小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數學教案 >

八年級數學教案設計2022最新版10篇

時間: 金成 數學教案

作為一位優秀的人民教師,可能需要進行教案編寫工作,借助教案可以恰當地選擇和運用教學方法,調動學生學習的積極性。那么問題來了,教案應該怎么寫?下面小編帶來八年級數學教案設計2022最新版(通用10篇),希望大家喜歡。

八年級數學教案設計2022最新版10篇

八年級數學教案設計2022最新版  篇1

一、教學目標:

1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

2、能力目標:

①在實踐操作過程中,逐步探索圖形之間的平移關系;

②對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。

二、重點與難點:

重點:圖形連續變化的特點;

難點:圖形的劃分。

三、教學方法:

講練結合。使用多媒體課件輔助教學。

四、教具準備:

多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

五、教學設計:

教師活動

學生活動

設計意圖

創設情景,探究新知:

(演示課件):教材上小狗的圖案。提問:

(1)這個圖案有什么特點?

(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?

(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?

小組討論,派代表回答。(答案可以多種)

讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。

看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?

展示教材64頁3-10,提問:左圖是一種“工”字形磚,右圖是怎樣通過左圖得到的?

小組討論,派代表到臺上給大家講解。

氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。

(演示課件)教材65頁圖3-11,提問:這個圖可以看做是什么“基本圖案”通過平移得到的?

暢所欲言,互相補充。

課堂小結:

在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。

課堂練習:

(演示課件)教材65頁“隨堂練習”。

小組討論。

小組討論完成。

例子一定要和大家接觸緊密、典型。

答案不惟一,對于每種答案,教師都要給予充分的肯定。

六、教學反思:

本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。

八年級數學教案設計2022最新版 篇2

一、創設情境

1.一次函數的圖象是什么,如何簡便地畫出一次函數的圖象?

(一次函數y=kx+b(k≠0)的圖象是一條直線,畫一次函數圖象時,取兩點即可畫出函數的圖象).

2.正比例函數y=kx(k≠0)的圖象是經過哪一點的直線?

(正比例函數y=kx(k≠0)的圖象是經過原點(0,0)的一條直線).

3.平面直角坐標系中,x軸、y軸上的點的坐標有什么特征?

4.在平面直角坐標系中,畫出函數的圖象.我們畫一次函數時,所選取的兩個點有什么特征,通過觀察圖象,你發現這兩個點在坐標系的什么地方?

二、探究歸納

1.在畫函數的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.

2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.

分析x軸上點的縱坐標是0,y軸上點的橫坐標0.由此可求x軸上點的橫坐標值和y軸上點的縱坐標值.

解因為x軸上點的縱坐標是0,y軸上點的橫坐標0,所以當y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當x=0時,y=-3,點(0,-3)就是直線與y軸的交點.

過點(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

所以一次函數y=kx+b,當x=0時,y=b;當y=0時,.所以直線y=kx+b與y軸的交點坐標是(0,b),與x軸的交點坐標是.

三、實踐應用

例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標為-2;求直線的表達式.

分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標為-2,可求出b的值.

解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標為-2,所以b=-2,因此所求的直線的表達式為y=-x-2.

例2求函數與x軸、y軸的交點坐標,并求這條直線與兩坐標軸圍成的三角形的面積.

分析求直線與x軸、y軸的交點坐標,根據x軸、y軸上點的縱坐標和橫坐標分別為0,可求出相應的橫坐標和縱坐標?

八年級數學教案設計2022最新版 篇3

教學目標:

1、經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關畫圖的操作技能,發展初步審美能力,增強對圖形欣賞的意識。

2、能按要求把所給出的圖形補成以某直線為軸的軸對稱圖形,能依據圖形的軸對稱關系設計軸對稱圖形。

教學重點:

本節課重點是掌握已知對稱軸L和一個點,要畫出點A關于L的軸對稱點的畫法,在此基礎上掌握有關軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關系來設計軸對稱圖形,掌握有關畫圖的技能及設計軸對稱圖形是本節課的難點。

教學方法:

動手實踐、討論。

教學工具:

課件

教學過程:

一、 先復習軸對稱圖形的定義,以及軸對稱的相關的性質:

1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________。

2.軸對稱的三個重要性質_______________________________________________________。

二、提出問題:

二、探索練習:

1. 提出問題:

如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。

你能畫出這個圖案的另一半嗎?

吸引學生讓學生有一種解決難點的想法。

2.分析問題:

分析圖案:這個圖案是由重要六個點構成的,要將這個圖案的另一半畫出來,根據軸對稱的性質只要畫出這個圖案中六個點的對應點即可

問題轉化成:已知對稱軸和一個點A,要畫出點A關于L的對應點 ,可采用如下方法:`

在學生掌握已知一個點畫對應點的基礎上,解決上述給出的問題,使學生有一條較明確的思路。

三、對所學內容進行鞏固練習:

1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

2. 試畫出與線段AB關于直線L的線段

3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

小 結: 本節課學習了已知對稱軸L和一個點如何畫出它的對應點,以及如何補全圖形,并利用軸對稱的性質知道如何設計軸對稱圖形。

教學后記:學生對這節課的內容掌握比較好,但對于利用軸對稱的性質來設計圖形覺得難度比較大。因本節課內容較有趣,許多學生上課積極性較高

八年級數學教案設計2022最新版 篇4

知識技能

1.了解兩個圖形成軸對稱性的性質,了解軸對稱圖形的性質。

2.探究線段垂直平分線的性質。

過程方法

1.經歷探索軸對稱圖形性質的過程,進一步體驗軸對稱的特點,發展空間觀察。

2.探索線段垂直平分線的性質,培養學生認真探究、積極思考的能力。

情感態度價值觀通過對軸對稱圖形性質的探索,促使學生對軸對稱有了更進一步的認識,活動與探究的過程可以更大程度地激發學生學習的主動性和積極性,并使學生具有一些初步研究問題的能力。

教學重點

1.軸對稱的性質。

2.線段垂直平分線的性質。

教學難點體驗軸對稱的特征。

教學方法和手段多媒體教學

過程教學內容

引入中垂線概念

引出圖形對稱的性質第一張幻燈片

上節課我們共同探討了軸對稱圖形,知道現實生活中由于有軸對稱圖形,而使得世界非常美麗。那么我們今天繼續來研究軸對稱的性質。

幻燈片二

1、圖中的對稱點有哪些?

2、點A和A的連線與直線MN有什么樣的關系?

理由?:△ABC與△ABC關于直線MN對稱,點A、B、C分別是點A、B、C的對稱點,設AA交對稱軸MN于點P,將△ABC和△ABC沿MN對折后,點A與A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC與MN除了垂直以外,MN還經過線段AA、BB和CC的中點。

我們把經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。

定義:經過線段的中點并且垂直于這條線段,就叫這條線段的垂直平分線,也叫中垂線。

八年級數學教案設計2022最新版 篇5

[教學分析]

勾股定理是揭示三角形三條邊數量關系的一條非常重要的性質,也是幾何中最重要的定理之一。它是解直角三角形的主要依據之一,同時在實際生活中具有廣泛的用途,“數學源于生活,又用于生活”正是這章書所體現的主要思想。教材在編寫時注意培養學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。

本節教科書從畢達哥拉斯觀察地面發現勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發現兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發現勾股定理,這時教科書以命題的形式呈現了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數學問題中的應用,使學生對勾股定理的作用有一定的認識。

[教學目標]

一、 知識與技能

1、探索直角三角形三邊關系,掌握勾股定理,發展幾何思維。

2、應用勾股定理解決簡單的實際問題

3學會簡單的合情推理與數學說理

二、 過程與方法

引入兩段中西關于勾股定理的史料,激發同學們的興趣,引發同學們的思考。通過動手操作探索與發現直角三角形三邊關系,經歷小組協作與討論,進一步發展合作交流能力和數學表達能力,并感受勾股定理的應用知識。

三、 情感與態度目標

通過對勾股定理歷史的了解,感受數學文化,激發學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養學生的合作交流意識和探索精神,以及自主學習的能力。

四、 重點與難點

1、探索和證明勾股定理

2熟練運用勾股定理

[教學過程]

一、創設情景,揭示課題

1、教師展示圖片并介紹第一情景

以中國最早的一部數學著作——《周髀算經》的開頭為引,介紹周公向商高請教數學知識時的對話,為勾股定理的出現埋下伏筆。

周公問:“竊聞乎大夫善數也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數安從出?”商高答:“數之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所由生也。”

2、教師展示圖片并介紹第二情景

畢達哥拉斯是古希臘著名的數學家。相傳在2500年以前,他在朋友家做客時,發現朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

二、師生協作,探究問題

1、現在請你也動手數一下格子,你能有什么發現嗎?

2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

3、你能得到什么結論嗎?

三、得出命題

勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

四、勾股定理的證明

趙爽弦圖的證法

第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的

角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。

因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

這種證明方法很簡明,很直觀,它表現了我國古代數學家趙爽高超的證題思想和對數學的鉆研精神,是我們中華民族的驕傲。

五、應用舉例,拓展訓練,鞏固反饋。

勾股定理的靈活運用勾股定理在實際的生產生活當中有著廣泛的應用。勾股定理的發現和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發現屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

六、歸納總結1、內容總結:探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

2、方法歸納:數方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發現。

七、討論交流

讓學生發表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。

我們班的同學很聰明。大家很快就通過數格子發現了勾股定理的規律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發表一下自己的學習心得。

八年級數學教案設計2022最新版 篇6

一、素質教育目標

(一)知識教學點

使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系。

(二)能力訓練點

逐步培養學生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力。

(三)德育滲透點

培養學生獨立思考、勇于創新的精神。

二、教學重點、難點

1.重點:使學生了解一個銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系并會應用。

2.難點:一個銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關系的應用。

三、教學步驟

(一)明確目標

1.復習提問

(1)什么是∠A的正弦、什么是∠A的余弦,結合圖形請學生回答.因為正弦、余弦的概念是研究本課內容的知識基礎,請中下學生回答,從中可以了解教學班還有多少人不清楚的,可以采取適當的補救措施.

(2)請同學們回憶30°、45°、60°角的正、余弦值(教師板書).

(3)請同學們觀察,從中發現什么特征?學生一定會回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個角的正弦值等于它們余角的余弦值”。

2.導入新課

根據這一特征,學生們可能會猜想“一個銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題。

(二)整體感知

關于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關系,是通過30°、45°、60°角的正弦、余弦值之間的關系引入的,然后加以證明。引入這兩個關系式是為了便于查“正弦和余弦表”,關系式雖然用黑體字并加以文字語言的證明,但不標明是定理,其證明也不要求學生理解,更不應要求學生利用這兩個關系式去推證其他三角恒等式.在本章,這兩個關系式的用處僅僅限于查表和計算,而不是證明。

(三)重點、難點的學習和目標完成過程

1.通過復習特殊角的三角函數值,引導學生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問題,激發學生的學習熱情,使學生的思維積極活躍。

2.這時少數反應快的學生可能頭腦中已經“畫”出了圖形,并有了思路,但對部分學生來說仍思路凌亂.因此教師應進一步引導:sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時,學生結合正、余弦的概念,完全可以自己解決,教師要給學生足夠的研究解決問題的時間,以培養學生邏輯思維能力及獨立思考、勇于創新的精神。

3.教師板書:

任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

sinA=cos(90°-A),cosA=sin(90°-A)。

4.在學習了正、余弦概念的基礎上,學生了解以上內容并不困難,但是,由于學生初次接觸三角函數,還不熟練,而定理又涉及余角、余函數,使學生極易混淆.因此,定理的應用對學生來說是難點、在給出定理后,需加以鞏固。

已知∠A和∠B都是銳角,

(1)把cos(90°-A)寫成∠A的正弦。

(2)把sin(90°-A)寫成∠A的余弦。

這一練習只能起到鞏固定理的作用.為了運用定理,教材安排了例3。

學生獨立完成練習2,就說明定理的教學較成功,學生基本會運用。

教材中3的設置,實際上是對前二節課內容的綜合運用,既考察學生正、余弦概念的掌握程度,同時又對本課知識加以鞏固練習,因此例3的安排恰到好處.同時,做例3也為下一節查正余弦表做了準備。

(四)小結與擴展

1.請學生做知識小結,使學生對所學內容進行歸納總結,將所學內容變成自己知識的組成部分。

2.本節課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關系,以及正弦、余弦的概念得出的結論:任意一個銳角的正弦值等于它的余角的余弦值,任意一個銳角的余弦值等于它的余角的正弦值。

八年級數學教案設計2022最新版 篇7

教學目標:

情意目標:培養學生團結協作的精神,體驗探究成功的樂趣。

能力目標:能利用等腰梯形的性質解簡單的幾何計算、證明題;培養學生探究問題、自主學習的能力。

認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質。

教學重點、難點

重點:等腰梯形性質的探索;

難點:梯形中輔助線的添加。

教學課件:

PowerPoint演示文稿

教學方法:

啟發法、

學習方法:

討論法、合作法、練習法

教學過程:

(一)導入

1、出示圖片,說出每輛汽車車窗形狀(投影)

2、板書課題:5梯形

3、練習:下列圖形中哪些圖形是梯形?(投影)

4、總結梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。

5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)

6、特殊梯形的.分類:(投影)

(二)等腰梯形性質的探究

【探究性質一】

思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)

猜想:由此你能得到等腰梯形的內角有什么樣的性質?(學生操作、討論、作答)

如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C

想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?

等腰梯形性質:等腰梯形的同一條底邊上的兩個內角相等。

【操練】

(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)

(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)

【探究性質二】

如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)

如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)

等腰梯形性質:等腰梯形的兩條對角線相等。

【探究性質三】

問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)

問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)

等腰梯形性質:同以底上的兩個內角相等,對角線相等

(三)質疑反思、小結

讓學生回顧本課教學內容,并提出尚存問題;

學生小結,教師視具體情況給予提示:性質(從邊、角、對角線、對稱性等角度總結)、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。

八年級數學教案設計2022最新版 篇8

一、教學目標

1.了解二次根式的意義;

2. 掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

3. 掌握二次根式的性質 和 ,并能靈活應用;

4.通過二次根式的計算培養學生的邏輯思維能力;

5. 通過二次根式性質 和 的介紹滲透對稱性、規律性的數學美

二、教學重點和難點

重點:

(1)二次根的意義;

(2)二次根式中字母的取值范圍

難點:確定二次根式中字母的取值范圍

三、教學方法

啟發式、講練結合

四、教學過程

(一)復習提問

1.什么叫平方根、算術平方根?

2.說出下列各式的意義,并計算

(二)引入新課

新課:二次根式

定義: 式子 叫做二次根式

對于 請同學們討論論應注意的問題,引導學生總結:

(1)式子 只有在條件a≥0時才叫二次根式, 是二次根式嗎? 呢?

若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分

(2) 是二次根式,而 ,提問學生:2是二次根式嗎?顯然不是,因此二次

根式指的是某種式子的“外在形態”。請學生舉出幾個二次根式的例子,并說明為什么是二次根式。下面例題根據二次根式定義,由學生分析、回答

例1 當a為實數時,下列各式中哪些是二次根式?

例2 x是怎樣的實數時,式子 在實數范圍有意義?

解:略

說明:這個問題實質上是在x是什么數時,x-3是非負數,式子 有意義

例3 當字母取何值時,下列各式為二次根式:

(1) (2) (3) (4)

分析:由二次根式的定義 ,被開方數必須是非負數,把問題轉化為解不等式

解:(1)∵a、b為任意實數時,都有a2+b2≥0,∴當a、b為任意實數時, 是二次根式

(2)-3x≥0,x≤0,即x≤0時, 是二次根式

(3) ,且x≠0,∴x>0,當x>0時, 是二次根式

(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2。當x>2時, 是二次根式

例4 下列各式是二次根式,求式子中的字母所滿足的條件:

分析:這個例題根據二次根式定義,讓學生分析式子中字母應滿足的條件,進一步鞏固二次根式的定義,即: 只有在條件a≥0時才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數都大于等于零

解:(1)由2a+3≥0,得

(2)由 ,得3a-1>0,解得

(3)由于x取任何實數時都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式。所以所求字母x的取值范圍是全體實數。

(4)由-b2≥0得b2≤0,只有當b=0時,才有b2=0,因此,字母b所滿足的條件是:b=0。

八年級數學教案設計2022最新版 篇9

教學目標:

知識與技能目標:

1.掌握矩形的概念、性質和判別條件。

2.提高對矩形的性質和判別在實際生活中的應用能力。

過程與方法目標:

1.經歷探索矩形的有關性質和判別條件的過程,在直觀操作活動和簡單的說理過程中發展學生的合情推理能力,主觀探索習慣,逐步掌握說理的基本方法。

2.知道解決矩形問題的基本思想是化為三角形問題來解決,滲透轉化歸思想。

情感與態度目標:

1.在操作活動過程中,加深對矩形的的認識,并以此激發學生的探索精神。

2.通過對矩形的探索學習,體會它的內在美和應用美。

教學重點:

矩形的性質和常用判別方法的理解和掌握。

教學難點:

矩形的性質和常用判別方法的綜合應用。

教學方法:

分析啟發法

教具準備:

像框,平行四邊形框架教具,多媒體課件。

教學過程設計:

一、情境導入:

演示平行四邊形活動框架,引入課題。

二、講授新課:

1.歸納矩形的定義:

問題:從上面的演示過程可以發現:平行四邊形具備什么條件時,就成了矩形?(學生思考、回答。)

結論:有一個內角是直角的平行四邊形是矩形。

2.探究矩形的性質:

(1)問題:像框除了“有一個內角是直角”外,還具有哪些一般平行四邊形不具備的性質?(學生思考、回答。)

結論:矩形的四個角都是直角。

(2)探索矩形對角線的性質:

讓學生進行如下操作后,思考以下問題:(幻燈片展示)

在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上,拉動一對不相鄰的頂點,改變平行四邊形的形狀。

①隨著∠α的變化,兩條對角線的長度分別是怎樣變化的?

②當∠α是銳角時,兩條對角線的長度有什么關系?當∠α是鈍角時呢?

③當∠α是直角時,平行四邊形變成矩形,此時兩條對角線的長度有什么關系?

(學生操作,思考、交流、歸納。)

結論:矩形的兩條對角線相等。

(3)議一議:(展示問題,引導學生討論解決)

①矩形是軸對稱圖形嗎?如果是,它有幾條對稱軸?如果不是,簡述你的理由。

②直角三角形斜邊上的中線等于斜邊長的一半,你能用矩形的有關性質解釋這結論嗎?

(4)歸納矩形的性質:(引導學生歸納,并體會矩形的“對稱美”)

矩形的對邊平行且相等;矩形的四個角都是直角;矩形的對角線相等且互相平分;矩形是軸對稱圖形。

例解:(性質的運用,滲透矩形對角線的“化歸”功能)

如圖,在矩形ABCD中,兩條對角線AC,BD相交于點O,AB=OA=4

厘米,求BD與AD的長。

(引導學生分析、解答)

探索矩形的判別條件:(由修理桌子引出)

(5)想一想:(學生討論、交流、共同學習)

對角線相等的平行四邊形是怎樣的四邊形?為什么?

結論:對角線相等的平行四邊形是矩形。

(理由可由師生共同分析,然后用幻燈片展示完整過程。)

(6)歸納矩形的判別方法:(引導學生歸納)

有一個內角是直角的平行四邊形是矩形。

對角線相等的平行四邊形是矩形。

三、課堂練習:(出示P98隨堂練習題,學生思考、解答。)

四、新課小結:

通過本節課的學習,你有什么收獲?

(師生共同從知識與思想方法兩方面小結。)

五、作業設計:P99習題4.6第1、2、3題。

板書設計:

1.矩形

矩形的定義:

矩形的性質:

前面知識的小系統圖示:

2.矩形的判別條件:

例1

課后反思:在平行四邊形及菱形的教學后。學生已經學會自主探索的方法,自己動手猜想驗證一些矩形的特殊性質。一些相關矩形的計算也學會應用轉化為直角三角形的方法來解決。總的看來這節課學生掌握的還不錯。當然合情推理的能力要慢慢的熟練。不可能一下就掌握熟練。

八年級數學教案設計2022最新版 篇10

教學目標

1.知識與技能

能應用所學的函數知識解決現實生活中的問題,會建構函數“模型”

2.過程與方法

經歷探索一次函數的應用問題,發展抽象思維

3.情感、態度與價值觀

培養變量與對應的思想,形成良好的函數觀點,體會一次函數的應用價值

重、難點與關鍵

1.重點:一次函數的應用

2.難點:一次函數的應用

3.關鍵:從數形結合分析思路入手,提升應用思維

教學方法

采用“講練結合”的教學方法,讓學生逐步地熟悉一次函數的應用

教學過程

一、范例點擊,應用所學

【例5】小芳以200米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數關系式,并畫出函數圖象

y=

【例6】A城有肥料200噸,B城有肥料300噸,現要把這些肥料全部運往C、D兩鄉。從A城往C、D兩鄉運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉運肥料的費用分別為每噸15元和24元,現C鄉需要肥料240噸,D鄉需要肥料260噸,怎樣調運總運費最少?

解:設總運費為y元,A城往運C鄉的肥料量為x噸,則運往D鄉的肥料量為(200-x)噸。B城運往C、D鄉的肥料量分別為(240-x)噸與(60+x)噸。y與x的關系式為:y=20x+25(200-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤200)。

由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉0噸,運往D鄉200噸;從B城運往C鄉240噸,運往D鄉60噸,此時總運費最少,總運費最小值為10040元。

拓展:若A城有肥料300噸,B城有肥料200噸,其他條件不變,又應怎樣調運?

21874 主站蜘蛛池模板: 智能监控-安防监控-监控系统安装-弱电工程公司_成都万全电子 | 标准件-非标紧固件-不锈钢螺栓-非标不锈钢螺丝-非标螺母厂家-三角牙锁紧自攻-南京宝宇标准件有限公司 | 北京京云律师事务所 | 广州番禺搬家公司_天河黄埔搬家公司_企业工厂搬迁_日式搬家_广州搬家公司_厚道搬迁搬家公司 | 标准品网_标准品信息网_【中检计量】 | 培训中心-翰香原香酥板栗饼加盟店总部-正宗板栗酥饼技术 | 氟氨基酮、氯硝柳胺、2-氟苯甲酸、异香兰素-新晨化工 | 土壤养分检测仪|土壤水分|土壤紧实度测定仪|土壤墒情监测系统-土壤仪器网 | 急救箱-应急箱-急救包厂家-北京红立方医疗设备有限公司 | 水性绝缘漆_凡立水_绝缘漆树脂_环保绝缘漆-深圳维特利环保材料有限公司 | 开云(中国)Kaiyun·官方网站 - 登录入口 | AGV叉车|无人叉车|AGV智能叉车|AGV搬运车-江西丹巴赫机器人股份有限公司 | 齿式联轴器-弹性联轴器-联轴器厂家-江苏诺兴传动联轴器制造有限公司 | app开发|app开发公司|小程序开发|物联网开发||北京网站制作|--前潮网络 | 台湾阳明固态继电器-奥托尼克斯光电传感器-接近开关-温控器-光纤传感器-编码器一级代理商江苏用之宜电气 | 菏泽商标注册_菏泽版权登记_商标申请代理_菏泽商标注册去哪里 | 薄壁轴承-等截面薄壁轴承生产厂家-洛阳薄壁精密轴承有限公司 | 「银杏树」银杏树行情价格_银杏树种植_山东程锦园林 | 361°官方网站| 盐水蒸发器,水洗盐设备,冷凝结晶切片机,转鼓切片机,絮凝剂加药系统-无锡瑞司恩机械有限公司 | 电动球阀_不锈钢电动球阀_电动三通球阀_电动调节球阀_上海湖泉阀门有限公司 | 螺杆真空泵_耐腐蚀螺杆真空泵_水环真空泵_真空机组_烟台真空泵-烟台斯凯威真空 | 济南品牌设计-济南品牌策划-即合品牌策划设计-山东即合官网 | 中国玩具展_玩具展|幼教用品展|幼教展|幼教装备展 | 水厂自动化-水厂控制系统-泵站自动化|控制系统-闸门自动化控制-济南华通中控科技有限公司 | 变色龙PPT-国内原创PPT模板交易平台 - PPT贰零 - 西安聚讯网络科技有限公司 | 溶氧传感器-pH传感器|哈美顿(hamilton) | 机器视觉检测系统-视觉检测系统-机器视觉系统-ccd检测系统-视觉控制器-视控一体机 -海克易邦 | 世纪豪门官网 世纪豪门集成吊顶加盟电话 世纪豪门售后电话 | 公交驾校-北京公交驾校欢迎您!| 泥沙分离_泥沙分离设备_泥砂分离机_洛阳隆中重工机械有限公司 | 丁基胶边来料加工,医用活塞边角料加工,异戊二烯橡胶边来料加工-河北盛唐橡胶制品有限公司 | 恒温振荡混匀器-微孔板振荡器厂家-多管涡旋混匀器厂家-合肥艾本森(www.17world.net) | ph计,实验室ph计,台式ph计,实验室酸度计,台式酸度计 | 建大仁科-温湿度变送器|温湿度传感器|温湿度记录仪_厂家_价格-山东仁科 | 江苏南京多语种翻译-专业翻译公司报价-正规商务翻译机构-南京华彦翻译服务有限公司 | 宝鸡市人民医院| 杭州代理记账多少钱-注册公司代办-公司注销流程及费用-杭州福道财务管理咨询有限公司 | 档案密集架_电动密集架_移动密集架_辽宁档案密集架-盛隆柜业厂家现货批发销售价格公道 | 余姚生活网_余姚论坛_余姚市综合门户网站 | 北京印刷厂_北京印刷_北京印刷公司_北京印刷厂家_北京东爵盛世印刷有限公司 |