初中八年級數學教學設計
作為一名教職工,就難以避免地要準備教案,編寫教案有利于我們弄通教材內容,進而選擇科學、恰當的教學方法。快來參考教案是怎么寫的吧!下面小編帶來初中八年級數學教學設計5篇,希望大家喜歡。
初中八年級數學教學設計篇1
一、教學目標:
1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量。
2、會求一組數據的極差。
二、重點、難點和難點的突破方法
1、重點:會求一組數據的極差。
2、難點:本節課內容較容易接受,不存在難點。
三、課堂引入:
下表顯示的是上海2001年2月下旬和2002年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?
從表中你能得到哪些信息?
比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法。
經計算可以看出,對于2月下旬的這段時間而言,2001年和2002年上海地區的平均氣溫相等,都是12度。
這是不是說,兩個時段的氣溫情況沒有什么差異呢?
根據兩段時間的氣溫情況可繪成的折線圖。
觀察一下,它們有區別嗎?說說你觀察得到的結果。
用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍、用這種方法得到的差稱為極差(range)。
四、例習題分析
本節課在教材中沒有相應的例題,教材P152習題分析
問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大、問題2涉及前一個學期統計知識首先應回憶復習已學知識、問題3答案并不唯一,合理即可。
初中八年級數學教學設計篇2
一、學習目標及重、難點:
1、了解方差的定義和計算公式。
2、理解方差概念的產生和形成的過程。
3、會用方差計算公式來比較兩組數據的波動大小。
重點:方差產生的必要性和應用方差公式解決實際問題。
難點:理解方差公式
二、自主學習:
(一)知識我先懂:
方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是
我們用它們的平均數,表示這組數據的方差:即用
來表示。
給力小貼士:方差越小說明這組數據越 。波動性越 。
(二)自主檢測小練習:
1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。
2、甲、乙兩組數據如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12、
分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )
(2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )
歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是
我們用它們的平均數,表示這組數據的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?、
測試次數 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強 10 13 16 14 12
給力提示:先求平均數,在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:
甲:7、8、6、8、6、5、9、10、7、4
乙:9、5、7、8、7、6、8、6、7、7
經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數據的眾數:
(1)3, 2, 5, 3, 1, 2, 3
(2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?
四、課堂小結
方差公式:
給力提示:方差越小說明這組數據越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數,是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)
小爽 10.8 10.9 11、0 10.7 11、1 11、1 10.8 11、0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11、0 10.9 10.8 11、1 10.9 10.8
如果根據這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業:
必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題
七、學習小札記:
寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!
初中八年級數學教學設計篇3
教學內容
本節課主要介紹全等三角形的概念和性質.
教學目標
1、知識與技能
領會全等三角形對應邊和對應角相等的有關概念.
2、過程與方法
經歷探索全等三角形性質的過程,能在全等三角形中正確找出對應邊、對應角.
3、情感、態度與價值觀
培養觀察、操作、分析能力,體會全等三角形的應用價值.
重、難點與關鍵
1、重點:會確定全等三角形的對應元素.
2、難點:掌握找對應邊、對應角的方法.
3、關鍵:找對應邊、對應角有下面兩種方法:
(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;
(2)對應邊所對的角是對應角,兩條對應邊所夾的角是對應角。
教具準備:
四張大小一樣的紙片、直尺、剪刀。
教學方法
采用“直觀──感悟”的教學方法,讓學生自己舉出形狀、大小相同的實例,加深認識.教學過程
一、動手操作,導入課題
1、先在其中一張紙上畫出任意一個多邊形,再用剪刀剪下,?思考得到的圖形有何特點?
2、重新在一張紙板上畫出任意一個三角形,再用剪刀剪下,?思考得到的圖形有何特點?
【學生活動】動手操作、用腦思考、與同伴討論,得出結論.
【教師活動】指導學生用剪刀剪出重疊的兩個多邊形和三角形.
學生在操作過程中,教師要讓學生事先在紙上畫出三角形,然后固定重疊的兩張紙,注意整個過程要細心.
【互動交流】剪出的多邊形和三角形,可以看出:形狀、大小相同,能夠完全重合.這樣的兩個圖形叫做全等形,用“≌”表示.
概念:能夠完全重合的兩個三角形叫做全等三角形.
【教師活動】在紙版上任意剪下一個三角形,要求學生手拿一個三角形,做如下運動:平移、翻折、旋轉,觀察其運動前后的三角形會全等嗎?
【學生活動】動手操作,實踐感知,得出結論:兩個三角形全等.
【教師活動】要求學生用字母表示出每個剪下的三角形,同時互相指出每個三角形的頂點、三個角、三條邊、每條邊的邊角、每個角的對邊.
【學生活動】把兩個三角形按上述要求標上字母,并任意放置,與同桌交流:(1)何時能完全重在一起?(2)此時它們的頂點、邊、角有何特點?
【交流討論】通過同桌交流,實驗得出下面結論:
1、任意放置時,并不一定完全重合,?只有當把相同的角旋轉到一起時才能完全重合.
2、這時它們的三個頂點、三條邊和三個內角分別重合了.
3、完全重合說明三條邊對應相等,三個內角對應相等,?對應頂點在相對應的位置.
初中八年級數學教學設計篇4
教學目標:
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學重點:分式通分的理解和掌握。
教學難點:分式通分中最簡公分母的確定。
教學工具:投影儀
教學方法:啟發式、討論式
教學過程:
(一)引入
(1)如何計算:
由此讓學生復習分數通分的意義、通分的根據、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導學生思考,猜想如何求解?
(二)新課
1、類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據:分式的基本性質.
3.通分的關鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.
根據分式通分和最簡公分母的定義,將分式通分:
最簡公分母為:
然后根據分式的基本性質,分別對原來的各分式的分子和分母乘一個適當的整式,使各分式的分母都化為通分如下:_x
通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。
例1 通分:_x
分析:讓學生找分式的公分母,可設問“分母的系數各不相同如何解決?”,依據分數的通分找最小公倍數。
解:∵ 最簡公分母是12xy2,
小結:各分母的系數都是整數時,通常取它們的系數的最小公倍數作為最簡公分母的系數.
解:∵最簡公分母是10a2b2c2,
由學生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:(1)取各分母系數的最小公倍數;(2)凡出現的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數最大的。取這些因式的積就是最簡公分母。
初中八年級數學教學設計篇5
一、教學目標
1、使學生理解并掌握分式的概念,了解有理式的概念;
2、使學生能夠求出分式有意義的條件;
3、通過類比分數研究分式的教學,培養學生運用類比轉化的思想方法解決問題的能力;
4、通過類比方法的教學,培養學生對事物之間是普遍聯系又是變化發展的辨證觀點的再認識。
二、重點、難點、疑點及解決辦法
1、教學重點和難點明確分式的分母不為零。
2、疑點及解決辦法通過類比分數的意義,加強對分式意義的理解。
三、教學過程
【新課引入】
前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)
【新課】
1、分式的定義
(1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:
用、表示兩個整式,就可以表示成的形式。如果中含有字母,式子就叫做分式。其中叫做分式的分子,叫做分式的分母。
(2)由學生舉幾個分式的例子。
(3)學生小結分式的概念中應注意的問題。
①分母中含有字母。
②如同分數一樣,分式的分母不能為零。
(4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]
2、有理式的分類
請學生類比有理數的分類為有理式分類:
例1當取何值時,下列分式有意義?
(1);
解:由分母得。
∴當時,原分式有意義。
(2);
解:由分母得。
∴當時,原分式有意義。
(3);
解:∵恒成立,
∴取一切實數時,原分式都有意義。
(4)。
解:由分母得。
∴當且時,原分式有意義。
思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?
例2當取何值時,下列分式的值為零?
(1);
解:由分子得。
而當時,分母。
∴當時,原分式值為零。
小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零。
(2);
解:由分子得。
而當時,分母,分式無意義。
當時,分母。
∴當時,原分式值為零。
(3);
解:由分子得。
而當時,分母。
當時,分母。
∴當或時,原分式值都為零。
(4)。
解:由分子得。
而當時,,分式無意義。
∴沒有使原分式的值為零的的值,即原分式值不可能為零。
(四)總結、擴展
1、分式與分數的區別。
2、分式何時有意義?
3、分式何時值為零?
(五)隨堂練習
1、填空題:
(1)當時,分式的值為零
(2)當時,分式的值為零
(3)當時,分式的值為零
2、教材P55中1、2、3.
八、布置作業
教材P56中A組3、4;B組(1)、(2)、(3)。
九、板書設計
課題例1
1、定義例2
2、有理式分類