八年級數學上冊教案
在中國,八年級是初中的第二年(在五四制地區是第三年)。八年級學生不需要像九年級一樣面臨中考,但學習生活也同樣非常緊張,因此八年級也是“儲力的一年”。下面是小編給大家整理的八年級數學上冊教案,僅供參考希望能夠幫助到大家。
八年級數學上冊教案1
教學目標
1、 理解并掌握等腰三角形的判定定理及推論
2、 能利用其性質與判定證明線段或角的相等關系.
教學重點: 等腰三角形的判定定理及推論的運用
教學難點: 正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關系.
教學過程:
一、復習等腰三角形的性質
二、新授:
I提出問題,創設情境
出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然后在這棵樹的正南方(南岸A點抽一小旗作標志)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.
學生們很想知道,這樣估測河流寬度的根據是什么?帶著這個問題,引導學生學習“等腰三角形的判定”.
II引入新課
1.由性質定理的題設和結論的變化,引出研究的內容——在△ABC中,苦∠B=∠C,則AB= AC嗎?
作一個兩個角相等的三角形,然后觀察兩等角所對的邊有什么關系?
2.引導學生根據圖形,寫出已知、求證.
2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).
強調此定理是在一個三角形中把角的相等關系轉化成邊的相等關系的重要依據,類似于性質定理可簡稱“等角對等邊”.
4.引導學生說出引例中地質專家的測量方法的根據.
III例題與練習
1.如圖2
其中△ABC是等腰三角形的是 [ ]
2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C______(根據什么?).
②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據什么?).
③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______.
④若已知 AD=4cm,則BC______cm.
3.以問題形式引出推論l______.
4.以問題形式引出推論2______.
例: 如果三角形一個外角的平分線平行于三角形的一邊,求證這個三角形是等腰三角形.
分析:引導學生根據題意作出圖形,寫出已知、求證,并分析證明.
練習:5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點F,過F作DE//BC,交AB于點D,交AC于E.問圖中哪些三角形是等腰三角形?
(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?
練習:P53練習1、2、3。
IV課堂小結
1.判定一個三角形是等腰三角形有幾種方法?
2.判定一個三角形是等邊三角形有幾種方法?
3.等腰三角形的性質定理與判定定理有何關系?
4.現在證明線段相等問題,一般應從幾方面考慮?
V布置作業:P56頁習題12.3第5、6題
八年級數學上冊教案2
教學目標
1.等腰三角形的概念. 2.等腰三角形的性質. 3.等腰三角形的概念及性質的應用.
教學重點: 1.等腰三角形的概念及性質. 2.等腰三角形性質的應用.
教學難點:等腰三角形三線合一的性質的理解及其應用.
教學過程
Ⅰ.提出問題,創設情境
在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?
有的三角形是軸對稱圖形,有的三角形不是.
問題:那什么樣的三角形是軸對稱圖形?
滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.
我們這節課就來認識一種成軸對稱圖形的三角形──等腰三角形.
Ⅱ.導入新課: 要求學生通過自己的思考來做一個等腰三角形.
作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形.
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.
思考:
1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.
2.等腰三角形的兩底角有什么關系?
3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?
結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.
要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.
沿等腰三角形的頂角的平分線對折,發現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.
由此可以得到等腰三角形的性質:
1.等腰三角形的兩個底角相等(簡寫成“等邊對等角”).
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).
由上面折疊的過程獲得啟發,我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).
如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因為
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因為
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.
[例1]如圖,在△ABC中,AB=AC,點D在AC上,且BD=BC=AD,
求:△ABC各角的度數.
分析:根據等邊對等角的性質,我們可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形內角和為180°,就可求出△ABC的三個內角.
把∠A設為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡捷.
解:因為AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等邊對等角).
設∠A=x,則 ∠BDC=∠A+∠ABD=2x,
從而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.
[師]下面我們通過練習來鞏固這節課所學的知識.
Ⅲ.隨堂練習:1.課本P51練習 1、2、3. 2.閱讀課本P49~P51,然后小結.
Ⅳ.課時小結
這節課我們主要探討了等腰三角形的性質,并對性質作了簡單的應用.等腰三角形是軸對稱圖形,它的兩個底角相等(等邊對等角),等腰三角形的對稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.
我們通過這節課的學習,首先就是要理解并掌握這些性質,并且能夠靈活應用它們.
Ⅴ.作業: 課本P56習題12.3第1、2、3、4題.
板書設計
12.3.1.1 等腰三角形
一、設計方案作出一個等腰三角形
二、等腰三角形性質: 1.等邊對等角 2.三線合一
八年級數學上冊教案3
教學目的
1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。
2. 熟識等邊三角形的性質及判定.
2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。
教學重點: 等腰三角形的性質及其應用。
教學難點: 簡潔的邏輯推理。
教學過程
一、復習鞏固
1.敘述等腰三角形的性質,它是怎么得到的?
等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以∠B=∠C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。
2.若等腰三角形的兩邊長為3和4,則其周長為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質呢?
1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。
2.你能否用已知的知識,通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。
3.上面的條件和結論如何敘述?
等邊三角形的各角都相等,并且每一個角都等于60°。
等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數。
分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由于∠C=∠B=30°,∠BAC可求,所以∠1可求。
問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?
問題2:求∠1是否還有其它方法?
三、練習鞏固
1.判斷下列命題,對的打“√”,錯的打“×”。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個角是60°的等腰三角形,其它兩個內角也為60°( )
2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數。
3.P54練習1、2。
四、小結
由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。
五、作業: 1.課本P57第7,9題。
2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數。
12.3.2 等邊三角形(二)
教學目標
1.掌握等邊三角形的性質和判定方法. 2.培養分析問題、解決問題的能力.
教學重點:等邊三角形的性質和判定方法.
教學難點:等邊三角形性質的應用
教學過程
I創設情境,提出問題
回顧上節課講過的等邊三角形的有關知識
1.等邊三角形是軸對稱圖形,它有三條對稱軸.
2.等邊三角形每一個角相等,都等于60°
3.三個角都相等的三角形是等邊三角形.
4.有一個角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質;3、4的等邊三角形的判斷方法.
II例題與練習
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
①在邊AB、AC上分別截取AD=AE.
②作∠ADE=60°,D、E分別在邊AB、AC上.
③過邊AB上D點作DE∥BC,交邊AC于E點.
2. 已知:如右圖,P、Q是△ABC的邊BC上的兩點,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知顯然可知三角形APQ是等邊三角形,每個角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質即可推得∠PAB=30°.
3. P56頁練習1、2
III課堂小結:1.等腰三角形和性質;等腰三角形的條件
V布置作業: 1.P58頁習題12.3第ll題.
2.已知等邊△ABC,求平面內一點P,滿足A,B,C,P四點中的任意三點連線都構成等腰三角形.這樣的點有多少個?
12.3.2 等邊三角形(三)
教學過程
一、 復習等腰三角形的判定與性質
二、 新授:
1.等邊三角形的性質:三邊相等;三角都是60°;三邊上的中線、高、角平分線相等
2.等邊三角形的判定:
三個角都相等的三角形是等邊三角形;有一個角是60°的等腰三角形是等邊三角形;
在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半
注意:推論1是判定一個三角形為等邊三角形的一個重要方法.推論2說明在等腰三角形中,只要有一個角是600,不論這個角是頂角還是底角,就可以判定這個三角形是等邊三角形。推論3反映的是直角三角形中邊與角之間的關系.
3.由學生解答課本148頁的例子;
4.補充:已知如圖所示, 在△ABC中, BD是AC邊上的中線, DB⊥BC于B,
∠ABC=120o, 求證: AB=2BC
分析 由已知條件可得∠ABD=30o, 如能構造有一個銳角是30o的直角三角形, 斜邊是AB,30o角所對的邊是與BC相等的線段,問題就得到解決了.
八年級數學上冊教案4
一、學習目標:1.多項式除以單項式的運算法則及其應用.
2.多項式除以單項式的運算算理.
二、重點難點:
重 點: 多項式除以單項式的運算法則及其應用
難 點: 探索多項式與單項式相除的運算法則的過程
三、合作學習:
(一) 回顧單項式除以單項式法則
(二) 學生動手,探究新課
1. 計算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2. 提問:①說說你是怎樣計算的 ②還有什么發現嗎?
(三) 總結法則
1. 多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______
2. 本質:把多項式除以單項式轉化成______________
四、精講精練
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
隨堂練習: 教科書 練習
五、小結
1、單項式的除法法則
2、應用單項式除法法則應注意:
A、系數先相除,把所得的結果作為商的系數,運算過程中注意單項式的系數飽含它前面的符號
B、把同底數冪相除,所得結果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數不小于除式中同一字母的指數;
C、被除式單獨有的字母及其指數,作為商的一個因式,不要遺漏;
D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.
E、多項式除以單項式法則
八年級數學上冊教案5
一、學習目標:1.經歷探索平方差公式的過程.
2.會推導平方差公式,并能運用公式進行簡單的運算.
二、重點難點
重 點: 平方差公式的推導和應用
難 點: 理解平方差公式的結構特征,靈活應用平方差公式.
三、合作學習
你能用簡便方法計算下列各題嗎?
(1)2001×1999 (2)998×1002
導入新課: 計算下列多項式的積.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
結論:兩個數的和與這兩個數的差的積,等于這兩個數的平方差.
即:(a+b)(a-b)=a2-b2
四、精講精練
例1:運用平方差公式計算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:計算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
隨堂練習
計算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小結:(a+b)(a-b)=a2-b2
八年級數學上冊教案相關文章:
★ 小學教案模板