小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數學教案 >

2023初二數學老師教案

時間: 沐欽 數學教案

初二數學老師教案都有哪些?從課本內容變成胸中有案,再落到紙上,形成書面教案,繼而到課堂實際講授,關鍵在于教師要能 “學百家,樹一宗”。下面是小編為大家帶來的2023初二數學老師教案七篇,希望大家能夠喜歡!

2023初二數學老師教案

2023初二數學老師教案篇1

一、 教學目標

1. 了解分式、有理式的概念.

2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

二、重點、難點

1.重點:理解分式有意義的條件,分式的值為零的條件.

2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件.

3.認知難點與突破方法

難點是能熟練地求出分式有意義的條件,分式的值為零的條件.突破難點的方法是利用分式與分數有許多類似之處,從分數入手,研究出分式的有關概念,同時還要講清分式與分數的聯系與區別.

三、例、習題的意圖分析

本章從實際問題引出分式方程 = ,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式. 不要在列方程時耽誤時間,列方程在這節課里不是重點,也不要求解這個方程.

1.本節進一步提出P4[思考]讓學生自己依次填出: , , , .為下面的[觀察]提供具體的式子,就以上的式子 , , , ,有什么共同點?它們與分數有什么相同點和不同點?

可以發現,這些式子都像分數一樣都是 (即A÷B)的形式.分數的分子A與分母B都是整數,而這些式子中的A、B都是整式,并且B中都含有字母.

P5[歸納]順理成章地給出了分式的定義.分式與分數有許多類似之處,研究分式往往要類比分數的有關概念,所以要引導學生了解分式與分數的聯系與區別.

希望老師注意:分式比分數更具有一般性,例如分式 可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數 .

2. P5[思考]引發學生思考分式的分母應滿足什么條件,分式才有意義?由分數的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式 才有意義.

3. P5例1填空是應用分式有意義的條件—分母不為零,解出字母x的值.還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學生比較全面地理解分式及有關的概念,也為今后求函數的自變量的取值范圍,打下良好的基礎.

4. P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補充的例2為了學生更全面地體驗分式的值為0時,必須同時滿足兩個條件:○1分母不能為零;○2分子為零.這兩個條件得到的解集的公共部分才是這一類題目的解.

四、課堂引入

1.讓學生填寫P4[思考],學生自己依次填出: , , , .

2.學生看P3的問題:一艘輪船在靜水中的航速為20千米/時,它沿江以航速順流航行100千米所用實踐,與以航速逆流航行60千米所用時間相等,江水的流速為多少?

請同學們跟著教師一起設未知數,列方程.

設江水的流速為x千米/時.

輪船順流航行100千米所用的時間為 小時,逆流航行60千米所用時間 小時,所以 = .

3. 以上的式子 , , , ,有什么共同點?它們與分數有什么相同點和不同點?

五、例題講解

P5例1. 當x為何值時,分式有意義.

[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解

出字母x的取值范圍.

[提問]如果題目為:當x為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.

(補充)例2. 當m為何值時,分式的值為0?

(1) (2) (3)

[分析] 分式的值為0時,必須同時滿足兩個條件:○1分母不能為零;○2分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

[答案] (1)m=0 (2)m=2 (3)m=1

六、隨堂練習

1.判斷下列各式哪些是整式,哪些是分式?

9x+4, , , , ,

2. 當x取何值時,下列分式有意義?

(1) (2) (3)

3. 當x為何值時,分式的值為0?

(1) (2) (3)

七、課后練習

1.列代數式表示下列數量關系,并指出哪些是正是?哪些是分式?

(1)甲每小時做x個零件,則他8小時做零件 個,做80個零件需 小時.

(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是 千米/時,輪船的逆流速度是 千米/時.

(3)x與y的差于4的商是 .

2.當x取何值時,分式 無意義?

3. 當x為何值時,分式 的值為0?

八、答案:

六、1.整式:9x+4, , 分式: , ,

2.(1)x≠-2 (2)x≠ (3)x≠±2

3.(1)x=-7 (2)x=0 (3)x=-1

七、1.18x, ,a+b, , ; 整式:8x, a+b, ;

分式: ,

2. X = 3. x=-1

2023初二數學老師教案篇2

一、教學目標

1.理解分式的基本性質.

2.會用分式的基本性質將分式變形.

二、重點、難點

1.重點: 理解分式的基本性質.

2.難點: 靈活應用分式的基本性質將分式變形.

3.認知難點與突破方法

教學難點是靈活應用分式的基本性質將分式變形. 突破的方法是通過復習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.應用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.

三、例、習題的意圖分析

1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.

2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最后的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.

教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解.

3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的應用之一,所以補充例5.

四、課堂引入

1.請同學們考慮: 與 相等嗎? 與 相等嗎?為什么?

2.說出 與 之間變形的過程, 與 之間變形的過程,并說出變形依據?

3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.

五、例題講解

P7例2.填空:

[分析]應用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

P11例3.約分:

[分析] 約分是應用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.

P11例4.通分:

[分析] 通分要想確定各分式的公分母,一般的取系數的最小公倍數,以及所有因式的次冪的積,作為最簡公分母.

(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.

, , , , 。

[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.

解: = , = , = , = , = 。

六、隨堂練習

1.填空:

(1) = (2) =

(3) = (4) =

2.約分:

(1) (2) (3) (4)

3.通分:

(1) 和 (2) 和

(3) 和 (4) 和

4.不改變分式的值,使下列分式的分子和分母都不含“-”號.

(1) (2) (3) (4)

七、課后練習

1.判斷下列約分是否正確:

(1) = (2) =

(3) =0

2.通分:

(1) 和 (2) 和

3.不改變分式的值,使分子第一項系數為正,分式本身不帶“-”號.

(1) (2)

八、答案:

六、1.(1)2x (2) 4b (3) bn+n (4)x+y

2.(1) (2) (3) (4)-2(x-y)2

3.通分:

(1) = , =

(2) = , =

(3) = =

(4) = =

4.(1) (2) (3) (4)

2023初二數學老師教案篇3

教學目標:

1、經歷用數格子的辦法探索勾股定理的過程,進一步發展學生的合情推力意識,主動探究的習慣,進一步體會數學與現實生活的緊密聯系。

2、探索并理解直角三角形的三邊之間的數量關系,進一步發展學生的說理和簡單的推理的意識及能力。

重點難點:

重點:了解勾股定理的由來,并能用它來解決一些簡單的問題。

難點:勾股定理的發現

教學過程

一、創設問題的情境,激發學生的學習熱情,導入課題

出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻,并結合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學家)在勾股定理方面的貢獻。

出示投影2(書中的P2圖1—2)并回答:

1、觀察圖1-2,正方形A中有_______個小方格,即A的面積為______個單位。

正方形B中有_______個小方格,即A的面積為______個單位。

正方形C中有_______個小方格,即A的面積為______個單位。

2、你是怎樣得出上面的結果的?在學生交流回答的基礎上教師直接發問:

3、圖1—2中,A,B,C之間的面積之間有什么關系?

學生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A.B,C的關系呢?

二、做一做

出示投影3(書中P3圖1—4)提問:

1、圖1—3中,A,B,C之間有什么關系?

2、圖1—4中,A,B,C之間有什么關系?

3、從圖1—1,1—2,1—3,1|—4中你發現什么?

學生討論、交流形成共識后,教師總結:

以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的正方形面積。

三、議一議

1、圖1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

2、你能發現直角三角形三邊長度之間的關系嗎?

在同學的交流基礎上,老師板書:

直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

那么

我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

3、分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

四、想一想

這里的29英寸(74厘米)的電視機,指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

五、鞏固練習

1、錯例辨析:

△ABC的兩邊為3和4,求第三邊

解:由于三角形的兩邊為3、4

所以它的第三邊的c應滿足=25

即:c=5

辨析:(1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題

△ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據。

(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

綜上所述這個題目條件不足,第三邊無法求得。

2、練習P7§1.11

六、作業

課本P7§1.12、3、4

2023初二數學老師教案篇4

教學目標:

1.經歷運用拼圖的方法說明勾股定理是正確的過程,在數學活動中發展學生的探究意識和合作交流的習慣。

2.掌握勾股定理和他的簡單應用

重點難點:

重點:能熟練運用拼圖的方法證明勾股定理

難點:用面積證勾股定理

教學過程

七、創設問題的情境,激發學生的學習熱情,導入課題

我們已經通過數格子的方法發現了直角三角形三邊的關系,究竟是幾個實例,是否具有普遍的意義,還需加以論證,下面就是今天所要研究的內容,下邊請大家畫四個全等的直角三角形,并把它剪下來,用這四個直角三角形,拼一拼、擺一擺,看看能否得到一個含有以斜邊c為邊長的正方形,并與同學交流。在同學操作的過程中,教師展示投影1(書中p7圖1—7)接著提問:大正方形的面積可表示為什么?

(同學們回答有這幾種可能:(1)(2))

在同學交流形成共識之后,教師把這兩種表示大正方形面積的式子用等號連接起來。

=請同學們對上面的式子進行化簡,得到:即=

這就可以從理論上說明勾股定理存在。請同學們去用別的拼圖方法說明勾股定理。

八、講例

1.飛機在空中水平飛行,某一時刻剛好飛機飛到一個男孩頭頂正上方4000多米處,過20秒,飛機距離這個男孩頭頂5000米,飛機每時飛行多少千米?

分析:根據題意:可以先畫出符合題意的圖形。如右圖,圖中△ABC的米,AB=5000米,欲求飛機每小時飛行多少千米,就要知道飛機在20秒的時間里的飛行路程,即圖中的CB的長,由于直角△ABC的斜邊AB=5000米,AC=4000米,這樣的CB就可以通過勾股定理得出。這里一定要注意單位的換算。

解:由勾股定理得

即BC=3千米飛機20秒飛行3千米,那么它1小時飛行的距離為:

答:飛機每個小時飛行540千米。

九、議一議

展示投影2(書中的圖1—9)

觀察上圖,應用數格子的方法判斷圖中的三角形的三邊長是否滿足

同學在議論交流形成共識之后,老師總結。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、作業

1、1、課文P11§1.21、2

2、選用作業。

2023初二數學老師教案篇5

一、學習目標:1.多項式除以單項式的運算法則及其應用.

2.多項式除以單項式的運算算理.

二、重點難點:

重 點: 多項式除以單項式的運算法則及其應用

難 點: 探索多項式與單項式相除的運算法則的過程

三、合作學習:

(一) 回顧單項式除以單項式法則

(二) 學生動手,探究新課

1. 計算下列各式:

(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.

2. 提問:①說說你是怎樣計算的 ②還有什么發現嗎?

(三) 總結法則

1. 多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______

2. 本質:把多項式除以單項式轉化成______________

四、精講精練

例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)

隨堂練習: 教科書 練習

五、小結

1、單項式的除法法則

2、應用單項式除法法則應注意:

A、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號

B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;

C、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;

D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.

E、多項式除以單項式法則

第三十四學時:14.2.1 平方差公式

一、學習目標:1.經歷探索平方差公式的過程.

2.會推導平方差公式,并能運用公式進行簡單的運算.

二、重點難點

重 點: 平方差公式的推導和應用

難 點: 理解平方差公式的結構特征,靈活應用平方差公式.

三、合作學習

你能用簡便方法計算下列各題嗎?

(1)2001×1999 (2)998×1002

導入新課: 計算下列多項式的積.

(1)(x+1)(x-1) (2)(m+2)(m-2)

(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)

結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差.

即:(a+b)(a-b)=a2-b2

四、精講精練

例1:運用平方差公式計算:

(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)

例2:計算:

(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)

隨堂練習

計算:

(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)

(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)

五、小結:(a+b)(a-b)=a2-b2

2023初二數學老師教案篇6

一、學習目標:1.完全平方公式的推導及其應用.

2.完全平方公式的幾何解釋.

二、重點難點:

重 點: 完全平方公式的推導過程、結構特點、幾何解釋,靈活應用

難 點: 理解完全平方公式的結構特征并能靈活應用公式進行計算

三、合作學習

Ⅰ.提出問題,創設情境

一位老人非常喜歡孩子.每當有孩子到他家做客時,老人都要拿出糖果招待他們.來一個孩子,老人就給這個孩子一塊糖,來兩個孩子,老人就給每個孩子兩塊塘,…

(1)第一天有a個男孩去了老人家,老人一共給了這些孩子多少塊糖?

(2)第二天有b個女孩去了老人家,老人一共給了這些孩子多少塊糖?

(3)第三天這(a+b)個孩子一起去看老人,老人一共給了這些孩子多少塊糖?

(4)這些孩子第三天得到的糖果數與前兩天他們得到的糖果總數哪個多?多多少?為什么?

Ⅱ.導入新課

計算下列各式,你能發現什么規律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

兩數和(或差)的平方,等于它們的平方和,加(或減)這兩個數的積的二倍的2倍.

(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

四、精講精練

例1、應用完全平方公式計算:

(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2

例2、用完全平方公式計算:

(1)1022 (2)992

2023初二數學老師教案篇7

教材分析

1、 本節課首先從最簡單的正比例函數入手.從正比例函數的定義、函數關系式、引入次函數的概念。

2、 八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習初、高中其它函數和高中解析幾何中的直線方程的基礎。

學情分析

1、雖然這是一節全新的數學概念課,學生沒有接觸過。但是,孩子們已經具備了函數的一些知識,如正比例函數的概念及性質,這些都為學習本節內容做好了鋪墊。

2、八年級數學中的一次函數是中學數學中的一種最簡單、最基本的函數,是反映現實世界的數量關系和變化規律的常見數學模型之一,也是學生今后進一步學習其它函數的基礎。

3、學生認知障礙點:根據問題信息寫出一次函數的表達式。

教學目標

1、 理解一次函數與正比例函數的概念以及它們的關系,在探索過程中,發展抽象思維及概括能力,體驗特殊和一般的辯證關系。

2、 能根據問題信息寫出一次函數的表達式。能利用一次函數解決簡單的實際問題。

3、 經歷利用一次函數解決實際問題的過程,逐步形成利用函數觀點認識現實世界的意識和能力。

教學重點和難點

1、一次函數、正比例函數的概念及關系。

2、會根據已知信息寫出一次函數的表達式。

33014 主站蜘蛛池模板: 昆山PCB加工_SMT贴片_PCB抄板_线路板焊接加工-昆山腾宸电子科技有限公司 | 等离子表面处理机-等离子表面活化机-真空等离子清洗机-深圳市东信高科自动化设备有限公司 | 通用磨耗试验机-QUV耐候试验机|久宏实业百科 | 光伏支架成型设备-光伏钢边框设备-光伏设备厂家 | 东莞猎头公司_深圳猎头公司_广州猎头公司-广东万诚猎头提供企业中高端人才招聘服务 | 深圳高新投三江工业消防解决方案提供厂家_服务商_园区智慧消防_储能消防解决方案服务商_高新投三江 | 鹤壁创新仪器公司-全自动量热仪,定硫仪,煤炭测硫仪,灰熔点测定仪,快速自动测氢仪,工业分析仪,煤质化验仪器 | 英思科GTD-3000EX(美国英思科气体检测仪MX4MX6)百科-北京嘉华众信科技有限公司 | 恒温振荡混匀器-微孔板振荡器厂家-多管涡旋混匀器厂家-合肥艾本森(www.17world.net) | 上海办公室装修,办公楼装修设计,办公空间设计,企业展厅设计_写艺装饰公司 | 升降机-高空作业车租赁-蜘蛛车-曲臂式伸缩臂剪叉式液压升降平台-脚手架-【普雷斯特公司厂家】 | 植筋胶-粘钢胶-碳纤维布-碳纤维板-环氧砂浆-加固材料生产厂家-上海巧力建筑科技有限公司 | 干式变压器厂_干式变压器厂家_scb11/scb13/scb10/scb14/scb18干式变压器生产厂家-山东科锐变压器有限公司 | 北京网站建设|北京网站开发|北京网站设计|高端做网站公司 | 南京和瑞包装有限公司| 临时厕所租赁_玻璃钢厕所租赁_蹲式|坐式厕所出租-北京慧海通 | 智能门锁电机_智能门锁离合器_智能门锁电机厂家-温州劲力智能科技有限公司 | 呼末二氧化碳|ETCO2模块采样管_气体干燥管_气体过滤器-湖南纳雄医疗器械有限公司 | 截齿|煤截齿|采煤机截齿|掘进机截齿|旋挖截齿-山东卓力截齿厂家报价 | 包头市鑫枫装饰有限公司 | 碳纤维复合材料制品生产定制工厂订制厂家-凯夫拉凯芙拉碳纤维手机壳套-碳纤维雪茄盒外壳套-深圳市润大世纪新材料科技有限公司 | 媒介云-全网整合营销_成都新闻媒体发稿_软文发布平台 | 二手光谱仪维修-德国OBLF光谱仪|进口斯派克光谱仪-热电ARL光谱仪-意大利GNR光谱仪-永晖检测 | 电动葫芦|防爆钢丝绳电动葫芦|手拉葫芦-保定大力起重葫芦有限公司 | 一路商机网-品牌招商加盟优选平台-加盟店排行榜平台 | 杭州画室_十大画室_白墙画室_杭州美术培训_国美附中培训_附中考前培训_升学率高的画室_美术中考集训美术高考集训基地 | CTAB,表面活性剂1631溴型(十六烷基三甲基溴化铵)-上海升纬化工原料有限公司 | 艺术漆十大品牌_艺术涂料加盟代理_蒙太奇艺术涂料厂家品牌|艺术漆|微水泥|硅藻泥|乳胶漆 | 「钾冰晶石」氟铝酸钾_冰晶石_氟铝酸钠「价格用途」-亚铝氟化物厂家 | 衬氟旋塞阀-卡套旋塞阀-中升阀门首页 | 水厂污泥地磅|污泥处理地磅厂家|地磅无人值守称重系统升级改造|地磅自动称重系统维修-河南成辉电子科技有限公司 | 右手官网|右手工业设计|外观设计公司|工业设计公司|产品创新设计|医疗产品结构设计|EMC产品结构设计 | 北京租车公司_汽车/客车/班车/大巴车租赁_商务会议/展会用车/旅游大巴出租_北京桐顺创业租车公司 | 剪刃_纵剪机刀片_分条机刀片-南京雷德机械有限公司 | 聚合氯化铝-碱式氯化铝-聚合硫酸铁-聚氯化铝铁生产厂家多少钱一吨-聚丙烯酰胺价格_河南浩博净水材料有限公司 | 压接机|高精度压接机|手动压接机|昆明可耐特科技有限公司[官网] 胶泥瓷砖胶,轻质粉刷石膏,嵌缝石膏厂家,腻子粉批发,永康家德兴,永康市家德兴建材厂 | PC构件-PC预制构件-构件设计-建筑预制构件-PC构件厂-锦萧新材料科技(浙江)股份有限公司 | 空压机网_《压缩机》杂志| ISO9001认证咨询_iso9001企业认证代理机构_14001|18001|16949|50430认证-艾世欧认证网 | 温室大棚建设|水肥一体化|物联网系统 | 石膏基自流平砂浆厂家-高强石膏基保温隔声自流平-轻质抹灰石膏粉砂浆批发-永康市汇利建设有限公司 |