初二數學教師教案
初二數學教師教案都有哪些?數學,極限運算,我們將數系擴展到實數。最后,為了避免負數不能在實數范圍內進行偶次冪運算,我們將數系擴展到復數。下面是小編為大家帶來的初二數學教師教案七篇,希望大家能夠喜歡!
初二數學教師教案(篇1)
初二上冊數學知識點總結:等腰三角形
一、等腰三角形的性質:
1、等腰三角形兩腰相等.
2、等腰三角形兩底角相等(等邊對等角)。
3、等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
4、等腰三角形是軸對稱圖形,對稱軸是三線合一(1條)。
5、等邊三角形的性質:
①等邊三角形三邊都相等.
②等邊三角形三個內角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).
6.基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形.
②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
③有一個角是60°的等腰三角形是等邊三角形.
初二數學教師教案(篇2)
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的'有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價—成本; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48。6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得
2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業
教科書第16頁,習題6.3.1,第4、5題。
初二數學教師教案(篇3)
教學目標
1、知識與技能
能確定多項式各項的公因式,會用提公因式法把多項式分解因式、
2、過程與方法
使學生經歷探索多項式各項公因式的過程,依據數學化歸思想方法進行因式分解、
3、情感、態度與價值觀
培養學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經驗,體會其應用價值、
重、難點與關鍵
1、重點:掌握用提公因式法把多項式分解因式、
2、難點:正確地確定多項式的公因式、
3、關鍵:提公因式法關鍵是如何找公因式、方法是:一看系數、二看字母、公因式的系數取各項系數的公約數;字母取各項相同的字母,并且各字母的指數取最低次冪、
教學方法
采用“啟發式”教學方法、
教學過程
一、回顧交流,導入新知
【復習交流】
下列從左到右的變形是否是因式分解,為什么?
(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2、
問題:
1、多項式mn+mb中各項含有相同因式嗎?
2、多項式4x2-x和xy2-yz-y呢?
請將上述多項式分別寫成兩個因式的乘積的形式,并說明理由、
【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、
概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法、
二、小組合作,探究方法
【教師提問】多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什么?
【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看系數、二看字母,公因式的系數取各項系數的公約數;字母取各項相同的字母,并且各字母的指數取最低次冪、
三、范例學習,應用所學
【例1】把-4x2yz-12xy2z+4xyz分解因式、
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
【例2】分解因式,3a2(x-y)3-4b2(y-x)2
【思路點撥】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法、
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2?3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2?3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
【例3】用簡便的方法計算:0、84×12+12×0、6-0、44×12、
【教師活動】引導學生觀察并分析怎樣計算更為簡便、
解:0、84×12+12×0、6-0、44×12
=12×(0、84+0、6-0、44)
=12×1=12、
【教師活動】在學生完全例3之后,指出例3是因式分解在計算中的應用,提出比較例1,例2,例3的公因式有什么不同?
四、隨堂練習,鞏固深化
課本P167練習第1、2、3題、
【探研時空】
利用提公因式法計算:
0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69
五、課堂總結,發展潛能
1、利用提公因式法因式分解,關鍵是找準公因式、在找公因式時應注意:(1)系數要找公約數;(2)字母要找各項都有的;(3)指數要找最低次冪、
2、因式分解應注意分解徹底,也就是說,分解到不能再分解為止、
六、布置作業,專題突破
課本P170習題15、4第1、4(1)、6題、
板書設計
初二數學教師教案(篇4)
知識與技能
1.了解分式的基本性質,掌握分式的約分和通分法則。掌握分式的四則運算。
2.會用待定系數法求反比例函數的解析式,能利用函數性質分析和解決一些簡單的實際問題。
3.體驗勾股定理的探索過程,會運用勾股定理解決簡單問題。會運用勾股定理的逆定理判定直角三角形。
4.探索并掌握平行四邊形、矩形、菱形、正方形、等腰梯形的有關性質和常用判定方法,并運用這些知識進行有關的證明和計算。
5.進一步理解平均數、中位數和眾數等統計量的統計意義,會計算極差和方差,理解它們的統計意義,會用它們表示數據的波動情況。
過程與方法
進一步培養學生的合情推理能力和發展學生邏輯思維能力和推理論證的表達能力;解決一些實際問題,體會化歸思想和函數的變化與對應的思想;養成用數據說話的習慣和實事求是的科學態度;培養學生的探究能力、數學歸納能力,在活動中培養學生的合作交流能力;逐步形成獨立思考,主動探索的習慣。
情感、態度與價值觀
豐富學生從事數學活動的經驗和體驗,通過對問題的共同探討,培養學生的協作精神,通過對知識方法的總結,培養反思的習慣,和理性思維。培養學生面對教學活動中的困難,能通過合作交流解決遇到的困難。
初二數學教師教案(篇5)
新課指南
1.知識與技能:(1)在具體情境中了解代數式及代數式的值的含義;(2)掌握整式、同類項及合并同類項法則和去括號法則;(3)培養學生用字母表示數和探索數學規律的能力.
2.過程與方法:經歷探索規律并用代數式表示規律的過程,學會列簡單的代數式.在具體情境中體會同類項的意義及合并同類項、去括號法則的必要性,總結合并同類項及去括號的法則,并利用它們進行整式的加減運算和解決簡單的實際問題.
3.情感態度與價值觀:通過對整式加減的學習,深入體會代數式在實際生活中的應用,它為后面學習方程(組)、不等式及函數等知識打下良好的基礎,同時,也使我們體會到數學知識的產生來源于實際生產和生活的需求,反之,它又服務于實際生活的方方面面.
4.重點與難點:重點是用含有字母的式子表式規律,理解整式的意義,合并同類項的法則和去括號的法則.難點是探索規律的過程及用代數式表示規律的方法,以及準確識別整式的項、系數等知識.
教材解讀精華要義
數學與生活
如圖15-1所示,用同樣規格的黑、白兩色的正方形瓷磚鋪長方形地面,在第n個圖形中,每一行有塊瓷磚,每一列有塊瓷磚,共有塊瓷磚,其中黑色瓷磚共塊,白色瓷磚共塊.
思考討論由圖15-1可以看到,當n=1時,一橫行有4塊瓷磚,一豎列有3塊瓷磚;當n=2時,一橫行有5塊瓷磚,一豎列有4塊瓷磚;當n=3時,一橫行有6塊瓷磚,一豎列有5塊瓷磚.綜上可以發現:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一橫行的瓷磚數等于n加上3,一豎列的瓷磚數等于n加上2.所以,在第n個圖形中,每一橫行共有(n+3)塊瓷磚,每一豎列共有(n+2)塊瓷磚,共有(n+3)(n+2)塊瓷磚,其中白色瓷磚共(n+3-2)(n+2-2)=n(n+1)塊,黑色瓷磚共有[(n+3)(n+2)-n(n+1)]塊.這就是用字母來表示數,即代數式,你還能舉出這樣用字母表示數的例子嗎?
知識詳解
知識點1代數式
用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數和表示數.的字母連接起來的式子叫做代數式.單獨的一個數或一個字母也是代數式.
例如:5,a,(a+b),ab,a2-2ab+b2等等.
知識點2列代數式時應該注意的問題
(1)數與字母、字母與字母相乘時常省略“×”號或用“·”.
如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.
(2)數字通常寫在字母前面.
如:mn×(-5)=-5mn,3×(a+b)=3(a+b).
(3)帶分數與字母相乘時要化成假分數.
如:2×ab=ab,切勿錯誤寫成“2ab”.
(4)除法常寫成分數的形式.
如:S÷x=.
初二數學教師教案(篇6)
教材分析
1.本小節內容安排在第十四章“軸對稱”的第三節。等腰三角形是一種特殊的三角形,它是軸對稱圖形,可以借助軸對稱變換來研究等腰三角形的一些特殊性質。這一節的主要內容是等腰三角形的性質與判定,以及等邊三角形的相關知識,重點是等腰三角形的性質與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據,這也是全章的重點之一。
2.本節重在呈現一個動手操作得出概念、觀察實驗得出性質、推理證明論證性質的過程,學生通過學習,既體會到一個觀察、實驗、猜想、論證的研究幾何圖形問題的全過程,又能夠運用等腰三角形的性質解決有關的問題,提高運用知識和技能解決問題的能力。
學情分析
1.學生在此之前已接觸過等腰三角形,具有運用全等三角形的判定及軸對稱的知識和技能 ,本節教學要突出“自主探究”的特點,即教師引導學生通過觀察、實驗、猜想、論證,得出等腰三角形的性質,讓學生做學習的主人,享受探求新知、獲得新知的樂趣。
2.在與等腰三角形有關的一些命題的證明過程中,會遇到一些添加輔助線的問題,這會給學生的學習帶來困難。另外,以前學生證明問題是習慣于找全等三角形,形成了依賴全等三角形的思維定勢,對于可直接利用等腰三角形性質的問題,沒有注意選擇簡便方法。
教學目標
知識技能:1、理解掌握等腰三角形的性質。
2、運用等腰三角形的性質進行證明和計算。
數學思考:1、觀察等腰三角形的對稱性,發展形象思維。
2、通過時間、觀察、證明等腰三角形性質,發展學生合情推理能力和演繹推理能力。
情感態度:引導學生對圖形的觀察、發現,激發學生的好奇心和求知欲,并在運用數學知識解決問題的活動中獲取成功的體驗,建立學習的自信心。
教學重點和難點
重點:等腰三角形的性質及應用。
難點:等腰三角形的性質證明。
初二數學教師教案(篇7)
回顧與思考
一、學生起點分析
學生的知識技能基礎:經過本章的學習,學生已掌握了一定的數據處理的方法,會用筆或計算器求一組數據的平均數、中位數和眾數,能利用它們解決一些實際問題,并能初步選擇恰當的數據代表對數據作出自己的評判。
學生活動經驗基礎:學生在本章的學習活動中,解決了一些相關的實際問題,獲得了從事統計活動所必須的數學方法,形成了動手實踐、自主探索、合作交流的學習方式,積累了一些數學探究活動的經驗。
二、學習任務分析
本節課的學習任務是:整理歸納本章所學的知識,形成知識網絡結構;會用計算器準確地求出一組數據的平均數、中位數和眾數,能選擇恰當的數據代表對數據作出評判;培養綜合運用統計知識解決實際問題的能力,達成有關的情感態度目標。為此,本節課的教學目標是:
1.知識與技能:會用計算器準確地求出一組數據的平均數、中位數和眾數。了解平均數、中位數和眾數的差別,能選擇恰當的數據代表對數據作出評判,并解決實際問題。
2.過程與方法:初步經歷調查、統計、分析、研討等活動過程,在活動發展學生綜合運用統計知識解決實際問題的能力。
3.情感與態度:通過本章內容的回顧與思考,培養學生整理歸納知識的方法,逐步養成勤于思考、善于總結的好習慣。
三、教學過程設計
本節課設計了五個教學環節:第一環節:歸納知識結構;第二環節:回顧重點內容;第三環節:綜合運用提高;第四環節:課堂小結;第五環節:布置作業。
第一環節:歸納知識結構
內容:本章內容已全部學完,請大家回憶一下,這一章學了哪些內容?這些內容之間有什么聯系呢?
留出時間讓學生思考、交流、梳理知識,然后師生共同歸納總結出如下知識網絡結構圖:
目的:引導學生將所學的知識整理歸納,總結出網絡結構圖,形成知識系統。幫助學生掌握正確的學習方法,養成良好的學習習慣。
注意事項:以上知識的歸納總結要以學生為主體來完成,教師不要包辦代替。
第二環節:回顧重點內容[
內容:引導學生根據網絡結構圖,把重點知識內容再回顧一下:
1.平均數、中位數、眾數的概念及舉例
一般地,對于n個數x1,x2,…,xn,我們把(x1+x2+…+xn),叫做這n個數的算術平均數,簡稱平均數。新$課$標$第$一$網
一般地,n個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩
個數據的平均數)叫做這組數據的中位數。
一組數據中出現次數最多的那個數據叫做這組數據的眾數。
2.平均數、中位數、眾數的特征
(1)平均數、中位數、眾數都是表示一組數據“平均水平”的特征數。
(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。
(3)中位數的計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。當一組數據中個別數據變動較大時,可選擇中位數來表示這組數據的“集中趨勢”。
(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便。當一組數據中某些數據多次重復出現時,眾數是我們關心的一種統計量。
3.算術平均數和加權平均數的聯系與區別及舉例
算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。
4.加權平均數中權的差異對平均數的影響及舉例
在實際問題中,一組數據里的各個數據的權未必相同,權的差異對平均數的影響較大。加權平均數中,由于權的不同,會導致結果的差異。
5.利用計算器求一組數據的平均數
目的:幫助學生進一步掌握本章的重點知識內容,并會結合實例說明,從而夯實“雙基”。
注意事項:在重點知識的回顧中,應注重理論聯系實際,重視學生的舉例,關注學生所舉例子的合理性、科學性和創造性等,并據此評價學生對知識的理解水平和學習的情感態度,使他們具有:一雙能用數學視角觀察世界的眼睛;一個能用數學思維思考世界的頭腦。
第三環節:綜合運用提高
內容:1.從一批零件毛坯中抽取10件,稱得它們的質量如下(單位:克):
400.0400.3401.2398.9399.8
399.8400.0400.5399.7399.8
利用計算器求出這10個零件的平均質量。
2.某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?
3.某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售量,統計了這15人某月的銷售量如下:
每人銷售件數1800510250210150w120
人數113532[
(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;
(2)假設銷售部負責人把每位營銷員的月銷售量定為320件,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售量,并說明理由。
4.下圖反映了甲、乙兩班學生的體育成績。
(1)不用計算,根據條形統計圖,你能判斷哪個班級學生的體育成績好一些嗎?
(2)你能從圖中觀察出各班學生體育成績等級的“眾數”嗎?
(3)如果依次將不及格、及格、中、良好、優秀記為55分、65分、75分、85分、95分,分別估計一下,甲、乙兩班學生體育成績的平均值大致是多少?算一算看你的估計結果怎么樣?
(4)甲班學生體育成績的平均數、中位數和眾數有什么關系?你能說說其中的道理嗎?你還能寫出幾組數據也適合這一規律嗎?
目的:以上四道題目呈階梯狀,由淺入深,由單一到綜合。第1、2題分別考查學生對算術平均數、加權平均數和計算器的掌握情況;第3題通過表格信息,讓學生計算平均數、中位數和眾數,體會這三者在具體情境中的意義和區別,并能根據數據信息作出評判和決策;第4題綜合了課本復習題的最后兩題,旨在鞏固學生對統計圖信息的識別和判斷能力,運用數據的代表—平均數和眾數說明實際問題,初步體會平均數、中位數和眾數三者的“對稱”關系,提高學生的估計能力和綜合運用知識解決實際問題的能力,培養創新意識。
注意事項:依據題目的層次,第1、2題和第3題的(1)問可讓學生先獨立筆答完成后,教師再講評;第3題的(2)問和第4題具有開放性,特別是第4題內涵豐富,要讓學生展開思維,充分討論,在合作交流中共同提高,教師對此要作出及時的評價。
對本章知識技能的評價,應當更多地關注數據的代表在不同的實際問題情境中的意義和應用,而不要過于關注其具體運算的熟練程度。
第四環節:課堂小結
內容:1.本章知識結構和重點內容。
2.綜合運用統計知識解決實際問題。
3.整理歸納知識的方法,勤于思考、善于總結的好習慣。
目的:圍繞本節課的教學目標,進行知識、方法、能力、習慣全方位的小結,目的是為了學生的全面發展。
注意事項:課堂小結可由教師提綱挈領、畫龍點睛式地完成。
第五環節:布置作業
1.課本本章復習題。
2.在數學成長本上進行本章的小結與反思。
四、教學反思
1.華羅庚教授說:讀書要從薄到厚,又從厚到薄。復習重在從厚到薄。每一章的復習要把全章的知識分成塊,整理成知識網絡,形成知識系統,并加以綜合運用,其中采用樹圖、表格、習題組等技術措施復習是有效的,本節課在這方面做了一些嘗試。
2.一般復習課的容量比較大,一方面要讓充分學生思考和交流,積極發揮其主體作用;另一方面教師作為組織者和引導者,要主次分明,把握好教學的節奏,提高課堂效率。
3.復習課不僅僅是知識的小結及運用,而且更重要的是學習方法、能力和習慣的培養,關注學生的可持續發展,這一點對于學生的終身學習是有益的。