小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數學教案 >

初二數學優秀教案

時間: 沐欽 數學教案

初二數學優秀教案都有哪些?教案不應包羅萬象、面面俱到,而應立足于學科的基本知識框架,對當前急需解決的問題進行研究、探索、闡釋,能夠體現教師寶貴的學術觀點和研究相關學科的經驗。下面是小編為大家帶來的初二數學優秀教案七篇,希望大家能夠喜歡!

初二數學優秀教案

初二數學優秀教案精選篇1

一、 教學目標

1. 了解分式、有理式的概念.

2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

二、重點、難點

1.重點:理解分式有意義的條件,分式的值為零的條件.

2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件.

3.認知難點與突破方法

難點是能熟練地求出分式有意義的條件,分式的值為零的條件.突破難點的方法是利用分式與分數有許多類似之處,從分數入手,研究出分式的有關概念,同時還要講清分式與分數的聯系與區別.

三、例、習題的意圖分析

本章從實際問題引出分式方程 = ,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式. 不要在列方程時耽誤時間,列方程在這節課里不是重點,也不要求解這個方程.

1.本節進一步提出P4[思考]讓學生自己依次填出: , , , .為下面的[觀察]提供具體的式子,就以上的式子 , , , ,有什么共同點?它們與分數有什么相同點和不同點?

可以發現,這些式子都像分數一樣都是 (即A÷B)的形式.分數的分子A與分母B都是整數,而這些式子中的A、B都是整式,并且B中都含有字母.

P5[歸納]順理成章地給出了分式的定義.分式與分數有許多類似之處,研究分式往往要類比分數的有關概念,所以要引導學生了解分式與分數的聯系與區別.

希望老師注意:分式比分數更具有一般性,例如分式 可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數 .

2. P5[思考]引發學生思考分式的分母應滿足什么條件,分式才有意義?由分數的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式 才有意義.

3. P5例1填空是應用分式有意義的條件—分母不為零,解出字母x的值.還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學生比較全面地理解分式及有關的概念,也為今后求函數的自變量的取值范圍,打下良好的基礎.

4. P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補充的例2為了學生更全面地體驗分式的值為0時,必須同時滿足兩個條件:○1分母不能為零;○2分子為零.這兩個條件得到的解集的公共部分才是這一類題目的解.

四、課堂引入

1.讓學生填寫P4[思考],學生自己依次填出: , , , .

2.學生看P3的問題:一艘輪船在靜水中的航速為20千米/時,它沿江以航速順流航行100千米所用實踐,與以航速逆流航行60千米所用時間相等,江水的流速為多少?

請同學們跟著教師一起設未知數,列方程.

設江水的流速為x千米/時.

輪船順流航行100千米所用的時間為 小時,逆流航行60千米所用時間 小時,所以 = .

3. 以上的式子 , , , ,有什么共同點?它們與分數有什么相同點和不同點?

五、例題講解

P5例1. 當x為何值時,分式有意義.

[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解

出字母x的取值范圍.

[提問]如果題目為:當x為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.

(補充)例2. 當m為何值時,分式的值為0?

(1) (2) (3)

[分析] 分式的值為0時,必須同時滿足兩個條件:○1分母不能為零;○2分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

[答案] (1)m=0 (2)m=2 (3)m=1

六、隨堂練習

1.判斷下列各式哪些是整式,哪些是分式?

9x+4, , , , ,

2. 當x取何值時,下列分式有意義?

(1) (2) (3)

3. 當x為何值時,分式的值為0?

(1) (2) (3)

七、課后練習

1.列代數式表示下列數量關系,并指出哪些是正是?哪些是分式?

(1)甲每小時做x個零件,則他8小時做零件 個,做80個零件需 小時.

(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是 千米/時,輪船的逆流速度是 千米/時.

(3)x與y的差于4的商是 .

2.當x取何值時,分式 無意義?

3. 當x為何值時,分式 的值為0?

八、答案:

六、1.整式:9x+4, , 分式: , ,

2.(1)x≠-2 (2)x≠ (3)x≠±2

3.(1)x=-7 (2)x=0 (3)x=-1

七、1.18x, ,a+b, , ; 整式:8x, a+b, ;

分式: ,

2. X = 3. x=-1

初二數學優秀教案精選篇2

一、教學目標

1.理解分式的基本性質.

2.會用分式的基本性質將分式變形.

二、重點、難點

1.重點: 理解分式的基本性質.

2.難點: 靈活應用分式的基本性質將分式變形.

3.認知難點與突破方法

教學難點是靈活應用分式的基本性質將分式變形. 突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.

三、例、習題的意圖分析

1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.

2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.

教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解.

3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5.

四、課堂引入

1.請同學們考慮: 與 相等嗎? 與 相等嗎?為什么?

2.說出 與 之間變形的過程, 與 之間變形的過程,并說出變形依據?

3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.

五、例題講解

P7例2.填空:

[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

P11例3.約分:

[分析] 約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.

P11例4.通分:

[分析] 通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.

(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.

, , , , 。

[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.

解: = , = , = , = , = 。

六、隨堂練習

1.填空:

(1) = (2) =

(3) = (4) =

2.約分:

(1) (2) (3) (4)

3.通分:

(1) 和 (2) 和

(3) 和 (4) 和

4.不改變分式的值,使下列分式的分子和分母都不含“-”號.

(1) (2) (3) (4)

七、課后練習

1.判斷下列約分是否正確:

(1) = (2) =

(3) =0

2.通分:

(1) 和 (2) 和

3.不改變分式的值,使分子第一項系數為正,分式本身不帶“-”號.

(1) (2)

八、答案:

六、1.(1)2x (2) 4b (3) bn+n (4)x+y

2.(1) (2) (3) (4)-2(x-y)2

3.通分:

(1) = , =

(2) = , =

(3) = =

(4) = =

4.(1) (2) (3) (4)

初二數學優秀教案精選篇3

學習目標:

(1)了解運用公式法分解因式的意義;

(2)會用完全平方公式進行因式分解;

(3)清楚優先提取公因式,然后考慮用公式

中考考點:正向、逆向運用公式,特別是配方法是必考點。

預習作業:

1. 完全平方公式字母表示: .

2、形如或的式子稱為

3. 結構特征:項數、次數、系數、符號

填空:

(1)(a+b)(a-b) = ;

(2)(a+b)2= ;

(3)(a–b)2= ;

根據上面式子填空:

(1)a2–b2= ;

(2)a2–2ab+b2= ;

(3)a2+2ab+b2= ;

結 論:形如a2+2ab+b2 與a2–2ab+b2的式子稱為完全平方式.

a2–2ab+b2=(a–b)2 a2+2ab+b2=(a+b)2

完全平方公式特點:首平方,尾平方,積的2倍在中央,符號看前方。

例1: 把下列各式因式分解:

(1)x2–4x+4 (2)9a2+6ab+b2

(3)m2– (4)

例2、將下列各式因式分解:

(1)3ax2+6axy+3ay2 (2)–x2–4y2+4xy

注:優先提取公因式,然后考慮用公式

例3: 分解因式

(1) (2)

(3) (4)

點撥:把 分解因式時:

1、如果常數項q是正數,那么把它分解成兩個同號因數,它們的符號與一次項系數P的符號相同

2、如果常數項q是負數,那么把它分解成兩個異號因數,其中絕對值較大的因數與一次項系數P的符號相同

3、對于分解的兩個因數,還要看它們的和是不是等于一次項的系數P

變式練習:

(1) (2)

(3)

借助畫十字交叉線分解系數,從而幫助我們把二次三項式分解因式的方法,

叫做十字相乘法

口訣:首尾拆,交叉乘,湊中間。

拓展訓練:

若把代數式化為的形式,其中m,k為常數,求m+k的值

已知,求x,y的值

當x為何值時,多項式取得最小值,其最小值為多少?

回顧與思考

學習目標:

(1)提高因式分解的基本運算技能

(2)能熟練進行因式分解方法的綜合運用.

學習準備:

1、把一個多項式化成 的形式,叫做把這個多項式分解因式。

要弄清楚分解因式的概念,應把握如下特點:

(1)結果一定是 的形式;

(2)每個因式都是 ;

(3)各因式一定要分解到 為止。

2、分解因式與 是互逆關系。

3、分解因式常用的方法有:

(1)提公因式法:

(2)應用公式法:①平方差公式: ②完全平方公式:

(3)分組分解法:am+an+bm+bn=

(4)十字相乘法:=

4、分解因式步驟:

(1)首先考慮提取 ,然后再考慮套公式;

(2)對于二次三項式聯想到平方差公式因式分解;

(3)對于二次三項式聯想到完全平方公式,若不行再考慮十字相乘法分解因式;

(4)超過三項的多項式考慮分組分解;

(5)分解完畢不要大意,檢查是否分解徹底。

辨析題:

1、下列哪些式子的變形是因式分解?

(1)x2–4y2=(x+2y)(x–2y)

(3)4m2–6mn+9n2 =2m(2m–3n)+9n2

(4)m2+6mn+9n2=(m+3n)2

2、把下列各式分解因式:

(1)7x2–63 (2)(x+y)2–14(x+y)+49

(3) (4)(a2+4)2–16a2

(5) (6)

(7) (8)

想一想

計算:

1、32004–32003 2、(–2)101+(–2)100

3、已知 ,求的值.

例1: 把下列各式因式分解(分組后能提公因式)

(1)a2-ab+ac-bc (2)2ax-10ay+5by-bx

(3) 3ax +4by+4ay+3bx (4) m2+5n-mn-5m

點撥:1、用分組分解法時,一定要想想分組后能否繼續進行,完成因式分解,

由此合理選擇分組的方法

2、運算律(如加法交換律、分配律)在因式分解中起著重要的作用

初二數學優秀教案精選篇4

教學目標:

1、經歷用數格子的辦法探索勾股定理的過程,進一步發展學生的合情推力意識,主動探究的習慣,進一步體會數學與現實生活的緊密聯系。

2、探索并理解直角三角形的三邊之間的數量關系,進一步發展學生的說理和簡單的推理的意識及能力。

重點難點:

重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

難點:勾股定理的發現

教學過程

一、創設問題的情境,激發學生的學習熱情,導入課題

出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學家)在勾股定理方面的貢獻。

出示投影2(書中的P2圖1—2)并回答:

1、觀察圖1-2,正方形A中有_______個小方格,即A的面積為______個單位。

正方形B中有_______個小方格,即A的面積為______個單位。

正方形C中有_______個小方格,即A的面積為______個單位。

2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發問:

3、圖1—2中,A,B,C之間的面積之間有什么關系?

學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關系呢?

二、做一做

出示投影3(書中P3圖1—4)提問:

1、圖1—3中,A,B,C之間有什么關系?

2、圖1—4中,A,B,C之間有什么關系?

3、從圖1—1,1—2,1—3,1|—4中你發現什么?

學生討論、交流形成共識后,教師總結:

以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

三、議一議

1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

2、你能發現直角三角形三邊長度之間的關系嗎?

在同學的交流基礎上,老師板書:

直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

那么

我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

四、想一想

這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

五、鞏固練習

1、錯例辨析:

△ABC的兩邊為3和4,求第三邊

解:由于三角形的兩邊為3、4

所以它的第三邊的c應滿足=25

即:c=5

辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據。

(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

綜上所述這個題目條件不足,第三邊無法求得。

2、練習P7§1.11

六、作業

課本P7§1.12、3、4

初二數學優秀教案精選篇5

教學目標:

1.經歷運用拼圖的方法說明勾股定理是正確的過程,在數學活動中發展學生的探究意識和合作交流的習慣。

2.掌握勾股定理和他的簡單應用

重點難點:

重點:能熟練運用拼圖的方法證明勾股定理

難點:用面積證勾股定理

教學過程

七、創設問題的情境,激發學生的學習熱情,導入課題

我們已經通過數格子的方法發現了直角三角形三邊的關系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學交流。在同學操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

(同學們回答有這幾種可能:(1)(2))

在同學交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。

=請同學們對上面的式子進行化簡,得到:即=

這就可以從理論上說明勾股定理存在。請同學們去用別的拼圖方法說明勾股定理。

八、講例

1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?

分析:根據題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

解:由勾股定理得

即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:

答:飛機每個小時飛行540千米。

九、議一議

展示投影2(書中的圖1—9)

觀察上圖,應用數格子的方法判斷圖中的三角形的三邊長是否滿足

同學在議論交流形成共識之后,老師總結。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、作業

1、1、課文P11§1.21、2

2、選用作業。

初二數學優秀教案精選篇6

教學目標:

知識與技能

1.掌握直角三角形的判別條件,并能進行簡單應用;

2.進一步發展數感,增加對勾股數的直觀體驗,培養從實際問題抽象出數學問題的能力,建立數學模型.

3.會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.

情感態度與價值觀

敢于面對數學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經驗,進一步體會數學的應用價值,發展運用數學的信心和能力,初步形成積極參與數學活動的意識.

教學重點

運用身邊熟悉的事物,從多種角度發展數感,會通過邊長判斷一個三角形是否是直角三角形,并會辨析哪些問題應用哪個結論.

教學難點

會辨析哪些問題應用哪個結論.

課前準備

標有單位長度的細繩、三角板、量角器、題篇

教學過程:

復習引入:

請學生復述勾股定理;使用勾股定理的前提條件是什么?

已知△ABC的兩邊AB=5,AC=12,則BC=13對嗎?

創設問題情景:由課前準備好的一組學生以小品的形式演示教材第9頁古埃及造直角的方法.

這樣做得到的是一個直角三角形嗎?

提出課題:能得到直角三角形嗎

講授新課:

⒈如何來判斷?(用直角三角板檢驗)

這個三角形的三邊分別是多少?(一份視為1)它們之間存在著怎樣的關系?

就是說,如果三角形的三邊為,,,請猜想在什么條件下,以這三邊組成的三角形是直角三角形?(當滿足較小兩邊的平方和等于較大邊的平方時)

⒉繼續嘗試:下面的三組數分別是一個三角形的三邊長a,b,c:

5,12,13;6,8,10;8,15,17.

(1)這三組數都滿足a2+b2=c2嗎?

(2)分別以每組數為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

⒊直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.

滿足a2+b2=c2的三個正整數,稱為勾股數.

⒋例1一個零件的形狀如左圖所示,按規定這個零件中∠A和∠DBC都應為直角.工人師傅量得這個零件各邊尺寸如右圖所示,這個零件符合要求嗎?

隨堂練習:

⒈下列幾組數能否作為直角三角形的三邊長?說說你的理由.

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉已知?ABC中BC=41,AC=40,AB=9,則此三角形為_______三角形,______是角.

⒊四邊形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求這個四邊形的面積.

⒋習題1.3

課堂小結:

⒈直角三角形判定定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.

⒉滿足a2+b2=c2的三個正整數,稱為勾股數.勾股數擴大相同倍數后,仍為勾股數.

初二數學優秀教案精選篇7

教材分析

1、 本節課首先從最簡單的正比例函數入手.從正比例函數的定義、函數關系式、引入次函數的概念。

2、 八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習初、高中其它函數和高中解析幾何中的直線方程的基礎。

學情分析

1、雖然這是一節全新的數學概念課,學生沒有接觸過。但是,孩子們已經具備了函數的一些知識,如正比例函數的概念及性質,這些都為學習本節內容做好了鋪墊。

2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習其它函數的基礎。

3、學生認知障礙點:根據問題信息寫出一次函數的表達式。

教學目標

1、 理解一次函數與正比例函數的概念以及它們的關系,在探索過程中,發展抽象思維及概括能力,體驗特殊和一般的辯證關系。

2、 能根據問題信息寫出一次函數的表達式。能利用一次函數解決簡單的實際問題。

3、 經歷利用一次函數解決實際問題的過程,逐步形成利用函數觀點認識現實世界的意識和能力。

教學重點和難點

1、一次函數、正比例函數的概念及關系。

2、會根據已知信息寫出一次函數的表達式。

33978 主站蜘蛛池模板: 缠绕机|缠绕膜包装机|缠绕包装机-上海晏陵智能设备有限公司 | 小区健身器材_户外健身器材_室外健身器材_公园健身路径-沧州浩然体育器材有限公司 | RTO换向阀_VOC高温阀门_加热炉切断阀_双偏心软密封蝶阀_煤气蝶阀_提升阀-湖北霍科德阀门有限公司 | 混合气体腐蚀试验箱_盐雾/硫化氢/气体腐蚀试验箱厂家-北京中科博达 | 护腰带生产厂家_磁石_医用_热压护腰_登山护膝_背姿矫正带_保健护具_医疗护具-衡水港盛 | 汽车水泵_汽车水泵厂家-瑞安市骏迪汽车配件有限公司 | 海峰资讯 - 专注装饰公司营销型网站建设和网络营销培训 | 丹尼克尔拧紧枪_自动送钉机_智能电批_柔性振动盘_螺丝供料器品牌 | 众能联合-提供高空车_升降机_吊车_挖机等一站工程设备租赁 | 常州翔天实验仪器厂-恒温振荡器-台式恒温振荡器-微量血液离心机 恒温恒湿箱(药品/保健品/食品/半导体/细菌)-兰贝石(北京)科技有限公司 | 岩棉切条机厂家_玻璃棉裁条机_水泥基保温板设备-廊坊鹏恒机械 | 旅游规划_旅游策划_乡村旅游规划_景区规划设计_旅游规划设计公司-北京绿道联合旅游规划设计有限公司 | 明渠式紫外线杀菌器-紫外线消毒器厂家-定州市优威环保 | 小型气象站_便携式自动气象站_校园气象站-竞道气象设备网 | KBX-220倾斜开关|KBW-220P/L跑偏开关|拉绳开关|DHJY-I隔爆打滑开关|溜槽堵塞开关|欠速开关|声光报警器-山东卓信有限公司 | 德国BOSCH电磁阀-德国HERION电磁阀-JOUCOMATIC电磁阀|乾拓百科 | 电表箱-浙江迈峰电力设备有限公司-电表箱专业制造商 | 自动钻孔机-全自动数控钻孔机生产厂家-多米(广东)智能装备有限公司 | 手术室净化厂家_成都实验室装修公司_无尘车间施工单位_洁净室工程建设团队-四川华锐16年行业经验 | 聚合氯化铝价格_聚合氯化铝厂家_pac絮凝剂-唐达净水官网 | 锌合金压铸-铝合金压铸厂-压铸模具-冷挤压-誉格精密压铸 | 美国查特CHART MVE液氮罐_查特杜瓦瓶_制造全球品质液氮罐 | SDG吸附剂,SDG酸气吸附剂,干式酸性气体吸收剂生产厂家,超过20年生产使用经验。 - 富莱尔环保设备公司(原名天津市武清县环保设备厂) | IWIS链条代理-ALPS耦合透镜-硅烷预处理剂-上海顶楚电子有限公司 lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | B2B网站_B2B免费发布信息网站_B2B企业贸易平台 - 企资网 | 北京工业设计公司-产品外观设计-产品设计公司-千策良品工业设计 北京翻译公司-专业合同翻译-医学标书翻译收费标准-慕迪灵 | 深圳市东信高科自动化设备有限公司 | 乐之康护 - 专业护工服务平台,提供医院陪护-居家照护-居家康复 | 百方网-百方电气网,电工电气行业专业的B2B电子商务平台 | 南京泽朗生物科技有限公司-液体饮料代加工_果汁饮料代加工_固体饮料代加工 | 口信网(kousing.com) - 行业资讯_行业展会_行业培训_行业资料 | 压缩空气检测_气体_水质找上海京工-服务专业、价格合理 | 粉末冶金-粉末冶金齿轮-粉末冶金零件厂家-东莞市正朗精密金属零件有限公司 | 选矿设备-新型重选设备-金属矿尾矿重选-青州冠诚重工机械有限公司 | 石家庄小程序开发_小程序开发公司_APP开发_网站制作-石家庄乘航网络科技有限公司 | 硫酸亚铁-聚合硫酸铁-除氟除磷剂-复合碳源-污水处理药剂厂家—长隆科技 | 定制/定做冲锋衣厂家/公司-订做/订制冲锋衣价格/费用-北京圣达信 | 上海橡胶接头_弹簧减震器_金属软接头厂家-上海淞江集团 | 泡沫消防车_水罐消防车_湖北江南专用特种汽车有限公司 | 包装盒厂家_纸盒印刷_礼品盒定制-济南恒印包装有限公司 | 工控机-图像采集卡-PoE网卡-人工智能-工业主板-深圳朗锐智科 |