小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 八年級教案 > 數學教案 >

八年級個人數學教案

時間: 金成2 數學教案

作為一名為他人授業解惑的教育工作者,時常需要用到教案,教案有助于順利而有效地開展教學活動。那么大家知道正規的教案是怎么寫的嗎?下面小編帶來八年級個人數學教案,希望大家喜歡。

八年級個人數學教案 篇1

一、教學目標

1、認識中位數和眾數,并會求出一組數據中的眾數和中位數。

2、理解中位數和眾數的意義和作用。它們也是數據代表,可以反映一定的數據信息,幫助人們在實際問題中分析并做出決策。

3、會利用中位數、眾數分析數據信息做出決策。

二、重點、難點和難點的突破方法:

1、重點:認識中位數、眾數這兩種數據代表

2、難點:利用中位數、眾數分析數據信息做出決策。

3、難點的突破方法:

首先應交待清楚中位數和眾數意義和作用:

中位數僅與數據的排列位置有關,某些數據的變動對中位數沒有影響,中位數可能出現在所給的數據中,當一組數據中的個別數據變動較大時,可用中位數描述其趨勢。眾數是當一組數據中某一重復出現次數較多時,人們往往關心的一個量,眾數不受極端值的影響,這是它的一個優勢,中位數的計算很少不受極端值的影響。

教學過程中注重雙基,一定要使學生能夠很好的掌握中位數和眾數的求法,求中位數的步驟:⑴將數據由小到大(或由大到小)排列,⑵數清數據個數是奇數還是偶數,如果數據個數為奇數則取中間的數,如果數據個數為偶數,則取中間位置兩數的平均值作為中位數。求眾數的方法:找出頻數最多的那個數據,若幾個數據頻數都是最多且相同,此時眾數就是這多個數據。

在利用中位數、眾數分析實際問題時,應根據具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。

三、例習題的意圖分析

1、教材P143的例4的意圖

(1)、這個問題的研究對象是一個樣本,主要是反映了統計學中常用到一種解決問題的方法:對于數據較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結論去估計總體的情況。

(2)、這個例題另一個意圖是交待了當數據個數為偶數時,中位數的求法和解題步驟。(因為在前面有介紹中位數求法,這里不再重述)

(3)、問題2顯然反映學習中位數的意義:它可以估計一個數據占總體的相對位置,說明中位數是統計學中的一個重要的數據代表。

(4)、這個例題再一次體現了統計學知識與實際生活是緊密聯系的,所以應鼓勵學生學好這部分知識。

2、教材P145例5的意圖

(1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數,它代表該型號的產品銷售,以便給商家合理的建議。

(2)、例5也交待了眾數的求法和解題步驟(由于求法在前面已介紹,這里不再重述)

(3)、例5也反映了眾數是數據代表的一種。

四、課堂引入

嚴格的講教材本節課沒有引入的問題,而是在復習和延伸中位數的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經和同學們研究過了平均數的這個數據代表。它在分析數據過程中擔當了重要的角色,今天我們來共同研究和認識數據代表中的新成員——中位數和眾數,看看它們在分析數據過程中又起到怎樣的作用。

五、例習題的分析

教材P144例4,從所給的數據可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數據重新排列,通過觀察會發現共有12個數據,偶數個可以取中間的兩個數據146、148,求其平均值,便可得這組數據的中位數。

教材P145例5,由表中第二行可以查到23.5號鞋的頻數,因此這組數據的眾數可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。

六、隨堂練習

1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統計了這15個人的銷售量如下(單位:件)

1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150

求這15個銷售員該月銷量的中位數和眾數。

假設銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。

2、某商店3、4月份出售某一品牌各種規格的空調,銷售臺數如表所示:

1匹1.2匹1.5匹2匹

3月12臺20臺8臺4臺

4月16臺30臺14臺8臺

根據表格回答問題:

商店出售的各種規格空調中,眾數是多少?

假如你是經理,現要進貨,6月份在有限的資金下進貨單位將如何決定?

答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數據的平均數,卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數又是眾數,是大部分人能達到的額定。

2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調。

七、課后練習

1.數據8、9、9、8、10、8、99、8、10、7、9、9、8的中位數是,眾數是

2.一組數據23、27、20、18、X、12,它的中位數是21,則X的值是.

3.數據92、96、98、100、X的眾數是96,則其中位數和平均數分別是( )

A.97、96 B.96、96.4 C.96、97 D.98、97

4.如果在一組數據中,23、25、28、22出現的次數依次為2、5、3、4次,并且沒有其他的數據,則這組數據的眾數和中位數分別是( )

A.24、25 B.23、24 C.25、25 D.23、25

5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:

溫度(℃) -8 -1 7 15 21 24 30

天數3 5 5 7 6 2 2

請你根據上述數據回答問題:

(1).該組數據的中位數是什么?

(2).若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?

答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天

八年級個人數學教案 篇2

一、學習目標及重、難點:

1、了解方差的定義和計算公式。

2、理解方差概念的產生和形成的過程。

3、會用方差計算公式來比較兩組數據的波動大小。

重點:方差產生的必要性和應用方差公式解決實際問題。

難點:理解方差公式

二、自主學習:

(一)知識我先懂:

方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

我們用它們的平均數,表示這組數據的方差:即用

來表示。

給力小貼士:方差越小說明這組數據越 。波動性越 。

(二)自主檢測小練習:

1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。

2、甲、乙兩組數據如下:

甲組:10 9 11 8 12 13 10 7;

乙組:7 8 9 10 11 12 11 12.

分別計算出這兩組數據的極差和方差,并說明哪一組數據波動較小.

三、新課講解:

引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

甲:9、10、 10、13、7、13、10、8、11、8;

乙:8、13、12、11、10、12、7、7、10、10;

問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )

(2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )

歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

我們用它們的平均數,表示這組數據的方差:即用 來表示。

(一)例題講解:

例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?、

測試次數 第1次 第2次 第3次 第4次 第5次

段巍 13 14 13 12 13

金志強 10 13 16 14 12

給力提示:先求平均數,在利用公式求解方差。

(二)小試身手

1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定

去參加比賽。

1、求下列數據的眾數:

(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?

四、課堂小結

方差公式:

給力提示:方差越小說明這組數據越 。波動性越 。

每課一首詩:求方差,有公式;先平均,再求差;

求平方,再平均;所得數,是方差。

五、課堂檢測:

1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

六、課后作業:必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

七、學習小札記:

寫下你的收獲,交流你的經驗,分享你的成果,你會感到無比的快樂!

八年級個人數學教案 篇3

八年級下數學教案-變量與函數(2)

一、教學目的

1.使學生理解自變量的取值范圍和函數值的意義。

2.使學生理解求自變量的取值范圍的兩個依據。

3.使學生掌握關于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數的自變量取值范圍的求法,并會求其函數值。

4.通過求函數中自變量的取值范圍使學生進一步理解函數概念。

二、教學重點、難點

重點:函數自變量取值的求法。

難點:函靈敏處變量取值的確定。

三、教學過程

復習提問

1.函數的定義是什么?函數概念包含哪三個方面的內容?

2.什么叫分式?當x取什么數時,分式x+2/2x+3有意義?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什么叫二次根式?使二次根式成立的條件是什么?

(答:根指數是2的根式叫二次根式,使二次根式成立的條件是被開方數≥0。)

4.舉出一個函數的實例,并指出式中的變量與常量、自變量與函數。

新課

1.結合同學舉出的實例說明解析法的意義:用教學式子表示函數方法叫解析法。并指出,函數表示法除了解析法外,還有圖象法和列表法。

2.結合同學舉出的實例,說明函數的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據是:

(1)自變量取值范圍是使函數解析式(即是函數表達式)有意義。

(2)自變量取值范圍要使實際問題有意義。

3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。

推廣與聯想:請同學按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。

4.講解P93中例3。結合例3引出函數值的意義。并指出兩點:

(1)例3中的4個小題歸納起來仍是三類題型。

(2)求函數值的問題實際是求代數式值的問題。

補充例題

求下列函數當x=3時的函數值:

(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小結

1.解析法的意義:用數學式子表示函數的方法叫解析法。

2.求函數自變量取值范圍的兩個方法(依據):

(1)要使函數的解析式有意義。

①函數的解析式是整式時,自變量可取全體實數;

②函數的解析式是分式時,自變量的取值應使分母≠0;

③函數的解析式是二次根式時,自變量的取值應使被開方數≥0。

(2)對于反映實際問題的函數關系,應使實際問題有意義。

3.求函數值的方法:把所給出的自變量的值代入函數解析式中,即可求出相慶原函數值。

練習:P94中1,2,3。

作業:P95~P96中A組3,4,5,6,7。B組1,2。

四、教學注意問題

1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。

2.注意訓練與培養學生的優質聯想能力。要求學生仿照例題自編題目是有效手段。

3.注意培養學生對于“具體問題要具體分析”的良好學習方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。

八年級個人數學教案 篇4

一、回顧交流,合作學習

【活動方略】

活動設計:教師先將學生分成四人小組,交流各自的小結,并結合課本P87的小結進行反思,教師巡視,并且不斷引導學生進入復習軌道.然后進行小組匯報,匯報時可借助投影儀,要求學生上臺匯報,最后教師歸納.

【問題探究1】(投影顯示)

飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?

思路點撥:根據題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據勾股定理來計算出BC的長.(3000千米)

【活動方略】

教師活動:操作投影儀,引導學生解決問題,請兩位學生上臺演示,然后講評.

學生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

【問題探究2】(投影顯示)

一個零件的形狀如右圖,按規定這個零件中∠A與∠BDC都應為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?

思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.

【活動方略】

教師活動:操作投影儀,關注學生的思維,請兩位學生上講臺演示之后再評講.

學生活動:思考后,完成“問題探究2”,小結方法.

解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

∴△ABD為直角三角形,∠A=90°.

在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

∴△BDC是直角三角形,∠CDB=90°

因此這個零件符合要求.

【問題探究3】

甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發,他以6千米/時的速度向東行走,1小時后乙出發,他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠?

思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

【活動方略】

教師活動:操作投影儀,巡視、關注學生訓練,并請兩位學生上講臺“板演”.

學生活動:課堂練習,與同伴交流或舉手爭取上臺演示

八年級個人數學教案 篇5

教學目標:

1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。

2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。

3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。

4、能利和計算器求一組數據的算術平均數。

教學重點:體會平均數、中位數、眾數在具體情境中的意義和應用。

教學難點:對于平均數、中位數、眾數在不同情境中的應用。

教學方法:歸納教學法。

教學過程:

一、知識回顧與思考

1、平均數、中位數、眾數的概念及舉例。

一般地對于n個數X1,……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。

如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。

中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。

眾數就是一組數據中出現次數最多的那個數據。

如3,2,3,5,3,4中3是眾數。

2、平均數、中位數和眾數的特征:

(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。

(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。

(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。

(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。

3、算術平均數和加權平均數有什么區別和聯系:

算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。

4、利用計算器求一組數據的平均數。

利用科學計算器求平均數的方法計算平均數。

二、例題講解:

例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統計了這15人某月的銷售量如下:

每人銷售件數 1800 510 250 210 150 120

人數 113532

(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;

(2)假設銷售部負責人把每位營銷員的月銷售額定為平均數,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。

例2,某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?

三、課堂練習:復習題A組

四、小結:

1、掌握平均數、中位數與眾數的概念及計算。

2、理解算術平均數與加權平均數的聯系與區別。

五、作業:復習題B組、C組(選做)

20928 主站蜘蛛池模板: 新能源汽车教学设备厂家报价[汽车教学设备运营18年]-恒信教具 | 暴风影音| 数控走心机-走心机价格-双主轴走心机-宝宇百科 | 双工位钻铣攻牙机-转换工作台钻攻中心-钻铣攻牙机一体机-浙江利硕自动化设备有限公司 | 甲级防雷检测仪-乙级防雷检测仪厂家-上海胜绪电气有限公司 | 温室大棚建设|水肥一体化|物联网系统 | 软文世界-软文推广-软文营销-新闻稿发布-一站式软文自助发稿平台 | 快速门厂家-快速卷帘门-工业快速门-硬质快速门-西朗门业 | 消防泵-XBD单级卧式/立式消防泵-上海塑泉泵阀(集团)有限公司 | 河南橡胶接头厂家,河南波纹补偿器厂家,河南可曲挠橡胶软连接,河南套筒补偿器厂家-河南正大阀门 | 纸箱网 -纸箱机械|设备|包装纸盒|包装印刷行业门户网站 | 网站制作优化_网站SEO推广解决方案-无锡首宸信息科技公司 | 烟台条码打印机_烟台条码扫描器_烟台碳带_烟台数据采集终端_烟台斑马打印机-金鹏电子-金鹏电子 | BHK汞灯-百科|上海熙浩实业有限公司 | 传动滚筒_厂家-淄博海恒机械制造厂| 纳米涂料品牌 防雾抗污纳米陶瓷涂料厂家_虹瓷科技 | 建筑资质代办-建筑企业资质代办机构-建筑资质代办公司 | 硬度计,金相磨抛机_厂家-莱州华煜众信试验仪器有限公司 | 江苏全风,高压风机,全风环保风机,全风环形高压风机,防爆高压风机厂家-江苏全风环保科技有限公司(官网) | 中式装修设计_室内中式装修_【云臻轩】中式设计机构 | 全自动端子机|刺破式端子压接机|全自动双头沾锡机|全自动插胶壳端子机-东莞市傅氏兄弟机械设备有限公司 | 工控机,嵌入式主板,工业主板,arm主板,图像采集卡,poe网卡,朗锐智科 | 智慧消防-消防物联网系统云平台 智能化的检漏仪_气密性测试仪_流量测试仪_流阻阻力测试仪_呼吸管快速检漏仪_连接器防水测试仪_车载镜头测试仪_奥图自动化科技 | 高压直流电源_特种变压器_变压器铁芯-希恩变压器定制厂家 | 环比机械| 国际船舶网 - 船厂、船舶、造船、船舶设备、航运及海洋工程等相关行业综合信息平台 | 精密交叉滚子轴承厂家,转盘轴承,YRT转台轴承-洛阳千协轴承 | 搬运设备、起重设备、吊装设备—『龙海起重成套设备』 | 紫外可见光分光度计-紫外分光度计-分光光度仪-屹谱仪器制造(上海)有限公司 | 全自动包装秤_全自动上袋机_全自动套袋机_高位码垛机_全自动包装码垛系统生产线-三维汉界机器(山东)股份有限公司 | 电脑刺绣_绣花厂家_绣花章仔_织唛厂家-[源欣刺绣]潮牌刺绣打版定制绣花加工厂家 | MTK核心板|MTK开发板|MTK模块|4G核心板|4G模块|5G核心板|5G模块|安卓核心板|安卓模块|高通核心板-深圳市新移科技有限公司 | 百方网-百方电气网,电工电气行业专业的B2B电子商务平台 | 不锈钢水管-不锈钢燃气管-卫生级不锈钢管件-不锈钢食品级水管-广东双兴新材料集团有限公司 | 重庆磨床过滤机,重庆纸带过滤机,机床伸缩钣金,重庆机床钣金护罩-重庆达鸿兴精密机械制造有限公司 | MOOG伺服阀维修,ATOS比例流量阀维修,伺服阀维修-上海纽顿液压设备有限公司 | 百方网-百方电气网,电工电气行业专业的B2B电子商务平台 | 游泳池设备安装工程_恒温泳池设备_儿童游泳池设备厂家_游泳池水处理设备-东莞市君达泳池设备有限公司 | 过滤器_自清洗过滤器_气体过滤器_苏州华凯过滤技术有限公司 | 南京技嘉环保科技有限公司-杀菌除臭剂|污水|垃圾|厕所|橡胶厂|化工厂|铸造厂除臭剂 | 电渗析,废酸回收,双极膜-山东天维膜技术有限公司 |