小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數(shù)學教案 >

八年級數(shù)學課程教案

時間: 沐欽 數(shù)學教案

八年級數(shù)學課程教案都有哪些?數(shù)學中期望的嚴格程度隨著時間的推移而變化:希臘人期望仔細的論證,但在牛頓時代使用的方法不那么嚴格。下面是小編為大家?guī)淼陌四昙墧?shù)學課程教案七篇,希望大家能夠喜歡!

八年級數(shù)學課程教案

八年級數(shù)學課程教案精選篇1

一、教學目的

【知識與技能】

了解數(shù)軸的概念,能用數(shù)軸上的點準確地表示有理數(shù)。

【過程與方法】

通過觀察與實際操作,理解有理數(shù)與數(shù)軸上的點的對應關系,體會數(shù)形結合的思想。

【情感、態(tài)度與價值觀】

在數(shù)與形結合的過程中,體會數(shù)學學習的樂趣。

二、教學重難點

【教學重點】

數(shù)軸的三要素,用數(shù)軸上的點表示有理數(shù)。

【教學難點】

數(shù)形結合的思想方法。

三、教學過程

(一)引入新課

提出問題:通過實例溫度計上數(shù)字的意義,引出數(shù)學中也有像溫度計一樣可以用來表示數(shù)的軸,它就是我們今天學習的數(shù)軸。

(二)探索新知

學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:

提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數(shù)和負數(shù)可以表示具有相反意義的量,那么,如何用數(shù)表示這些樹、電線桿與汽車站牌的相對位置呢?

學生活動:畫圖表示后提問。

提問2:“0”代表什么?數(shù)的符號的實際意義是什么?對照體溫計進行解答。

教師給出定義:在數(shù)學中,可以用一條直線上的點表示數(shù),這條直線叫做數(shù)軸,它滿足:任取一個點表示數(shù)0,代表原點;通常規(guī)定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

提問3:你是如何理解數(shù)軸三要素的?

師生共同總結:“原點”是數(shù)軸的“基準”,表示0,是表示正數(shù)和負數(shù)的分界點,正方向是人為規(guī)定的,要依據(jù)實際問題選取合適的單位長度。

(三)課堂練習

如圖,寫出數(shù)軸上點A,B,C,D,E表示的數(shù)。

(四)小結作業(yè)

提問:今天有什么收獲?

引導學生回顧:數(shù)軸的三要素,用數(shù)軸表示數(shù)。

課后作業(yè):

課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?

八年級數(shù)學課程教案精選篇2

一、內(nèi)容特點

在知識與方法上類似于數(shù)系的第一次擴張。也是后繼內(nèi)容學習的基礎。

內(nèi)容定位:了解無理數(shù)、實數(shù)概念,了解(算術)平方根的概念;會用根號表示數(shù)的(算術)平方根,會求平方根、立方根,用有理數(shù)估計一個無理數(shù)的大致范圍,實數(shù)簡單的四則運算(不要求分母有理化)。

二、設計思路

整體設計思路:

無理數(shù)的引入----無理數(shù)的表示----實數(shù)及其相關概念(包括實數(shù)運算),實數(shù)的應用貫穿于內(nèi)容的始終。

學習對象----實數(shù)概念及其運算;學習過程----通過拼圖活動引進無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進而建立實數(shù)概念;以類比,歸納探索的方式,尋求實數(shù)的運算法則;學習方式----操作、猜測、抽象、驗證、類比、推理等。

具體過程:

首先通過拼圖活動和計算器探索活動,給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。最后教科書總結實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關概念、運算律和運算性質(zhì)等。

第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動,讓學生感受無理數(shù)產(chǎn)生的實際背景和引入的必要性;借助計算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會無限逼近的思想;會判斷一個數(shù)是有理數(shù)還是無理數(shù)。

第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術平方根、平方根、立方根等概念和開方運算。

第四節(jié):公園有多寬:在實際生活和生產(chǎn)實際中,對于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過估算比較大小,檢驗計算結果的合理性等,其目的是發(fā)展學生的數(shù)感。

第五節(jié):用計算器開方:會用計算器求平方根和立方根。經(jīng)歷運用計算器探求數(shù)學規(guī)律的活動,發(fā)展合情推理的能力。

第六節(jié):實數(shù)。總結實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關概念、運算律和運算性質(zhì)等。

三、一些建議

1.注重概念的形成過程,讓學生在概念的形成的過程中,逐步理解所學的概念;關注學生對無理數(shù)和實數(shù)概念的意義理解。

2.鼓勵學生進行探索和交流,重視學生的分析、概括、交流等能力的考察。

3.注意運用類比的方法,使學生清楚新舊知識的區(qū)別和聯(lián)系。

4.淡化二次根式的概念。

八年級數(shù)學課程教案精選篇3

學習目標:

1.理解平行線的意義兩條直線的兩種位置關系;

2.理解并掌握平行公理及其推論的內(nèi)容;

3.會根據(jù)幾何語句畫圖,會用直尺和三角板畫平行線;

學習重點:

探索和掌握平行公理及其推論.

學習難點:

對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)

一、學習過程:預習提問

兩條直線相交有幾個交點?

平面內(nèi)兩條直線的位置關系除相交外,還有哪些呢?

(一)畫平行線

1、 工具:直尺、三角板

2、 方法:一"落";二"靠";三"移";四"畫"。

3、請你根據(jù)此方法練習畫平行線:

已知:直線a,點B,點C.

(1)過點B畫直線a的平行線,能畫幾條?

(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

(二)平行公理及推論

1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

②過點C畫直線a的平行線,能畫 條;

③你畫的直線有什么位置關系? 。

②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

二、自我檢測:

(一)選擇題:

1、下列推理正確的是 ( )

A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數(shù)為( )

A.0個 B.1個 C.2個 D.3個

(二)填空題:

1、在同一平面內(nèi),與已知直線L平行的直線有 條,而經(jīng)過L外一點,與已知直線L平行的直線有且只有 條。

2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應的位置關系:

(1)L1與L2 沒有公共點,則 L1與L2 ;

(2)L1與L2有且只有一個公共點,則L1與L2 ;

(3)L1與L2有兩個公共點,則L1與L2 。

3、在同一平面內(nèi),一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

4、平面內(nèi)有a 、b、c三條直線,則它們的交點個數(shù)可能是 個。

三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°。

八年級數(shù)學課程教案精選篇4

一、教學目標

1.了解分式、有理式的概念。

2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件。

二、重點、難點

1.重點:理解分式有意義的條件,分式的值為零的條件。

2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件。

3。認知難點與突破方法

難點是能熟練地求出分式有意義的條件,分式的值為零的條件。突破難點的方法是利用分式與分數(shù)有許多類似之處,從分數(shù)入手,研究出分式的有關概念,同時還要講清分式與分數(shù)的聯(lián)系與區(qū)別。

三、例、習題的意圖分析

本章從實際問題引出分式方程=,給出分式的描述性的定義:像這樣分母中含有字母的式子屬于分式。不要在列方程時耽誤時間,列方程在這節(jié)課里不是重點,也不要求解這個方程。

1.本節(jié)進一步提出P4[思考]讓學生自己依次填出:。為下面的[觀察]提供具體的式子,就以上的式子,有什么共同點?它們與分數(shù)有什么相同點和不同點?

可以發(fā)現(xiàn),這些式子都像分數(shù)一樣都是(即A÷B)的形式。分數(shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母。

P5[歸納]順理成章地給出了分式的定義。分式與分數(shù)有許多類似之處,研究分式往往要類比分數(shù)的有關概念,所以要引導學生了解分式與分數(shù)的聯(lián)系與區(qū)別。

希望老師注意:分式比分數(shù)更具有一般性,例如分式可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數(shù)。

2.P5[思考]引發(fā)學生思考分式的分母應滿足什么條件,分式才有意義?由分數(shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零。注意只有滿足了分式的分母不能為零這個條件,分式才有意義。即當B≠0時,分式才有意義。

3.P5例1填空是應用分式有意義的條件—分母不為零,解出字母x的值。還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學生比較全面地理解分式及有關的概念,也為今后求函數(shù)的自變量的取值范圍,打下良好的基礎。

4.P12[拓廣探索]中第13題提到了“在什么條件下,分式的值為0?”,下面補充的例2為了學生更全面地體驗分式的值為0時,必須同時滿足兩個條件:1分母不能為零;2分子為零。這兩個條件得到的解集的公共部分才是這一類題目的解。

四、課堂引入

1.讓學生填寫P4[思考],學生自己依次填出:

2.學生看P3的問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

請同學們跟著教師一起設未知數(shù),列方程。

設江水的流速為x千米/時。

八年級數(shù)學課程教案精選篇5

教學目標

1、使學生初步掌握一元一次方程解簡單應用題的方法和步驟;并會列出一元一次方程解簡單的應用題;

2、培養(yǎng)學生觀察能力,提高他們分析問題和解決問題的能力;

3、使學生初步養(yǎng)成正確思考問題的良好習慣、

教學重點和難點

一元一次方程解簡單的應用題的方法和步驟、

課堂教學過程設計

一、從學生原有的認知結構提出問題

在小學算術中,我們學習了用算術方法解決實際問題的有關知識,那么,一個實際問題能否應用一元一次方程來解決呢?若能解決,怎樣解?用一元一次方程解應用題與用算術方法解應用題相比較,它有什么優(yōu)越性呢?

為了回答上述這幾個問題,我們來看下面這個例題、

例1 某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù)、

(首先,用算術方法解,由學生回答,教師板書)

解法1:(4+2)÷(3-1)=3、

答:某數(shù)為3、

(其次,用代數(shù)方法來解,教師引導,學生口述完成)

解法2:設某數(shù)為x,則有3x-2=x+4、

解之,得x=3、

答:某數(shù)為3、

縱觀例1的這兩種解法,很明顯,算術方法不易思考,而應用設未知數(shù),列出方程并通過解方程求得應用題的解的方法,有一種化難為易之感,這就是我們學習運用一元一次方程解應用題的目的之一、

我們知道方程是一個含有未知數(shù)的等式,而等式表示了一個相等關系、因此對于任何一個應用題中提供的條件,應首先從中找出一個相等關系,然后再將這個相等關系表示成方程、

本節(jié)課,我們就通過實例來說明怎樣尋找一個相等的關系和把這個相等關系轉化為方程的方法和步驟、

二、師生共同分析、研究一元一次方程解簡單應用題的方法和步驟

例2 某面粉倉庫存放的面粉運出 15%后,還剩余42 500千克,這個倉庫原來有多少面粉?

師生共同分析:

1、本題中給出的已知量和未知量各是什么?

2、已知量與未知量之間存在著怎樣的相等關系?(原來重量-運出重量=剩余重量)

3、若設原來面粉有x千克,則運出面粉可表示為多少千克?利用上述相等關系,如何布列方程?

上述分析過程可列表如下:

解:設原來有x千克面粉,那么運出了15%x千克,由題意,得

x-15%x=42 500,

所以 x=50 000、

答:原來有 50 000千克面粉、

此時,讓學生討論:本題的相等關系除了上述表達形式以外,是否還有其他表達形式?若有,是什么?

(還有,原來重量=運出重量+剩余重量;原來重量-剩余重量=運出重量)

教師應指出:

(1)這兩種相等關系的表達形式與“原來重量-運出重量=剩余重量”,雖形式上不同,但實質(zhì)是一樣的,可以任意選擇其中的一個相等關系來列方程;

(2)例2的解方程過程較為簡捷,同學應注意模仿、

依據(jù)例2的分析與解答過程,首先請同學們思考列一元一次方程解應用題的方法和步驟;然后,采取提問的方式,進行反饋;最后,根據(jù)學生總結的情況,教師總結如下:

(1)仔細審題,透徹理解題意、即弄清已知量、未知量及其相互關系,并用字母(如x)表示題中的一個合理未知數(shù);

(2)根據(jù)題意找出能夠表示應用題全部含義的一個相等關系、(這是關鍵一步);

(3)根據(jù)相等關系,正確列出方程、即所列的方程應滿足兩邊的量要相等;方程兩邊的代數(shù)式的單位要相同;題中條件應充分利用,不能漏也不能將一個條件重復利用等;

(4)求出所列方程的解;

(5)檢驗后明確地、完整地寫出答案、這里要求的檢驗應是,檢驗所求出的解既能使方程成立,又能使應用題有意義、

例3 (投影)初一2班第一小組同學去蘋果園參加勞動,休息時工人師傅摘蘋果分給同學,若每人3個還剩余9個;若每人5個還有一個人分4個,試問第一小組有多少學生,共摘了多少個蘋果?

(仿照例2的分析方法分析本題,如學生在某處感到困難,教師應做適當點撥、解答過程請一名學生板演,教師巡視,及時糾正學生在書寫本題時可能出現(xiàn)的各種錯誤、并嚴格規(guī)范書寫格式)

解:設第一小組有x個學生,依題意,得

3x+9=5x-(5-4),

解這個方程: 2x=10,

所以 x=5、

其蘋果數(shù)為 3× 5+9=24、

答:第一小組有5名同學,共摘蘋果24個、

學生板演后,引導學生探討此題是否可有其他解法,并列出方程、

(設第一小組共摘了x個蘋果,則依題意,得 )

三、課堂練習

1、買4本練習本與3支鉛筆一共用了1、24元,已知鉛筆每支0、12元,問練習本每本多少元?

2、我國城鄉(xiāng)居民 1988年末的儲蓄存款達到 3 802億元,比 1978年末的儲蓄存款的 18倍還多4億元、求1978年末的儲蓄存款、

3、某工廠女工人占全廠總人數(shù)的 35%,男工比女工多 252人,求全廠總人數(shù)、

四、師生共同小結

首先,讓學生回答如下問題:

1、本節(jié)課學習了哪些內(nèi)容?

2、列一元一次方程解應用題的方法和步驟是什么?

3、在運用上述方法和步驟時應注意什么?

依據(jù)學生的回答情況,教師總結如下:

(1)代數(shù)方法的基本步驟是:全面掌握題意;恰當選擇變數(shù);找出相等關系;布列方程求解;檢驗書寫答案、其中第三步是關鍵;

(2)以上步驟同學應在理解的基礎上記憶、

五、作業(yè)

1、買3千克蘋果,付出10元,找回3角4分、問每千克蘋果多少錢?

2、用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?

3、某廠去年10月份生產(chǎn)電視機2 050臺,這比前年10月產(chǎn)量的 2倍還多 150臺、這家工廠前年10月生產(chǎn)電視機多少臺?

4、大箱子裝有洗衣粉36千克,把大箱子里的洗衣粉分裝在4個同樣大小的小箱里,裝滿后還剩余2千克洗衣粉、求每個小箱子里裝有洗衣粉多少千克?

5、把1400獎金分給22名得獎者,一等獎每人200元,二等獎每人50元、求得到一等獎與二等獎的人數(shù)

八年級數(shù)學課程教案精選篇6

課型:

復習課

學習目標(學習重點):

1. 針對函數(shù)及其圖象一章,查漏補缺,答疑解惑;

2. 一次函數(shù)應用的復習.

補充例題:

例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關系

(1)B出發(fā)時與A相距 千米;

(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時;

(3)B出發(fā)后 小時與A相遇;

(4)求出A行走的路程S與時間t的函數(shù)關系式;

(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進, 小時與A相遇,相遇點離B的出發(fā)點 千米,在圖中表示出這個相遇點C.

例2.在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸, y的垂線,與坐標軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.

(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;

(2)若和諧點P(a,3)在直線y=-x+b(b為常數(shù))上,求點a, b的值.

例3.在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間 (秒)之間的函數(shù)圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.

(1)求s與t之間的函數(shù)關系式.

(2)與圖③相對應的P點的運動路徑是: ;P點出發(fā) 秒首次到達點B;

(3)寫出當38時,y與s之間的函數(shù)關系式,并在圖③中補全函數(shù)圖象.

課后續(xù)助:

1.某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水3000噸,計劃內(nèi)用水每噸收費0.5元,超計劃部分每噸按0.8元收費.

(1)寫出該單位水費y(元)與每月用水量x(噸)之間的函數(shù)關系式

①用水量小于等于3000噸 ;②用水量大于3000噸 .

(2)某月該單位用水3200噸,水費是 元;若用水2800噸,水費 元.

(3)若某月該單位繳納水費1540元,則該單位用水多少噸?

2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關系如圖所示.

(1)有月租費的收費方式是 (填①或②),月租費是 元;

(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關系式;

(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.

3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結束全過程, 開始時風暴平均每小時增加2千米/時,4小時后,沙塵暴經(jīng)過開闊荒漠地,風速變?yōu)槠骄啃r增加4千米/時,一段時間,風暴保持不變,當沙塵暴遇到綠色植被區(qū)時,其風速平均每小時減小1千米/時,最終停止。 結合風速與時間的圖像,回答下列問題:

(1)在y軸( )內(nèi)填入相應的數(shù)值;

(2)沙塵暴從發(fā)生到結束,共經(jīng)過多少小時?

(3)求出當x25時,風速y(千米/時)與時間x(小時)之間的函數(shù)關系式.

(4)若風速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續(xù)多長時間?

八年級數(shù)學課程教案精選篇7

一、教學目標

1. 掌握等腰梯形的判定方法.

2. 能夠運用等腰梯形的性質(zhì)和判定進行有關問題的論證和計算,進一步培養(yǎng)學生的分析能力和計算能力.

3. 通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想

二、教法設計

小組討論,引導發(fā)現(xiàn)、練習鞏固

三、重點、難點

1.教學重點:等腰梯形判定.

2.教學難點:解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線).

四、課時安排

1課時

五、教具學具準備

多媒體,小黑板,常用畫圖工具

六、師生互動活動設計

教師復習引入,學生閱讀課本;學生在教師引導下探索等腰梯形的判定,歸納小結梯形轉化的常見的輔助線

七、教學步驟

【復習提問】

1.什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?

2.等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?

3.在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?

我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.

【引人新課】

等腰梯形判定定理:在同一底上的兩個角相等的梯形是等腰梯形.

前面我們用等腰三角形的定理證明了等腰梯形的性質(zhì)定理,現(xiàn)在我們也可以用等腰三角形的判定定理來證明等腰梯形的判定定理.

例1已知:如圖,在梯形 中, , ,求證: .

分析:我們學過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉化為等腰三角形的兩個底角,定理就容易證明了.

(引導學生口述證明方法,然后利用投影儀出示三種證明方法)

(1)如圖,過點 作 、 ,交 于 ,得 ,所以得 .

又由 得 ,因此可得 .

(2)作高 、 ,通過證 推出 .

(3)分別延長 、 交于點 ,則 與 都是等腰三角形,所以可得 .

(證明過程略).

例3 求證:對角線相等的梯形是等腰梯形.

已知:如圖,在梯形 中, , .

求證: .

分析:證明本題的關鍵是如何利用對角線相等的條件來構造等腰三角形.

在 和 中,已有兩邊對應相等,別人要能證 ,就可通過證 得到 .

(引導學生說出證明思路,教師板書證明過程)

證明:過點 作 ,交 延長線于 ,得 ,

∴ .

∵ , ∴

∵ , ∴

又∵ 、 ,∴

∴ .

說明:如果 、 交于點 ,那么由 可得 , ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結論雖不能直接引用,但可以為以后解題提供思路.

例4 畫一等腰梯形,使它上、下底長分別5cm,高為4cm,并計算這個等腰梯形的周長和面積.

分析:如圖,先算出 長,可畫等腰三角形 ,然后完成 的畫圖.

畫法:①畫 ,使 .

.

②延長 到 使 .

③分別過 、 作 , , 、 交于點 .

四邊形 就是所求的等腰梯形.

解:梯形 周長 .

答:梯形周長為26cm,面積為 .

【總結、擴展】

小結:(由學生總結)

(l)等腰梯形的判定方法:①先判定它是梯形②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.

(2)梯形的畫圖:一般先畫出有關的三角形,在此基礎上再畫出有關的平行四邊形,最后得到所求圖形.(三角形奠基法)

八、布置作業(yè)

l.已知:如圖,梯形 中, , 、 分別為 、 中點,且 ,求證:梯形 為等腰梯形.

九、板書設計

十、隨堂練習

32987 主站蜘蛛池模板: 量子管通环-自清洗过滤器-全自动反冲洗过滤器-北京罗伦过滤技术集团有限公司 | 防火卷帘门价格-聊城一维工贸特级防火卷帘门厂家▲ | 成都治疗尖锐湿疣比较好的医院-成都治疗尖锐湿疣那家医院好-成都西南皮肤病医院 | 郑州墨香品牌设计公司|品牌全案VI设计公司 | 开锐教育-学历提升-职称评定-职业资格培训-积分入户 | 隔爆型防爆端子分线箱_防爆空气开关箱|依客思 | 山东彩钢板房,山东彩钢活动房,临沂彩钢房-临沂市贵通钢结构工程有限公司 | 双齿辊破碎机-大型狼牙破碎机视频-对辊破碎机价格/型号图片-金联机械设备生产厂家 | 北京亦庄厂房出租_经开区产业园招商信息平台 | Eiafans.com_环评爱好者 环评网|环评论坛|环评报告公示网|竣工环保验收公示网|环保验收报告公示网|环保自主验收公示|环评公示网|环保公示网|注册环评工程师|环境影响评价|环评师|规划环评|环评报告|环评考试网|环评论坛 - Powered by Discuz! | 德州万泰装饰 - 万泰装饰装修设计软装家居馆 | 青岛侦探_青岛侦探事务所_青岛劝退小三_青岛调查出轨取证公司_青岛婚外情取证-青岛探真调查事务所 | 东莞韩创-专业绝缘骨架|马达塑胶零件|塑胶电机配件|塑封电机骨架厂家 | 全温恒温摇床-水浴气浴恒温摇床-光照恒温培养摇床-常州金坛精达仪器制造有限公司 | 学校用栓剂模,玻璃瓶轧盖钳,小型安瓿熔封机,实验室安瓿熔封机-长沙中亚制药设备有限公司 | 环压强度试验机-拉链拉力试验机-上海倾技仪器仪表科技有限公司 | 铁艺,仿竹,竹节,护栏,围栏,篱笆,栅栏,栏杆,护栏网,网围栏,厂家 - 河北稳重金属丝网制品有限公司 山东太阳能路灯厂家-庭院灯生产厂家-济南晟启灯饰有限公司 | 河南中专学校|职高|技校招生-河南中职中专网| 广州食堂承包_广州团餐配送_广州堂食餐饮服务公司 - 旺记餐饮 | 超细|超微气流粉碎机|气流磨|气流分级机|粉体改性机|磨粉机|粉碎设备-山东埃尔派粉体科技 | 数控专用机床,专用机床,自动线,组合机床,动力头,自动化加工生产线,江苏海鑫机床有限公司 | 单锥双螺旋混合机_双螺旋锥形混合机-无锡新洋设备科技有限公司 | 生态板-实木生态板-生态板厂家-源木原作生态板品牌-深圳市方舟木业有限公司 | 油漆辅料厂家_阴阳脚线_艺术漆厂家_内外墙涂料施工_乳胶漆专用防霉腻子粉_轻质粉刷石膏-魔法涂涂 | 电气控制系统集成商-PLC控制柜变频控制柜-非标自动化定制-电气控制柜成套-NIDEC CT变频器-威肯自动化控制 | 新中天检测有限公司青岛分公司-山东|菏泽|济南|潍坊|泰安防雷检测验收 | 沈阳激光机-沈阳喷码机-沈阳光纤激光打标机-沈阳co2激光打标机 | 不锈钢水管-不锈钢燃气管-卫生级不锈钢管件-不锈钢食品级水管-广东双兴新材料集团有限公司 | 骁龙云呼电销防封号系统-axb电销平台-外呼稳定『免费试用』 | 混合生育酚_醋酸生育酚粉_琥珀酸生育酚-山东新元素生物科技 | 广东泵阀展|阀门展-广东国际泵管阀展览会| 金联宇电缆|广东金联宇电缆厂家_广东金联宇电缆实业有限公司 | 干粉砂浆设备_干混砂浆生产线_腻子粉加工设备_石膏抹灰砂浆生产成套设备厂家_干粉混合设备_砂子烘干机--郑州铭将机械设备有限公司 | 无菌检查集菌仪,微生物限度仪器-苏州长留仪器百科 | 桁架机器人_桁架机械手_上下料机械手_数控车床机械手-苏州清智科技装备制造有限公司 | 杭州画室_十大画室_白墙画室_杭州美术培训_国美附中培训_附中考前培训_升学率高的画室_美术中考集训美术高考集训基地 | 厂厂乐-汇聚海量采购信息的B2B微营销平台-厂厂乐官网 | 乐之康护 - 专业护工服务平台,提供医院陪护-居家照护-居家康复 | 电力电子产业网| 防爆型气象站_农业气象站_校园气象站_农业四情监测系统「山东万象环境科技有限公司」 | 齿式联轴器-弹性联轴器-联轴器厂家-江苏诺兴传动联轴器制造有限公司 |