曲線C相交于兩點E,F,且與y軸的交點為D。若求的值。
34.已知橢圓的右準線與軸相交于點,右焦點到上頂點的距離為,點是線段上的一個動點.
(I)求橢圓的方程;
(Ⅱ)是否存在過點且與軸不垂直的直線與橢圓交于、兩點,使得,并說明理由.
35.已知橢圓C:(.
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設過定點的直線與橢圓C交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率k的取值范圍;
(3)如圖,過原點任意作兩條互相垂直的直線與橢圓()相交于四點,設原點到四邊形一邊的距離為,試求時滿足的條件.
36.已知若過定點、以()為法向量的直線與過點以為法向量的直線相交于動點.
(1)求直線和的方程;
(2)求直線和的斜率之積的值,并證明必存在兩個定點使得恒為定值;
(3)在(2)的條件下,若是上的兩個動點,且,試問當取最小值時,向量與是否平行,并說明理由。
37.已知點,點(其中),直線、都是圓的切線.
(Ⅰ)若面積等于6,求過點的拋物線的方程;
(Ⅱ)若點在軸右邊,求面積的最小值.
38.我們知道,判斷直線與圓的位置關系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關系有類似的判別方法嗎?請同學們進行研究并完成下面問題。
(1)設F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關系。
(2)設F1、F2是橢圓的兩個焦點,點F1、F2到直線
(m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。
(3)試寫出一個能判斷直線與橢圓的位置關系的充要條件,并證明。
(4)將(3)中得出的結論類比到其它曲線,請同學們給出自己研究的有關結論(不必證明)。
39.已知點為拋物線的焦點,點是準線上的動點,直線交拋物線于兩點,若點的縱坐標為,點為準線與軸的交點.
(Ⅰ)求直線的方程;(Ⅱ)求的面積范圍;
(Ⅲ)設,,求證為定值.
40.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(I)求橢圓的方程;
(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;
(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.
41.已知以向量為方向向量的直線過點,拋物線:的頂點關于直線的對稱點在該拋物線的準線上.
(1)求拋物線的方程;
(2)設、是拋物線上的兩個動點,過作平行于軸的直線,直線與直線交于點,若(為坐標原點,、異于點),試求點的軌跡方程。
42.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.
(Ⅰ)當時,求橢圓的方程及其右準線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,
與拋物線交于、,如果以線段為直徑作圓,
試判斷點與圓的位置關系,并說明理由;
(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.
43.設橢圓的`一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率且過橢圓右焦點的直線與橢圓C交于兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.
(Ⅲ)若AB是橢圓C經過原點O的弦,MNAB,求證:為定值.
44.設是拋物線的焦點,過點M(-1,0)且以為方向向量的直線順次交拋物線于兩點。
(Ⅰ)當時,若與的夾角為,求拋物線的方程;
(Ⅱ)若點滿足,證明為定值,并求此時△的面積
45.已知點,點在軸上,點在軸的正半軸上,點在直線上,且滿足.
(Ⅰ)當點在軸上移動時,求點的軌跡的方程;
(Ⅱ)設、為軌跡上兩點,且0,,求實數,
使,且.
46.已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。
(1)已知橢圓的離心率;
(2)若的最大值為49,求橢圓C的方程.
高中數學教案模板萬能篇5
一、設計思想
本節課是數列的起始課,著重研究數列的概念,明確數列與函數的關系,用函數的思想看待數列。通過引導學生通過對實例的分析體會數列的有關概念,并與集合類比,通過類比,學生能認識到數列的明確性、有序性和可重復性的特點。在體會數列與集合的區別中,學生意識到數列中的每一項與所在位置有關,并通研究數列的表示法,學生意識到數列中還有潛在的自變量——序號,從而發現數列也是一種特殊的函數,能用函數的觀點重新看待數列。
二、教學目標
1.通過自然界和生活中實例,學生意識到有序的數是存在的,能概況出數列的概念,并能辨析出數列和集合的區別;
2.通過思考數列的表示,學生意識到可以用表達式簡潔的表達數列,能分析出數列的項是與序號相關,需要借助于序號來表示數列的項;
3.在用表達式表示數列的過程中,學生發現項與序號的對應關系,認識到數列是一種特殊的函數,能用函數的觀點重新研究數列;
4.通過對一列數的觀察,能用聯系的觀點看待數列,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力.
5.從現實出發,學生能抽象出現實生活中的數列
重點:理解數列的概念,認識數列是反映自然規律的基本數學模型難點:認識數列是一種特殊的函數,發現數列與函數之間的關系
三、教學過程
活動一:生活中實例,概括出數列的概念
1.背景引入:
觀察以下情境:
情境1:各年樹木的枝干數:1,1,2,3,5,8,...情境2:某彗星出現的年份:1740,1823,1906,1989,2072,...
情境3:細胞分裂的個數:1,2,4,8,16,...情境4:A同學最近6次考試的名次17,18,5,8,10,8
情境5:奇虎360最近一個周每日的收盤價:
問題1:以上各情境中都有一系列的數,你看了這些數,有什么感受?
或者有什么共同特征?
共同特點:
(1)排成一列,可以表達信息
(2)順序不能交換,否則意義不一樣.
設計思想:通過例子,學生感受到數列在現實生活中是大量存在的,一列數的順序是蘊含信息的,從而感受到數列的有序性。
2.數列的概念
(1)數列、項的定義:
通過上述的例子,讓學生思考以上一列數據共同的特征,從而歸納出數列的定義:
按照一定次序排列的一列數稱為數列,數列中的每一個數叫做這個數列的項。問題2:能否用準確的語言給我描述一下情境4中的數列?
設計思想:通過讓學生描述,學生再次體會數列中除了數之外,還蘊含著重要的信息:序號。
問題3:這兩個數都是8,表示的含義是否一樣?
不一樣,第四項,第六項,即每一項結合序號才有意義,所以,描述數列的項時必須包含位置信息,即序號。
排在第一位的叫首項,排在第二位的叫第二項……排在第n位的數
問題4:根據對數列的理解,你能否舉出數列的例子?
答:我校高一年級各班的人數。
問題5:能否抽象出數列的一般形式?
a1,a2,a3,...,an,...,記為?an?
(2)數列與集合的區別
問題6:數列是集合嗎?
通過與集合的特點進行對比,更清楚的數列的特點。
讓學生與前一章學習的集合做比較,可以更清楚的了解到數列的本質性的定義。也符合建構主義的舊知基礎上形成新知的有效學習。
(3)數列的分類?能不能不講?
活動二:思考數列的表示——通項公式
3.通項公式的概念
問題7:對于上述情境中的數列,有沒有更簡潔的表示方式?
學生活動:學生可能會用序號n來表示,問學生為什么用n來表示,引出通項公式的概念
一般地,如果數列?an?的第n項與序號n之間的關系可以用一個公式來表示.那么這個公式叫做這個數列的通項公式.
4.通項公式的存在性
問題8:是否任意一個數列都能寫出通項公式?
寫出通項公式
活動三:用函數的觀點看待數列
5.數列也是函數
問題9:在數列?an?中,對于每一個正整數n(或n??1,2,...,k?),是不是都有一個數an與之對應?
問題10:數列是不是函數?
通過前鋪墊,學生觀察數列的項與它數列中的序號之間的對應關系,讓學生理解數列是函數。
把序號看作看作自變量,數列中的項看作隨之變動的量,用函數的觀點來深化數列的概念。
6.用函數的觀點看待數列
問題11:所以,除了用解析式表示數列,還有哪些方法?
再從函數的表示方法過渡到數列的三種表示方法:列表法,圖象法,通項公式法。學生通過觀察發現數列的圖象是一些離散的點。
例2.已知數列?an?的通項公式,寫出這個數列的前5項,并作出它的圖象:(?1)nn(1)an?;(2).an?nn?12
問題12:數列的圖象的特點是什么?
數列的圖象是一些孤立的點。
通過學生觀察數列的項與它數列中的序號之間的對應關系,讓學生理解數列是以特殊的函數,再從函數的表示方法過度到數列的三種表示方法:列表法,圖象法,數列的通項。學生通過觀察發現數列的圖象是一些離散的點。最后通過通項求數列的項,進而升華到觀察數列的前幾項寫出數列的通項。
【課堂小結】
1.數列的概念;
2.求數列的通項公式的要領.
高中數學教案模板萬能篇6
橢圓的簡單幾何性質教案
屆高三數學橢圓的簡單幾何性質
2.2橢圓的簡單幾何性質
教學目標:
(1)通過對橢圓標準方程的討論,理解并掌握橢圓的幾何性質;
(2)能夠根據橢圓的標準方程求焦點、頂點坐標、離心率并能根據其性質畫圖;
(3)培養學生分析問題、解決問題的能力,并為學習其它圓錐曲線作方法上的準備.
教學重點:橢圓的幾何性質.通過幾何性質求橢圓方程并畫圖
教學難點:橢圓離心率的概念的理解.
教學方法:講授法
課型:新授課
教學工具:多媒體設備
一、復習:
1.橢圓的定義,橢圓的焦點坐標,焦距.
2.橢圓的標準方程.
二、講授新課:
(一)通過提出問題、分析問題、解決問題激發學生的學習興趣,在掌握新知識的同時培養能力.
[在解析幾何里,是利用曲線的方程來研究曲線的幾何性質的,我們現在利用焦點在x軸上的橢圓的標準方程來研究其幾何性質.]
已知橢圓的標準方程為:
1.范圍
[我們要研究橢圓在直角坐標系中的范圍,就是研究橢圓在哪個區域里,只要討論方程中x,y的范圍就知道了.]
問題1方程中x、y的取值范圍是什么?
由橢圓的標準方程可知,橢圓上點的坐標(x,y)都適合不等式
≤1,≤1
即x2≤a2,y2≤b2
所以x≤a,y≤b
即-a≤x≤a,-b≤y≤b
這說明橢圓位于直線x=±a,y=±b所圍成的矩形里。
2.對稱性
復習關于x軸,y軸,原點對稱的點的坐標之間的關系:
點(x,y)關于x軸對稱的點的坐標為(x,-y);
點(x,y)關于y軸對稱的點的坐標為(-x,y);
點(x,y)關于原點對稱的點的坐標為(-x,-y);
問題2在橢圓的標準方程中①以-y代y②以-x代x③同時以-x代x、以-y代y,你有什么發現?
(1)在曲線的方程里,如果以-y代y方程不變,那么當點P(x,y)在曲線上時,它關于x的軸對稱點P’(x,-y)也在曲線上,所以曲線關于x軸對稱。
(2)如果以-x代x方程方程不變,那么說明曲線的對稱性怎樣呢?[曲線關于y軸對稱。]
(3)如果同時以-x代x、以-y代y,方程不變,這時曲線又關于什么對稱呢?[曲線關于原點對稱。]
歸納提問:從上面三種情況看出,橢圓具有怎樣的對稱性?
橢圓關于x軸,y軸和原點都是對稱的。
這時,橢圓的對稱軸是什么?[坐標軸]
橢圓的對稱中心是什么?[原點]
橢圓的對稱中心叫做橢圓的`中心。
3.頂點
[研究曲線的上的某些特殊點的位置,可以確定曲線的位置。要確定曲線在坐標系中的位置,常常需要求出曲線與x軸,y軸的交點坐標.]
問題3怎樣求曲線與x軸、y軸的交點?
在橢圓的標準方程里,
令x=0,得y=±b。這說明了B1(0,-b),B2(0,b)是橢圓與y軸的兩個交點。
令y=0,得x=±a。這說明了A1(-a,0),A2(a,0)是橢圓與x軸的兩個交點。
因為x軸,y軸是橢圓的對稱軸,所以橢圓和它的對稱軸有四個交點,這四個交點叫做橢圓的頂點。
線段A1A2,B1B2分別叫做橢圓的長軸和短軸。
它們的長A1A2=2a,B1B2=2b(a和b分別叫做橢圓的長半軸長和短半軸長)
觀察圖形,由橢圓的對稱性可知,橢圓短軸的端點到兩個焦點的距離相等,且等于長半軸長,即B1F1=B1F2=B2F1=B2F2=a
在Rt△OB2F2中,由勾股定理有
OF22=B2F22-OB22,即c2=a2-b2
這就是在前面一節里,我們令a2-c2=b2的幾何意義。
4.離心率
定義:橢圓的焦距與長軸長的比e=,叫做橢圓的離心率。
因為a>c>0,所以0<e<1.<p="">
問題4觀察圖形,說明當離心率e變化時,橢圓形狀是怎樣隨之變化的?
[調用幾何畫板,演示離心率變化(分越接近1和越接近0兩種情況討論)對橢圓形狀的影響]
得出結論:(1)e越接近1時,則c越接近a,從而b越小,因此橢圓越扁;
(2)e越接近0時,則c越接近0,從而b越接近于a,這時橢圓就越接近于圓。
當且僅當a=b時,c=0,這時兩個焦點重合于橢圓的中心,圖形變成圓。
當e=1時,圖形變成了一條線段。[為什么?留給學生課后思考]
5.例題
例1求橢圓16x2+25y2=400的長軸和短軸的長、離心率、焦點和頂點的坐標,并用描點法畫出它的圖形.
[根據剛剛學過的橢圓的幾何性質知,橢圓長軸長2a,短軸長2b,該方程中的a=?b=?c=?因為題目給出的橢圓方程不是標準方程,所以必須先把它轉化為標準方程,再討論它的幾何性質]
解:把已知方程化為標準方程,這里a=5,b=4,所以c==3
因此,橢圓的長軸和短軸長分別是2a=10,2b=8
離心率e==
兩個焦點分別是F1(-3,0),F2(3,0),
四個頂點分別是A1(-5,0)A1(5,0)A1(0,-4)F1(0,4).
[提問:怎樣用描點法畫出橢圓的圖形呢?我們可以根據橢圓的對稱性,先畫出第一象限內的圖形。]
將已知方程變形為,根據
在0≤x≤5的范圍內算出幾個點的坐標(x,y)
x012345
y43.93.73.22.40
先描點畫出橢圓的一部分,再利用橢圓的對稱性畫出整個橢圓(如圖)
說明:本題在畫圖時,利用了橢圓的對稱性。利用圖形的幾何性質,可以簡化畫圖過程,保證圖形的準確性。
根據橢圓的幾何性質,用下面的方法可以快捷地畫出反映橢圓基本形狀和大小的草圖:
(1)以橢圓的長軸、短軸為鄰邊畫矩形;
(2)由矩形四邊的中點確定橢圓的四個頂點;
(3)用平滑的曲線將四個頂點連成一個橢圓。
[畫圖時要注意它們的對稱性及頂點附近的平滑性]
(四)練習
填空:已知橢圓的方程是9x2+25y2=225,
(1)將其化為標準方程是_________________.
(2)a=___,b=___,c=___.
(3)橢圓位于直線________和________所圍成的________區域里.
橢圓的長軸、短軸長分別是____和____,離心率e=_____,兩個焦點分別是_______、______,四個頂點分別是______、______、______、_______.
例2、求符合下列條件的橢圓的標準方程:
(1)經過點(-3,0)、(0,-2);
(2)長軸的長等于20,離心率等于0.6
例3點與定點的距離和它到直線的距離之比是常數,求點的軌跡.
(教師分析――示范書寫)
例4、如圖,一種電影放映燈泡的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F1上,片門位于另一個焦點F2上,由橢圓一個焦點F1發出的光線,經過旋轉橢圓面反射后集中到另一個焦點F2。已知AC^F1F2,F1A=2.8cm,F1F2=4.5cm,求截口ABC所在橢圓的方程。
三、課堂練習:
①比較下列每組橢圓的形狀,哪一個更圓,哪一個更扁?
⑴與⑵與(學生口答,并說明原因)
②求適合下列條件的橢圓的標準方程.
⑴經過點
⑵長軸長是短軸長的倍,且經過點
⑶焦距是,離心率等于
(學生演板,教師點評)
焦點在x軸、y軸上的橢圓的幾何性質對比.
四、小結
(1)理解橢圓的簡單幾何性質,給出方程會求橢圓的焦點、頂點和離心率;
(2)了解離心率變化對橢圓形狀的影響;
(3)通過曲線的方程研究曲線的幾何性質并畫圖是解析幾何的基本方法.
五、布置作業
課本習題2.1的6、7、8題
課后思考:
1、橢圓上到焦點和中心距離最大和最小的點在什么地方?
2、點M(x,y)與定點F(c,0)的距離和它到定直線l:x=的距離的比是常數(a>c>0),求點M軌跡,并判斷曲線的形狀。
3、接本學案例3,問題2,若過焦點F2作直線與AB垂直且與該橢圓相交于M、N兩點,當△F1MN的面積為70時,求該橢圓的方程。
高中數學教案模板萬能篇7
一、教材分析
1、地位及作用
圓錐曲線是一個重要的幾何模型,有許多幾何性質,這些性質在日常生活、生產和科學技術中有著廣泛的應用。同時,圓錐曲線也是體現數形結合思想的重要素材。
推導橢圓的標準方程的方法對雙曲線、拋物線方程的推導具有直接的類比作用,為學習雙曲線、拋物線內容提供了基本模式和理論基礎。因此本節課具有承前啟后的作用,是本章的重點內容。
2、教學內容與教材處理
橢圓的標準方程共兩課時,第一課時所研究的是橢圓標準方程的建立及其簡單運用,涉及的數學方法有觀察、比較、歸納、猜想、推理驗證等,我將以課堂教學的組織者、引導者、合作者的身份,組織學生動手實驗、歸納猜想、推理驗證,引導學生逐個突破難點,自主完成問題,使學生通過各種數學活動,掌握各種數學基本技能,初步學會從數學角度去觀察事物和思考問題,產生學習數學的愿望和興趣。
3、教學目標
根據教學大綱和學生已有的認知基礎,我將本節課的教學目標確定如下:
1、知識目標
①建立直角坐標系,根據橢圓的定義建立橢圓的標準方程;
②能根據已知條件求橢圓的標準方程;
③進一步感受曲線方程的概念,了解建立曲線方程的基本方法,體會數形結合的數學思想。
2、能力目標
①讓學生感知數學知識與實際生活的密切聯系,培養解決實際問題的能力;
②培養學生的觀察能力、歸納能力、探索發現能力;
③提高運用坐標法解決幾何問題的能力及運算能力。
3、情感目標
①親身經歷橢圓標準方程的獲得過程,感受數學美的熏陶;
②通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹;
③養成實事求是的科學態度和契而不舍的鉆研精神,形成學習數學知識的積極態度。
4、重點難點
基于以上分析,我將本課的教學重點、難點確定為:
①重點:感受建立曲線方程的基本過程,掌握橢圓的標準方程及其推導方法;
②難點:橢圓的標準方程的推導。
二、教法設計
在教法上,主要采用探究性教學法和啟發式教學法。以啟發、引導為主,采用設疑的形式,逐步讓學生進行探究性的學習。探究性學習就是充分利用了青少年學生富有創造性和好奇心,敢想敢為,對新事物具有濃厚的興趣的特點。讓學生根據教學目標的要求和題目中的已知條件,自覺主動地創造性地去分析問題、討論問題、解決問題。
三、學法設計
通過創設情境,充分調動學生已有的學習經驗,讓學生經歷“觀察——猜想——證明——應用”的過程,發現新的知識,把學生的潛意識狀態的好奇心變為自覺求知的創新意識。又通過實際操作,使剛產生的數學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質。
四、學情分析
1、能力分析
①學生已初步掌握用坐標法研究直線和圓的方程;
②對含有兩個根式方程的化簡能力薄弱。
2、認知分析
①學生已初步熟悉求曲線方程的基本步驟;
②學生已經掌握直線和圓的方程及圓錐曲線的概念,對曲線的方程的概念有一定的了解;
③學生已經初步掌握研究直線和圓的基本方法。
3、情感分析
學生具有積極的學習態度,強烈的探究欲望,能主動參與研究。
五、教學程序
從建構主義的角度來看,數學學習是指學生自己建構數學知識的活動,在數學活動過程中,學生與教材及教師產生交互作用,形成了數學知識、技能和能力,發展了情感態度和思維品質。基于這一理論,我把這一節課的教學程序分成六個步驟來進行,下面我向各位作詳細說明:
高中數學教案模板萬能篇8
一、教學內容分析
二面角是我們日常生活中經常見到的一個圖形,它是在學生學過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進一步完善了空間角的概念.掌握好本節課的知識,對學生系統地理解直線和平面的知識、空間想象能力的培養,乃至創新能力的培養都具有十分重要的意義.
二、教學目標設計
理解二面角及其平面角的概念;能確認圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關問題.
三、教學重點及難點
二面角的平面角的概念的形成以及二面角的平面角的作法.
四、教學流程設計
五、教學過程設計
一、 新課引入
1.復習和回顧平面角的有關知識.
平面中的角
定義 從一個頂點出發的兩條射線所組成的圖形,叫做角圖形
結構 射線—點—射線
表示法 ∠AOB,∠O等
2.復習和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征.(空間角轉化為平面角)
3.觀察:陡峭與否,跟山坡面與水平面所成的角大小有關,而山坡面與水平面所成的角就是兩個平面所成的角.在實際生活當中,能夠轉化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關.)從而,引出“二面角”的定義及相關內容.
二、學習新課
(一)二面角的定義
平面中的角 二面角
定義 從一個頂點出發的兩條射線所組成的圖形,叫做角 課本P17
圖形
結構 射線—點—射線 半平面—直線—半平面
表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β
(二)二面角的圖示
1.畫出直立式、平臥式二面角各一個,并分別給予表示.
2.在正方體中認識二面角.
(三)二面角的平面角
平面幾何中的“角”可以看作是一條射線繞其端點旋轉而成,它有一個旋轉量,它的大小可以度量,類似地,"二面角"也可以看作是一個半平面以其棱為軸旋轉而成,它也有一個旋轉量,那么,二面角的大小應該怎樣度量?
1.二面角的平面角的定義(課本P17).
2.∠AOB的大小與點O在棱上的位置無關.
[說明]①平面與平面的位置關系,只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,有必要來研究二面角的度量問題.
②與兩條異面直線所成的角、直線和平面所成的角做類比,用“平面角”去度量.
③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內;角的兩邊分別與棱垂直.
3.二面角的平面角的范圍:
(四)例題分析
例1 一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個 的二面角,求此時B、C兩點間的距離.
[說明] ①檢查學生對二面角的平面角的定義的掌握情況.
②翻折前后應注意哪些量的位置和數量發生了變化, 哪些沒變?
例2 如圖,已知邊長為a的等邊三角形 所在平面外有一點P,使PA=PB=PC=a,求二面角 的大小.
[說明] ①求二面角的步驟:作—證—算—答.
②引導學生掌握解題可操作性的通法(定義法和線面垂直法).
例3 已知正方體 ,求二面角 的大小.(課本P18例1)
[說明] 使學生進一步熟悉作二面角的平面角的方法.
(五)問題拓展
例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數)是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?
[說明]使學生明白數學既來源于實際又服務于實際.
三、鞏固練習
1.在棱長為1的正方體 中,求二面角 的大小.
2. 若二面角 的大小為 ,P在平面 上,點P到 的距離為h,求點P到棱l的距離.
四、課堂小結
1.二面角的定義
2.二面角的平面角的定義及其范圍
3.二面角的平面角的常用作圖方法
4.求二面角的大小(作—證—算—答)
五、作業布置
1.課本P18練習14.4(1)
2.在 二面角的一個面內有一個點,它到另一個面的距離是10,求它到棱的距離.
3.把邊長為a的正方形ABCD以BD為軸折疊,使二面角A-BD-C成 的二面角,求A、C兩點的距離.
六、教學設計說明
本節課的設計不是簡單地將概念直接傳受給學生,而是考慮到知識的形成過程,設法從學生的數學現實出發,調動學生積極參與探索、發現、問題解決全過程.“二面角”及“二面角的平面角”這兩大概念的引出均運用了類比的手段和方法.教學過程中通過教師的層層鋪墊,學生的主動探究,使學生經歷概念的形成、發展和應用過程,有意識地加強了知識形成過程的教學.
高中數學教案模板萬能篇9
教學目標
(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.
(2)理解曲線的方程、方程的曲線的概念,能根據曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.
(3)通過曲線方程概念的教學,培養學生數與形相互聯系、對立統一的辯證唯物主義觀點.
(4)通過求曲線方程的教學,培養學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.
(5)進一步理解數形結合的思想方法.
教學建議
教材分析
(1)知識結構
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質.曲線方程的概念和求曲線方程的問題又有內在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質則更在其后,本節不予研究.因此,本節涉及曲線方程概念和求曲線方程兩大基本問題.
(2)重點、難點分析
①本節內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想.
②本節的難點是曲線方程的概念和求曲線方程的方法.
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系.曲線與方程對應關系的基礎是點與坐標的對應關系.注意強調曲線方程的完備性和純粹性.
(2)可以結合已經學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.
(4)從集合與對應的觀點可以看得更清楚:
設 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應的點的坐標的集合.
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即
(5)在學習求曲線方程的方法時,應從具體實例出發,引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數方程(曲線的方程),這個過渡是一個從幾何向代數不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.
這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數方程,即
文字語言中的幾何條件 數學符號語言中的等式 數學符號語言中含動點坐標 , 的代數方程 簡化了的 , 的代數方程
由此可見,曲線方程就是產生曲線的幾何條件的一種表現形式,這個形式的特點是“含動點坐標的代數方程.”
(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.
高中數學教案模板萬能篇10
如何在高二這一關鍵性的一年中與這些同學一齊共同進步縮小差距,我選取了從課堂教學、作業布置、評價方式這三個方面入手,激發學生的學習用心性,盡量向學生帶給從事數學活動的機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基礎的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。
第一,用多變的課堂教學,充分調動學生的主動性
我認為數學教學是教師思維與學生思維相互溝通的過程。從信息論的角度看,這種溝通就是指數學信息的理解、加工、傳遞的動態過程,在這個過程中充滿了師生之間的數學交流和信息的轉換,離開了學生的參與,整個過程就難以暢通。北京師范大學曹才翰教授指出“數學學習是再創造再發現的過程,務必要主體的用心參與才能實現這個過程”;從當前全面實施素質教育的要求來看,激發學生用心參與課堂教學,就是為了提高課堂教學效率,培養學生的學習潛力和創造思維潛力,這與以培養創造型人才為目的的素質教育完全一致,因此,在數學課堂教學中提高學生的參與度,不僅僅具有提高數學教學質量的近期作用,而且具有提高學生素質的遠期功效。
若要實現這個目標,在教學引入時我常常以問題作為出發點,選取的素材密切聯系學生的現實生活,運用學生的求知欲,使學生感到數學就在他們身邊,與現實世界聯系緊密,同時問題情景的設置又具有必須的挑戰性,引發了學生的思考。
如人教版初二幾何《三角形》的《關于三角形的一些概念》在引入時我提出了以下幾個問題:你能舉出生活中一些有關三角形的實例嗎?你能一筆畫一個三角形嗎?你能用語言敘述你的畫圖過程嗎?
如人教版初二幾何《三角形》的《三角形全等的判定(一)》在引入時我提出了這樣一個問題:請你任意畫一個三角形,你能否再畫一個與其全等的三角形。畫好后請你剪下來驗證一下。學生的用心性被激發,熱烈的討論,課堂上出現了許多狀況
有的學生用的是先確定一角再確定兩邊的畫法;有的一個學生是利用尺規根據三邊關系畫的(這正是后面所要學的一個三角形全等的判定公理);有的學生是利用了垂直、平行、對頂角來省去作圖中使用量角器的麻煩,學生充分利用已有的數學知識,利用自己對數學圖形的感知,很好的解決了這個問題,透過剪一剪試一試從直觀上驗證了自己的畫法。
如《相似形》的《相似三角形的性質》在引入時我提出了這樣的問題:提到與我國并稱為世界四大禮貌古國的埃及你會想到什么?學生們說到了法老、金字塔、木乃伊等等,說到金字塔你能測量出埃及大金字塔的高度嗎?學生幾乎是異口同聲地告訴我用影長,當時我稱贊他們與我們的幾何學之父古希臘人歐幾里得的測量方法一樣,并講述了歐幾里得的故事,他等到自己在陽光下的影長與他的身高正好相等的時候,測量了金字塔的塔影的長度,這時,他宣布,“這就是大金字塔的高度。”從而激發了學生探索相似三角形的其它性質的興趣。
我在課堂教學的過程中,為了使成績較差同學減少對于數學的恐懼感,課堂上放慢教學速度,變換教學方法,如人教版初二幾何《三角形》的《關于三角形的一些概念》我是這樣處理的:1、請學生講解三角形的有關概念;2、請學生用折紙的方法講解角平分線和中線,折紙的過程中你還發現了什么?3、請學生任意作一個三角形,并做出這個三角形的一條角平分線和一條中線。三個要求層層深入了學生對于基本概念的理解,變教師講為學生講,取得了較好的效果。
我在課堂上放慢教學速度是能夠照顧到大部分學生的,但一小批優等生就會出現沒事做的狀況,這時學習小組就是他們發揮余熱的地方,在具體的教學過程中給學生建立了數學學習小組,讓學生在各自的小組中相互幫忙,讓每一個學生都能從事小組中不同的工作,并最終完成一個共同的目標。透過小組學習,使學生樹立正確的團隊觀,尊重他人、尊重自己,敢于發表自己的觀點,又不固執己見,對同學的見解,既要樂于理解合理成分,又要勇于表達自己不同的看法。在具體實施的過程中,我越發的認識到討論的重要性,我鼓勵學生質疑,質疑教師,質疑教科書,鼓勵學生爭論,有些知識點在學生的爭論中被突破,知識在爭論中被融會貫通,我發現學生之間的語言他們更容易理解,于是我開始嘗試讓學生講課,講過三角形的分類等。又如學習基本作圖時,教科書就如一本說明書,讓學生以學習小組為單位,閱讀、畫圖,互教互學,實際教學時取得了很好的效果。讓各層次的學生都能有所知,有所得。在認知效果和記憶效果方面比教師直接給出要好。
第二,布置多樣的作業,引導學生的用心性
讓學生作業的目的在于鞏固和消化所學的知識,并使知識轉化為技能技巧。正確組織好學生作業,對于培養學生的獨立學習的潛力和習慣,發展學生的智力和創造潛力有著重大好處。因此,教師應重視作業的布置,《數學課程標準》中明確指出:“義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現人人學有價值的數學,人人都能獲得必需的數學,不同的人在數學上得到不同的發展。”作業布置如何體現這一基本理念,如何調整作業在學生學習活動中的位置,也是提高課堂教學效率的關鍵。
課堂結束新課后,我透過作業的布置滲透數學學習方法如自學,這樣才能真正提高學生數學學習的水平,開始時每一天的第一樣作業是復習,最后一項作業是預習,而且把具體的頁數寫清楚提出具體的預習提綱,加強學生看書的針對性,開始時還帶有必須的強制性如讓家長簽字,從而提高學生閱讀理解的潛力。
對數學的興趣能激發學生的學習動機,富有情境的作業具有必須吸引力,能使學生充分發揮自己的智力水平去完成。趣味性要體現出題型多樣,方式新穎,資料有創造性,如課本習題、自編習題、計算類題目、表述類題目(如單元小結、學習體會、數學故事、小論文等)互相穿插,讓學生感受到作業資料和形式的豐富多采,使之情緒高昂,樂于思考,從而感受作業的樂趣。
根據上課資料所需經常讓學生動手做教具如剪鈍角三角形、銳角三角形、直角三角形,做教具說明三角形具有穩定性而四邊形沒有此特性等,這種做法不但能夠提高學生學習的興趣,而且會有一些意想不到的事情。如:學生做教具說明三角形具有穩定性而四邊形沒有此特性時,有的學生用線繩打結連接四邊,有的學生為了省事用訂書釘訂的,而訂的不同方法得到有的四邊形能動而有的不能,經過學生的討論得出關鍵在于連接處是一個點還是兩個點的問題,學生很受啟發。
高中數學教案模板萬能篇11
教學目標:
1、使學生通過觀察、操作、實驗等活動,找出簡單事物的排列組合規律。
2、培養學生初步的觀察、分析和推理能力以及有順序地、全面地思考問題的意識。
3、使學生感受數學在現實生活中的廣泛應用,嘗試用數學的方法來解決實際生活中的問題。使學生在數學活動中養成與人合作的良好習慣。
教學過程:
一、創設增境,激發興趣。
師:今天我們要去"數學廣角樂園"游玩,你們想去嗎?
二、操作探究,學習新知。
<一>組合問題
l、看一看,說一說
師:那我們先在家里挑選穿上漂亮的衣服吧。(課件出示主題圖)
師引導思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學生說一說)
2、想一想,擺一擺
(l)引導討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復呢?
①學生小組討論交流,老師參與小組討論。
②學生匯報
(2)引導操作:小組同學互相合作,把你們設計的穿法有序的貼在展示板上。(要求:小組長拿出學具衣服圖片、展示板)
①學生小組合作操作擺,教師巡視參與小組活動。
②學生展示作品,介紹搭配方案。
③生生互相評價。
(3)師引導觀察:
第一種方案(按上裝搭配下裝)有幾種穿法?(4種)
第二種方案(按下裝搭配上裝)有幾種穿法?(4種)
師小結:不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復、不遺漏的把所有的方法找出來。在今后的學習和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。
<二>排列問題
師:數學廣角樂園到了,不過進門之前我們必須找到開門密碼。(課件出示課件密碼門)
密碼是由1、2、3組成的兩位數.
(1)小組討論擺出不同的兩位數,并記下結果。
(2)學生匯報交流(老師根據學生的回答,點擊課件展示密碼)
(3)生生相互評價。方法一:每次拿出兩張數字卡片能擺出不同的兩位數;
方法二:固定十位上的數字,交換個位數字得到不同的兩位數;
方法三:固定個位上的數字,交換十位數字得到不同的兩位數.
師小結:三種方法雖然不同,但都能正確并有序地擺出6個不同的兩位數,同學們可以用自己喜歡的方法.
三、課堂實踐,鞏固新知。
1、乒乓球賽場次安排。
師:我們先去活動樂園看看,這兒正好有乒乓球比賽呢.(課件出示情境圖)
(l)老師提出要求:每兩個運動員之間打一場球賽,一共要比幾場?
(2)學生獨立思考.
(3)指名學生匯報.規
2、路線選擇。(課件展示游玩景點圖)
師:我們去公園看看吧。途中要經過游戲樂園。
(l)師引導觀察:從活動樂園到游戲樂園有幾條路線?哪幾條?(甲,乙兩條)從游戲樂園去公園有幾條路線?哪幾條?(A,B,C三條)(根據學生的回答課件展示)
從活動樂園到時公園到底有幾種不同的走法?
(2)學生獨立思索后小組交流。
(3)全班同學互相交流。
3、照像活動。
師:我們來到公園,這兒的景色真不錯,大家照幾張像吧.
師提出要求:攝影師要求三名同學站成一排照像,每小組根據每次合影人數(雙人照或三人照)設計排列方案,由組長作好活動記錄。
(1)小組活動,老師參與小組活動。
(2)各小組展示記錄方案。
(3)師生共同評價。
4、欣賞照片.
師:在同學們照像的同時,小麗一家三口人也正在照像呢,看看她們是怎樣照的.(課件展示照片集欣賞)
四、總結
今天的游玩到此結束,同學們互相握手告別好嗎?如果小組里的四個同學每兩人握一次手,一共要握幾次手?
高中數學教案模板萬能篇12
1.1.1任意角
教學目標
(一)知識與技能目標
理解任意角的概念(包括正角、負角、零角)與區間角的概念.
(二)過程與能力目標
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區間角的集合的書寫.
(三)情感與態度目標
1.提高學生的推理能力;
2.培養學生應用意識.教學重點
任意角概念的理解;區間角的集合的書寫.教學難點
終邊相同角的集合的表示;區間角的集合的書寫.
教學過程
一、引入:
1.回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角.
②角的第二種定義是角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.
二、新課:
1.角的有關概念:
①角的定義:
角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.
②角的名稱:
③角的分類:A
正角:按逆時針方向旋轉形成的角零角:射線沒有任何旋轉形成的角
負角:按順時針方向旋轉形成的角
④注意:
⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;
⑵零角的終邊與始邊重合,如果α是零角α=0°;
⑶角的概念經過推廣后,已包括正角、負角和零角.
⑤練習:請說出角α、β、γ各是多少度?
2.象限角的概念:
①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.
例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的角.
⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內,可構成一個集合S={ββ=α+
k·360°,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和.注意:⑴k∈Z
⑵α是任一角;
⑶終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差
360°的整數倍;
⑷角α+k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內,找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示).解:{αα=90°+n·180°,n∈Z}.
例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.
4.課堂小結
①角的定義;
②角的分類:
正角:按逆時針方向旋轉形成的角零角:射線沒有任何旋轉形成的角
負角:按順時針方向旋轉形成的角
③象限角;
④終邊相同的角的表示法.
5.課后作業:
①閱讀教材P2-P5;
②教材P5練習第1-5題;
③教材P.9習題1.1第1、2、3題思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
?k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負半軸上的角.又k·180°+90°<
各是第幾象限角?
<k·180°+135°(k∈Z).
<n·360°+135°(n∈Z),
當k為偶數時,令k=2n(n∈Z),則n·360°+90°<此時,
屬于第二象限角
<n·360°+315°(n∈Z),
當k為奇數時,令k=2n+1(n∈Z),則n·360°+270°<此時,
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
(一)
教學目標
(二)知識與技能目標
理解弧度的意義;了解角的集合與實數集R之間的可建立起一一對應的關系;熟記特殊角的弧度數.
(三)過程與能力目標
能正確地進行弧度與角度之間的換算,能推導弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題
(四)情感與態度目標
通過新的度量角的單位制(弧度制)的引進,培養學生求異創新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美.教學重點
弧度的概念.弧長公式及扇形的面積公式的推導與證明.教學難點
“角度制”與“弧度制”的區別與聯系.
教學過程
一、復習角度制:
初中所學的角度制是怎樣規定角的度量的?規定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引入:
由角度制的定義我們知道,角度是用來度量角的`,角度制的度量是60進制的,運用起來不太方便.在數學和其他許多科學研究中還要經常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定義
我們規定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下,1弧度記做1rad.在實際運算中,常常將rad單位省略.
3.思考:
(1)一定大小的圓心角?所對應的弧長與半徑的比值是否是確定的?與圓的半徑大小有關嗎?
(2)引導學生完成P6的探究并歸納:弧度制的性質:
①半圓所對的圓心角為
②整圓所對的圓心角為
③正角的弧度數是一個正數.
④負角的弧度數是一個負數.
⑤零角的弧度數是零.
⑥角α的弧度數的絕對值α=.
4.角度與弧度之間的轉換:
①將角度化為弧度:
②將弧度化為角度:
5.常規寫法:
①用弧度數表示角時,常常把弧度數寫成多少π的形式,不必寫成小數.
②弧度與角度不能混用.
弧長等于弧所對應的圓心角(的弧度數)的絕對值與半徑的積.
例1.把67°30’化成弧度.
例2.把?rad化成度.
例3.計算:
(1)sin4
(2)tan1.5.
8.課后作業:
①閱讀教材P6–P8;
②教材P9練習第1、2、3、6題;
③教材P10面7、8題及B2、3題.
高中數學教案模板萬能篇13
直線的方程
教學目標
(1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.
(5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.
(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學建議
1.教材分析
(1)知識結構
由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.
(2)重點、難點分析
①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程.
解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.
直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.
②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.
直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點
(3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.
(4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.
求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).
(6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.
(7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.
(8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.
高中數學教案模板萬能篇14
一 教材分析
本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:
認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。
能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。
情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。
教學重點:正弦定理的內容,正弦定理的證明及基本應用。
教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。
二 教法
根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點
三 學法:
指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。
四 教學過程
第一:創設情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應用概念,拓展反思,大約用13分鐘
(一)創設情境,布疑激趣
“興趣是的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。
(二)探尋特例,提出猜想
1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。
2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。
3.讓學生總結實驗結果,得出猜想:
在三角形中,角與所對的邊滿足關系
這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強調將猜想轉化為定理,需要嚴格的理論證明。
2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。
3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明
(四)歸納總結,簡單應用
1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。
2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。
3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。
(六)課堂練習,提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學生板演,老師巡視,及時發現問題,并解答。
(七)小結反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現了數形結合的數學思想。
2.它表述了三角形的邊與對角的正弦值的關系。
3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。
(從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)
(八)任務后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發現正弦定理不適用了,那么自然過渡到下一節內容,余弦定理。布置作業,預習下一節內容。
五 板書設計
板書設計可以讓學生一目了然本節課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。
高中數學教案模板萬能篇15
教學內容背景材料:
義務教育課程標準實驗教科書(人教版)二年級上冊第八單元的排列與組合
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。
2、經歷探索簡單事物排列與組合規律的過程。
3、培養學生有序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,培養學生學習數學的興趣和用數學方法解決問題的意識。
教學重點:
經歷探索簡單事物排列與組合規律的過程。
教學難點:
初步理解簡單事物排列與組合的不同。
教具準備:
乒乓球、衣服圖片、紙箱、每組三張數字卡片、吹塑紙數字卡片。
一、情境導入,展開教學
今天,王老師要帶大家去“數學廣角”里做游戲,可是,我把游戲要用的材料都放在這個密碼包里。你們想解開密碼取出游戲材料嗎?(想)我給大家提供解碼的3個信息。
1.好,接下來老師提供解碼的第一個信息:密碼是一個兩位數。(學生在兩位數里猜)(你們猜的對不對呢?請聽第二個解碼信息)
2.下面,提供解碼的第二個信息:密碼是由2和7組成的(學生說出27和72)。能說說看你是怎么想的嗎?
3.下面,提供解碼的第三個信息:剛才說了密碼可能是27也可能是72。其實這個密碼和老師的年齡有關。哪個才是真正的密碼是?(學生說出是27)到底是不是27呢?請看(教師出示密碼)。真的是27,恭喜大家解碼成功!
二、多種活動,體驗新知
1、感知排列
師:請小朋友先到“數字宮”做個排數字游戲,好嗎?這有兩張數字卡片(1、2)(老師從密碼包里拿出),你能擺出幾個兩位數?(用數字卡擺一擺)
生:我擺了兩個不同的數字12和21。(教師板書)
師:同學們想得真好。我又請來了一位好朋友數字3,現在有三個數字1、2、3,讓大家寫兩位數,你們不會了吧?(會)別吹牛!(真的會)好,下面大家分組合作,組長記錄。看看你們能夠寫出幾個不同的兩位數,注意不要重復,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。好,開始。
學生活動教師巡視并參與學生活動。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)哪組同學來給大家匯報一下。(教師板書結果。)有沒有需要補充的呀?
2、探討排列方法。
有的小組擺出4個不同的兩位數,有的小組擺出6個不同的兩位數,有什么好的方法能保證既不重復,也不漏掉數呢?還請大家分組討論。看一看哪組同學的方法最好!(小組討論,分組交流,學生總結方法。)哪組同學來給大家匯報一下你們的想法?
方法1:我擺出12,然后再顛倒就是21,再擺23,顛倒后就是32,再擺13,顛倒后就是31,一共可以擺出6個兩位數。
方法2:我先把數字1放在十位上,然后把數字2和3分別放在個位組成12和13;我再把數字2放在十位上,然后把數字1和3分別放在個位組成21和23;我再把數字3放在十位上,然后把數字1和2分別放在個位上組成31和32,一共擺出了6個兩位數。3、老師和學生共同評議方法:讓學生選擇自己喜歡的方法再擺一擺,學生試著總結。(如果學生說不出方法2,老師就直接告訴學生)
3、感知組合。
①師:你們真是一群善于動腦的好孩子。來,咱們握握手,祝賀祝賀!加油!123
②提出問題:從大家剛才握手,老師想出了一個數學問題:三個小朋友,每兩個人只能握一次手,一共要握幾次手呢?想一想!
生1:6次!
生2:4次!
師:到底是幾次呢?請小組長作裁判,小組內的三個同學,試一試,到底是幾次?
③學生匯報表演。小組長指揮說明。哪組同學愿意給大家表演一下?他們握手,咱們一起來數吧!教師引導學生一起數握手的次數。(注意握過小朋友一邊休息)
④師問:A和B握手了嗎?B和A握手了嗎?這算一次還是兩次呀?
⑤小結:看來,兩個人相互握手,只能算一次,和順序無關。剛才排數,交換數的位置,就變成另一個數了,這和順序有關。
三、反饋練習,加深理解
下面大家看這是什么呀?(老師從密碼包里拿出一個乒乓球)(乒乓球)這個是我昨天專門買來的。定價5角。當時我的口袋里有1張5角的、2張2角,還有5個1角的硬幣。(師出示所述人民幣)大家想一想我有多少種方法付給老板錢呢?(老師引導學生有序的說出付錢的四種方法)
有了乒乓球,老師就可以教大家打乒乓球了。不過我要先考考大家。每兩個人進行一場比賽,三個人要比幾場?(指名答。)好的,大家真能干。下課老師就教你們的乒乓球好嗎?(好)。
今天是幾月幾日?(12月1日)哦!快到元旦了。小明準備在數學廣角舉辦的元旦晚會上露一手。來一個時裝表演。他準備了4件衣服(教師貼出2件上衣和2件褲子),請你幫他設計一下,有幾種穿法?誰來說一說?(指名答出四種穿法并演示)
大家感覺一下只有4種穿法,是不是有點少了呀?(是)小明也和大家想到一塊去了。于是他又用自己的零花錢買了一條黑褲子(貼出)。大家再想一想現在一共有多少種穿法了呀?(6種)除了剛才的4種,還有哪2種,誰來說一說?(生答完后,老師再引導學生有序地回憶6種穿法)同學們真聰明。我在這里代表小明向大家說一聲:謝謝了!(沒關系)。對了。到時候我們一定要去看小明的精彩表演!好不好?(好)
四、游戲活動,拓展應用
1、老師看大家學得這么開心,我們來做個抽獎游戲,想參加嗎?每個小朋友都有中獎的機會哦。
①教師出示4個號球:老師這這里有四個號球:2、5、7、8。
②什么樣的號碼能中獎呢?我給你們透露點信息:中獎號碼就是從這4個數中選出的兩個數組成的兩位數。猜猜,什么號碼可能中獎?這個號碼可能中獎。再猜?你這個號碼也可能中獎。看來,可能中獎的號碼有很多個。有什么好辦法肯定能中獎?(把你認為能中獎的號碼都寫出來吧)(把用這四個數能組成的所有兩位數都寫出來,教師巡視,有的孩子寫出來8個兩位數,她還在繼續寫,看來不止8個。你寫得越多你中獎的可能就越大)
③寫好了嗎?大家推舉一個人來摸獎吧。老師來當公證員行不行?學生先摸出一個球。中獎號碼的最前面一個數出來了,是2,那中獎號碼可能是?25、27、28。再摸一個球。中獎號碼是?
④你中獎了嗎?把你寫出的這個數圈出來。同桌互相看看,如果你同位中獎了,請你給他畫一面小紅旗。
⑤出示所有結果:孩子們,你剛才一共寫出了多少個兩位數?用2、5、7、8能組成的兩位數究竟有多少個呢?咱們用剛才先固定最前面一位數的辦法把這些數都排出來吧!老師寫,你們說,好嗎?
2、老師給今天這節課表現最好的三位同學一張合影,請同學們想一想,三個人站成一行,一共有多少種不同的排法?(指名答,教師總結)
這種排法剛才有沒有呀?我也糊涂了。怎樣才能搞清楚呢?對了,我們也可以用剛才先固定最前面一位數的方法來排一排。(教師引導學生有順序的排一排)這樣有順序的排一下,我們都清楚了。看來我們以后,不管在生活和學習中,做什么事情,想什么問題都要有順序的思考,這樣才能考慮全面。其實生活中有許多有趣的數學問題,不管有多難,只要大家肯動腦筋,就一定能解決。對不對?(對)
五、全課總結,升華情感
在數學廣角中還有許多地方等著大家去游玩,由于時間關系,今天我們大家就玩到這里。今天你這節課最高興的是什么事?
六、板書設計
排列組合
121232578
1221122331252728
213213525758
727578
828587
高中數學教案模板萬能篇16
【高考要求】:三角函數的有關概念(B).
【教學目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.
理解任意角三角函數(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數線表示任意角的正弦、余弦、正切.
【教學重難點】:終邊相同的角的意義和任意角三角函數(正弦、余弦、正切)的定義.
【知識復習與自學質疑】
一、問題.
1、角的概念是什么?角按旋轉方向分為哪幾類?
2、在平面直角坐標系內角分為哪幾類?與終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數有什么樣的關系?
4、弧度制下圓的弧長公式和扇形的面積公式是什么?
5、任意角的三角函數的定義是什么?在各象限的符號怎么確定?
6、你能在單位圓中畫出正弦、余弦和正切線嗎?
7、同角三角函數有哪些基本關系式?
二、練習.
1.給出下列命題:
(1)小于的角是銳角;(2)若是第一象限的角,則必為第一象限的角;
(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2與角的終邊不可能相同;
(7)若角與角有相同的終邊,則角(的終邊必在軸的非負半軸上。其中正確的命題的序號是
2.設P點是角終邊上一點,且滿足則的值是
3.一個扇形弧AOB的面積是1,它的周長為4,則該扇形的中心角=弦AB長=
4.若則角的終邊在象限。
5.在直角坐標系中,若角與角的終邊互為反向延長線,則角與角之間的關系是
6.若是第三象限的角,則-,的終邊落在何處?
【交流展示、互動探究與精講點撥】
例1.如圖,分別是角的終邊.
(1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在上所有角的集合;
(3)求始邊在OM位置,終邊在ON位置的所有角的集合.
例2.(1)已知角的終邊在直線上,求的值;
(2)已知角的終邊上有一點A,求的值。
例3.若,則在第象限.
例4.若一扇形的周長為20,則當扇形的圓心角等于多少弧度時,這個扇形的面積最大?最大面積是多少?
【矯正反饋】
1、若銳角的終邊上一點的坐標為,則角的弧度數為.
2、若,又是第二,第三象限角,則的取值范圍是.
3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數是弧度或角度,該扇形的面積是.
4、已知點P在第三象限,則角終邊在第象限.
5、設角的終邊過點P,則的值為.
6、已知角的終邊上一點P且,求和的值.
【遷移應用】
1、經過3小時35分鐘,分針轉過的角的弧度是.時針轉過的角的弧度數是.
2、若點P在第一象限,則在內的取值范圍是.
3、若點P從(1,0)出發,沿單位圓逆時針方向運動弧長到達Q點,則Q點坐標為.
4、如果為小于360的正角,且角的7倍數的角的終邊與這個角的終邊重合,求角的值.
高中數學教案模板萬能篇17
一、學習目標與自我評估
1 掌握利用單位圓的幾何方法作函數 的圖象
2 結合 的圖象及函數周期性的定義了解三角函數的周期性,及最小正周期
3 會用代數方法求 等函數的周期
4 理解周期性的幾何意義
二、學習重點與難點
“周期函數的概念”, 周期的求解。
三、學法指導
1、 是周期函數是指對定義域中所有 都有,即 應是恒等式。
2、周期函數一定會有周期,但不一定存在最小正周期。
四、學習活動與意義建構
五、重點與難點探究
例1、若鐘擺的高度 與時間 之間的函數關系如圖所示
(1)求該函數的周期;
(2)求 時鐘擺的高度。
例2、求下列函數的周期。
(1) (2)
總結:(1)函數 (其中 均為常數,且的周期T= 。
(2)函數 (其中 均為常數,且的周期T= 。
例3、求證: 的周期為 。
例4、(1)研究 和 函數的圖象,分析其周期性。(2)求證: 的周期為 (其中 均為常數,且
總結:函數 (其中 均為常數,且__的周期T= 。
例5、(1)求 的周期。
(2)已知 滿足 ,求證: 是周期函數
課后思考:能否利用單位圓作函數 的圖象。
六、作業:
七、自主體驗與運用
1、函數 的周期為 ( )
A、 B、 C、 D、
2、函數 的最小正周期是 ( )
A、 B、 C、 D、
3、函數 的最小正周期是 ( )
A、 B、 C、 D、
4、函數 的周期是 ( )
A、 B、 C、 D、
5、設 是定義域為R,最小正周期為 的函數,若 ,則 的值等于 ( )
A、1 B、 C、0 D、
6、函數 的最小正周期是 ,則
7、已知函數 的最小正周期不大于2,則正整數
的最小值是
8、求函數 的最小正周期為T,且 ,則正整數的值是
9、已知函數 是周期為6的奇函數,且 則
10、若函數 ,則
11、用周期的定義分析 的周期。
12、已知函數 ,如果使 的周期在 內,求正整數 的值
13、一機械振動中,某質子離開平衡位置的位移 與時間 之間的函數關系如圖所示:
(1) 求該函數的周期;
(2) 求 時,該質點離開平衡位置的位移。
14、已知 是定義在R上的函數,且對任意 有成立,
(1) 證明: 是周期函數;
(2) 若 求 的值。
高中數學教案模板萬能篇18
一、教材分析
《余弦定理》選自人教A版高中數學必修五第一章第一節第一課時。本節課的主要教學內容是余弦定理的內容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。
余弦定理的學習有充分的基礎,初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節課內容學習的知識基礎,同時又對本節課的學習提供了一定的方法指導。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經常運用于空間幾何中,所以余弦定理是高中數學學習的一個十分重要的內容。
二、教學目標
知識與技能:
1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導、證明過程。
3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。過程與方法:
1、通過從實際問題中抽象出數學問題,培養學生知識的遷移能力。
2、通過直角三角形到一般三角形的過渡,培養學生歸納總結能力。
3、通過余弦定理推導證明的過程,培養學生運用所學知識解決實際問題的能力。
情感態度與價值觀:
1、在交流合作的過程中增強合作探究、團結協作精神,體驗解決問題的成功喜悅。
2、感受數學一般規律的美感,培養數學學習的興趣。
三、教學重難點
重點:余弦定理及其推論和余弦定理的運用。
難點:余弦定理的發現和推導過程以及多解情況的判斷。
四、教學用具
普通教學工具、多媒體工具(以上均為命題教學的準備)