小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 七年級教案 > 數學教案 >

滬科版七年級上冊數學教案

時間: 彭永 數學教案

所謂教案的藝術性就是構思巧妙,能讓學生在課堂上不僅能學到知識,而且得到藝術的欣賞和快樂的體驗。下面是小編給大家整理的滬科版七年級上冊數學教案,僅供參考希望能夠幫助到大家。

滬科版七年級上冊數學教案

滬科版七年級上冊數學教案1

一、素質教育目標

(一)知識教學點

1.掌握的三要素,能正確畫出.

2.能將已知數在上表示出來,能說出上已知點所表示的數.

(二)能力訓練點

1.使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識.

2.對學生滲透數形結合的思想方法.

(三)德育滲透點

使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點.

(四)美育滲透點

通過畫,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受.

二、學法引導

1.教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導—反饋矯正”的教學方法.

2.學生學法:動手畫,動腦概括的三要素,動手、動腦做練習.

三、重點、難點、疑點及解決辦法

1.重點:正確掌握畫法和用上的點表示有理數.

2.難點:有理數和上的點的對應關系。

四、課時安排

1課時

五、教具學具準備

電腦、投影儀、自制膠片.

六、師生互動活動設計

師生同步畫,學生概括三要素,師出示投影,生動手動腦練習

七、教學步驟

(一)創(chuàng)設情境,引入新課

師:大家知識溫度計的用途是什么?

生:溫度計可以測量溫度

(出示投影1)

三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.

師:三個溫度計所表示的溫度是多少?

生:2℃,-5℃,0℃.

我們能否用類似溫度計的圖形表示有理數呢?

這種表示數的圖形就是今天我們要學的內容—(板書課題).

【教法說明】從溫度計用標有讀數的刻度來表示溫度的高低這個事實出發(fā),引出本節(jié)課所要學的內容—.再從溫度計這個實物形象抽象出來研究.既激發(fā)了學生的學習興趣,又使學生受到把實際問題抽象成數學問題的訓練,培養(yǎng)了用數學的意識.

(二)探索新知,講授新課

1.的畫法

與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:

第一步:畫直線定原點 原點表示0(相當于溫度計上的0℃).

第二步:規(guī)定從原點向右的為正方向 那么相反的方向(從原點向左)則為負方向.(相當于溫度計上℃以上為正,0℃以下為負).

第三步:選擇適當的長度為單位長度 (相當于溫度計上每1℃占1小格的長度).

【教法說明】教師邊講解邊示范,學生跟著一起畫圖.培養(yǎng)學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法.

讓學生觀察畫好的直線,思考以下問題:

(出示投影1)

(1)原點表示什么數?

(2)原點右方表示什么數?原點左方表示什么數?

(3)表示+2的點在什么位置?表示-1的點在什么位置?

(4)原點向右0.5個單位長度的A點表示什么數?原點向左 個單位長度的B點表示什么數?

根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義.

學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準備更正或補充.

【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力.

教師根據學生回答給予肯定或否定,糾正后板書.

2.的定義:規(guī)定了原點、正方向和單位長度的直線叫做.

向學生提出問題:上為什么要規(guī)定原點、正方向和單位長度呢?它們各起什么作用?引導學生結合溫度訂正確回答這個問題,從而知道三要素的重要性,了解三者缺一不可,認識和掌握判斷一條直線是不是的依據.

學生活動:同桌之間、前后桌之間討論.使學生從直觀認識上升到理性認識.

3.嘗試反饋,鞏固練習

請大家回答下列問題:

(出示投影2)

(1)有人說一條直線是一條,對不對?為什么?

(2)下列所畫對不對?如果不對,指出錯在哪里?

學生活動:學生思考,不準討論,想好后舉手回答.

讓其他學生對其回答進行評判,對確有疑問的題目,教師給予講解.

【教法說明】此組練習的目的是鞏固的概念.

答案:(2)①缺原點,②缺正方向,③不是射線而是直線,④缺單位長度,⑥提醒學生注意在同一數輪上必須用同一單位長度進行度量.⑤⑦是,同時⑦為學習平面直角坐標系打基礎.

4.有理數與上點的關系

通過剛才的學習我們知道所有的有理數都可以用上的點來表示.

例1 畫一條,并畫出表示下列各數的點:

1,5,0,-2.5, .

學生練習:同學們在練習本上畫一條,然后在上標出各點,一名學生板演.教師巡回指導,發(fā)現問題及時糾正.

【教法說明】讓學生動手自己畫,有助于培養(yǎng)學生實際操作能力.例1是把給定的有理數用上的點來表示,完成由“數”到“形”的思維過程,有助于學生加深對概念的理解.

(出示投影4)

例2 指出上 A、B、C、D、E各點分別表示什么數?

先讓學生思考一會,然后學生舉手回答

解:A表示-3;B表示 ; C表示3;D表示 ;E表 .

【教法說明】例2是讓學生說出上的點表示的有理數,完成了由“形”到“數”的思維過程.例1、例2從各自不同的兩個側面,體現出數形結合,滲透了數形之間相互轉化的數學思想.

5.嘗試反饋,鞏固練習

(出示投影5)

①說出下面上A、B、C、D、O、M各點表示什么數?

②將-3, ,1.5,-6, ,2.25,,-5,1

各數用上的點表示出來.

【教法說明】①題由點讀數練習,②題由數找點練習,進一步鞏固加深本節(jié)所學的內容.

(三)歸納小結

師:①是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示數與形之間的內在聯系,是幫助學生理解數學、學習數學的重要思想方法.本章有理數的有關性質和運算都是結合進行的.

②掌握三要素,正確地畫出,提醒同學們,所有的有理數都可用上的各點來表示,但是反過來不成立,即上的各點,并不是都表示有理數.以后再研究.

八、隨堂練習

1.判斷題

(1)直線就是( )

(2)是直線( )

(3)任何一個有理數都可以用上的點來表示()

(4)上到原點距離等于3的點所表示的數是+3( )

(5)上原點左邊表示的數是負數,右邊表示的數是正數,原點表示的數是0.( )

2.畫一條數輪,并畫出表示下列各數的點

,-5,0,+3.2,-1.4

九、布置作業(yè)

(-)必做題:課本第56頁1、2.

(二)選做題:課本第56頁及第57頁B組l.

(三)思考題:

①在數輪上距原點3個單位長度的點表示的數是_____________

②在數輪上表示-6的點在原點的___________側,距離原點___________個單位長度,表示+6的點在原點的__________側,距離原點____________個單位長度.

【教法說明】由于學生在知識、技能、能力方面發(fā)展不盡相同,所以分層次地布置作業(yè) ,兼顧學習有困難和學有余力的學生,使他們都能達到大綱中規(guī)定的基本要求,并使部分學生能發(fā)展他們的數學才能.

十、板書設計

隨堂練習答案

1.× √ √ × √ 2.略

作業(yè) 答案

(一)必做題

1.(1)依次是

(2)依次是

2.依次是

(二)選做題:

3.略 B組1.(1)-6,(2)-1,(3)3;(4)0

(三)思考題:① ②左,6,右,6

探究活動

(1)在上表示出距離原點3個單位長度和4.5個單位長度的點,并用“<”號將這些點所表示的數排列起來;

(2)寫出比-4大但不大于2的所有整數.

分析:畫時,的三要素:原點、正方向、單位長度缺一不可.

(1)在上,距離原點3個單位長度和4.5個單位長度的點各有兩個,它們分別在原點兩旁且關于原點對稱.畫出這些點,這些點所表示的數的大小就排列出來了;

(2)在上畫出大于-4但不大于2的數的范圍,這個范圍內整數點所表示的整數就是所求.“不大于2”的意思是小于或等于2.

解:(1)上,距離原點3個單位的點是+3和-3,距離原點4.5個單位的點是+4.5和-4.5.

由圖看出:

-4.5<-3<3<4.5

(2)在上畫出大于-4但不大于2的數的范圍.

由圖知,大于-4但不大于2的整數是:-3,-2,-1,0,1,2.

點評:利用,數形結合,是解這一類問題的好方法.

滬科版七年級上冊數學教案2

教學目標

1.了解的概念和的畫法,掌握的三要素;

2.會用上的點表示有理數,會利用比較有理數的大小;

3.使學生初步了解數形結合的思想方法,培養(yǎng)學生相互聯系的觀點。

教學建議

一、重點、難點分析

本節(jié)的重點是初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數,并會比較有理數的大小.難點是正確理解有理數與上點的對應關系。的概念包含兩個內容,一是的三要素:原點、正方向、單位長度缺一不可,二是這三個要素都是規(guī)定的。另外應該明確的是,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數。通過學習,使學生初步掌握用解決問題的方法,為今后充分利用“”這個工具打下基礎.

二、知識結構

有了,數和形得到了初步結合,這有利于對數學問題的研究,數形結合是理解數學、學好數學的重要思想方法,本課知識要點如下表:

定義

三要素

 應用

 數形結合

規(guī)定了原點、正方向、單位長度的直線叫

 

原 點

正方向

單位長度

幫助理解有理數的概念,每個有理數都可用上的點表示,但上的點并非都是有理數

 比較有理數大小,上右邊的數總比左邊的數要大

在理解并掌握概念的基礎之上,要會畫出,能將已知數在上表示出來,能說出上已知點所表示的數,要知道所有的有理數都可以用上的點表示,會利用比較有理數的大小。

三、教法建議

小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.是一條具有三個要素(原點、正方向、單位長度)的直線,這三個要素是判斷一條直線是不是的根本依據。與它所在的位置無關,但為了教學上需要,一般水平放置的,規(guī)定從原點向右為正方向。要注意原點位置選擇的任意性。

關于有理數與上的點的對應關系,應該明確的是有理數可以用上的點表示,但上的點與有理數并不存在一一對應的關系。根據幾個有理數在上所對應的點的相互位置關系,應該能夠判斷它們之間的大小關系。通過點與有理數的對應關系及其應用,逐步滲透數形結合的思想。

四、的相關知識點

1.的概念

(1)規(guī)定了原點、正方向和單位長度的直線叫做.

這里包含兩個內容:一是的三要素:原點、正方向、單位長度缺一不可.二是這三個要素都是規(guī)定的.

(2)能形象地表示數,所有的有理數都可用上的點表示,但上的點所表示的數并不都是有理數.

以是理解有理數概念與運算的重要工具.有了,數和形得到初步結合,數與表示數的圖形(如)相結合的思想是學習數學的重要思想.另外,能直觀地解釋相反數,幫助理解絕對值的意義,還可以比較有理數的大小.因此,應重視對的學習.

2.的畫法

(1)畫直線(一般畫成水平的)、定原點,標出原點“O”.

(2)取原點向右方向為正方向,并標出箭頭.

(3)選適當的長度作為單位長度,并標出…,-3,-2,-1,1,2,3…各點。具體如下圖。

(4)標注數字時,負數的次序不能寫錯,如下圖。

3.用比較有理數的大小

(1)在上表示的兩數,右邊的數總比左邊的數大。

(2)由正、負數在上的位置可知:正數都有大于0,負數都小于0,正數大于一切負數。

(3)比較大小時,用不等號順次連接三個數要防止出現“ ”的寫法,正確應寫成“ ”。

五、定義的理解

1.規(guī)定了原點、正方向和單位長度的直線叫做,如圖1所示.

2.所有的有理數,都可以用上的點表示.例如:在上畫出表示下列各數的點(如圖2).

A點表示-4; B點表示-1.5;

O點表示0; C點表示3.5;

D點表示6.

從上面的例子不難看出,在上表示的兩個數,右邊的數總比左邊的數大,又從正數和負數在上的位置,可以知道:

正數都大于0,負數都小于0,正數大于一切負數.

因為正數都大于0,反過來,大于0的數都是正數,所以,我們可以用 ,表示 是正數;反之,知道 是正數也可以表示為 。

同理, ,表示 是負數;反之 是負數也可以表示為 。

3.正常見幾種錯誤

1)沒有方向

2)沒有原點

3)單位長度不統一

教學設計示例

(一)

教學目標

1.使學生正確理解的意義,掌握的三要素;

2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;

3.使學生初步理解數形結合的思想方法.

教學重點和難點

重點:初步理解數形結合的思想方法,正確掌握畫法和用上的點表示有理數.

難點:正確理解有理數與上點的對應關系.

課堂教學過程 設計

一、從學生原有認知結構提出問題

1.小學里曾用“射線”上的點來表示數,你能在射線上表示出1和2嗎?

2.用“射線”能不能表示有理數?為什么?

3.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

待學生回答后,教師指出,這就是我們本節(jié)課所要學習的內容——.

二、講授新課

讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

2.規(guī)定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

在此基礎上,給出的定義,即規(guī)定了原點、正方向和單位長度的直線叫做.

進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.

三、運用舉例 變式練習

例1 畫一個,并在上畫出表示下列各數的點:

例2 指出上A,B,C,D,E各點分別表示什么數.

課堂練習

示出來.

2.說出下面上A,B,C,D,O,M各點表示什么數?

最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.

四、小結

指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

本節(jié)課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.

五、作業(yè)

1.在下面上:

(1)分別指出表示-2,3,-4,0,1各數的點.

(2)A,H,D,E,O各點分別表示什么數?

2.在下面上,A,B,C,D各點分別表示什么數?

3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

課堂教學設計說明

從學生已有知識、經驗出發(fā)研究新問題,是我們組織教學的一個重要原則.小學里曾學過利用射線上的點來表示數,為此我們可引導學生思考:把射線怎樣做些改進就可以用來表示有理數?伴以溫度計為模型,引出的概念.教學中,的三要素中的每一要素都要認真分析它的作用,使學生從直觀認識上升到理性認識.直線、都是非常抽象的數學概念,當然對初學者不宜講的過多,但適當引導學生進行抽象的思維活動還是可行的.例如,向學生提問:在上對應一億萬分之一的點,你能畫出來嗎?它是不是存在等.

滬科版七年級上冊數學教案3

教學目標 1,掌握絕對值的概念,有理數大小比較法則.

2,學會絕對值的計算,會比較兩個或多個有理數的大小.

3.體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想.

教學難點 兩個負數大小的比較

知識重點 絕對值的概念

教學過程(師生活動) 設計理念

設置情境

引入課題 星期天黃老師從學校出發(fā),開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規(guī)定向東為正,①用有理數表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?

學生思考后,教師作如下說明:

實際生活中有些問題只關注量的具體值,而與相反

意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;

觀察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.

學生回答后,教師說明如下:

數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;

一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|

例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0 這個例子中,第一問是相反意義的量,用正負

數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體

驗數學知識與生活實際的聯系.

因為絕對值概念的幾何意義是數形轉化的典型

模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備.

合作交流

探究規(guī)律 例1求下列各數的絕對值,并歸納求有理數a的絕對

有什么規(guī)律?、

-3,5,0,+58,0.6

要求小組討論,合作學習.

教師引導學生利用絕對值的意義先求出答案,然后觀察原數與它的絕對值這兩個數據的特征,并結合相反數的意義,最后總結得出求絕對值法則(見教科書第15頁).

鞏固練習:教科書第15頁練習.

其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區(qū)別. 求一個數的絕時值的法則,可看做是絕對值概

念的一個應用,所以安排此例.

學生能做的盡量讓學生完成,教師在教學過程中只是組織者.本著這個理念,設計這個討論.

結合實際發(fā)現新知 引導學生看教科書第16頁的圖,并回答相關問題:

把14個氣溫從低到高排列;

把這14個數用數軸上的點表示出來;

觀察并思考:觀察這些點在數軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數可以比較大小嗎?

應怎樣比較兩個數的大小呢?

學生交流后,教師總結:

14個數從左到右的順序就是溫度從低到高的順序:

在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數.

在上面14個數中,選兩個數比較,再選兩個數試試,通過比較,歸納得出有理數大小比較法則

想象練習:想象頭腦中有一條數軸,其上有兩個點,分別表示數一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數的大小之間的關系.

要求學生在頭腦中有清晰的圖形. 讓學生體會到數學的規(guī)定都來源于生活,每一種規(guī)定都有它的合理性

數在大小比較法則第2點學生較難掌握,要從絕對值的意義和數軸上的數左小右大這方面結合起來來了解,所以配置想象練習 ,加強數與形的想象。

課堂練習 例2,比較下列各數的大小(教科書第17頁例)

比較大小的過程要緊扣法則進行,注意書寫格式

練習:第18頁練習

小結與作業(yè)

課堂小結 怎樣求一個數的絕對值,怎樣比較有理數的大小?

本課作業(yè) 1, 必做題:教產書第19頁習題1,2,第4,5,6,10

2, 選做題:教師自行安排

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1,情景的創(chuàng)設出于如下考慮:①體現數學知識與生活實際的緊密聯系,讓學生在這些熟悉的日常生活情境中獲得數學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發(fā)學習的興趣.②教材中數的絕對值概念是根據幾何意義來定義的(其本質是將數轉化為形來解釋,是難點),然后通過練習歸納出求有理數的絕對值的規(guī)律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受.

2, 一個數絕對值的法則,實際上是絕對值概念的直接應用,也體現著分類的數學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發(fā)展和學生的能力培養(yǎng)角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。

3, 有理數大小的比較法則是大小規(guī)定的直接歸納,其中第(2)條學生較難理解,教學

中要結合絕對值的意義和規(guī)定:“在數軸上表示有理數,它們從左到右的順序就是從小到

大的順序”,幫助學生建立“數軸上越左邊的點到原點的距離越大,所以表示的數越小”這個數形結合的模型.為此設置了想象練習.

4,本節(jié)課的內容包括絕對值的概念和數的絕對值的求法、有理數大小比較的法則,教

學內容很多,學生接受起來可能會有困難,建議把有理數的大小比較移到下節(jié)課教學。

滬科版七年級上冊數學教案4

教學目標:

1.掌握數軸三要素,能正確畫出數軸.

2.能將已知數在數軸上表示出來,能說出數軸上已知點所表示的數.

教學重點:數軸的概念.

教學難點:從直觀認識到理性認識,從而建立數軸概念.

教與學互動設計:

(一)創(chuàng)設情境,導入新課

課件展示 課本P7的“問題”(學生畫圖)

(二)合作交流,解讀探究

師:對照大家畫的圖,為了使表達更清楚,我們把0左右兩邊的數分別用正數和負數來表示,即用一直線上的點把正數、負數、0都表示出來,也就是本節(jié)要學的內容——數軸.

【點撥】(1)引導學生學會畫數軸.

第一步:畫直線,定原點.

第二步:規(guī)定從原點向右的方向為正(左邊為負方向).

第三步:選擇適當的長度為單位長度(據情況而定).

第四步:拿出教學溫度計,由學生觀察溫度計的結構和數軸的結構是否有共同之處.

對比思考 原點相當于什么;正方向與什么一致;單位長度又是什么?

(2)有了以上基礎,我們可以來試著定義數軸:

規(guī)定了原點、正方向和單位長度的直線叫數軸.

做一做 學生自己練習畫出數軸.

試一試 你能利用你自己畫的數軸上的點來表示數4,1.5,-3,-2,0嗎?

討論 若a是一個正數,則數軸上表示數a的點在原點的什么位置上?與原點相距多少個單位長度?表示-a的點在原點的什么位置上?與原點又相距多少個單位長度?

小結 整數在數軸上都能找到點表示嗎?分數呢?

可見,所有的        都可以用數軸上的點表示;        都在原點的左邊,        都在原點的右邊.

(三)應用遷移,鞏固提高

【例1】 下列所畫數軸對不對?如果不對,指出錯在哪里?

【例2】試一試:用你畫的數軸上的點表示4,1.5,-3,-,0.

【例3】下列語句:

①數軸上的點只能表示整數;②數軸是一條直線;③數軸上的一個點只能表示一個數;④數軸上找不到既不表示正數,又不表示負數的點;⑤數軸上的點所表示的數都是有理數.正確的說法有(  )

A.1個   B.2個  C.3個  D.4個

【例4】在數軸上表示-2 和1,并根據數軸指出所有大于-2 而小于1 的整數.

【例5】數軸上表示整數的點稱為整點,某數軸的單位長度是1cm,若在這個數軸上隨意畫出一條長為2000cm的線段AB,則線段AB蓋住的整點有(  )

A.1998個或1999個 B.1999個或2000個

C.2000個或2001個 D.2001個或2002個

(四)總結反思,拓展升華

數軸是非常重要的工具,它使數和直線上的點建立了一一對應的關系.它揭示了數和形的內在聯系,為我們今后進一步研究問題提供了新方法和新思想.大家要掌握數軸的三要素,正確畫出數軸.提醒大家,所有的有理數都可以用數軸上的相關點來表示,但反過來并不成立,即數軸上的點并不都表示有理數.

(五)課堂跟蹤反饋

夯實基礎

1.規(guī)定了     、     、      的直線叫做數軸,所有的有理數都可從用      上的點來表示.

2.P從數軸上原點開始,向右移動2個單位長度,再向左移5個單位長度,此時P點所表示的數是    .

3.把數軸上表示2的點移動5個單位長度后,所得的對應點表示的數是(  )

A.7 B.-3

C.7或-3 D.不能確定

4.在數軸上,原點及原點左邊的點所表示的數是(  )

A.正數 B.負數

C.不是負數 D.不是正數

5.數軸上表示5和-5的點離開原點的距離是    ,但它們分別表示 .

提升能力

6.與原點距離為3.5個單位長度的點有2個,它們分別是    和    .

7.畫出一條數軸,并把下列數表示在數軸上:

+2,-3,0.5,0,-4.5,4,3.

開放探究

8.在數軸上與-1相距3個單位長度的點有    個,為    ;長為3個單位長度的木條放在數軸上,最多能覆蓋    個整數點.

9.下列四個數中,在-2到0之間的數是(  )

A.-1 B.1 C.-3 D.3

滬科版七年級上冊數學教案5

教學目標:

1.理解有理數的意義.

2.能把給出的有理數按要求分類.

3.了解0在有理數分類中的作用.

教學重點:會把所給的各數填入它所在的數集圖里.

教學難點:掌握有理數的兩種分類.

教與學互動設計:

(一)創(chuàng)設情境,導入新課

討論交流 現在,同學們都已經知道除了我們小學里所學的數之外,還有另一種形式的數,即負數.大家討論一下,到目前為止,你已經認識了哪些類型的數.

(二)合作交流,解讀探究

3,5.7,-7,-9,-10,0, , ,-3 , -7.4,5.2…

議一議 你能說說這些數的特點嗎?

學生回答,并相互補充:有小學學過的正整數、0、分數,也有負整數、負分數.

說明 我們把所有的這些數統稱為有理數.

試一試 你能對以上各種類型的數作出一張分類表嗎?

有理數

做一做 以上按整數和分數來分,那可不可以按性質(正數、負數)來分呢,試一試.

有理數

數的集合

把所有正數組成的集合,叫做正數集合.

試一試 試著歸納總結,什么是負數集合、整數集合、分數集合、有理數集合.

(三)應用遷移,鞏固提高

【例1】 把下列各數填入相應的集合內:

,3.1416,0,2004,- ,-0.23456,10%,10.1,0.67,-89

【例2】以下是兩位同學的分類方法,你認為他們分類的結果正確嗎?為什么?

有理數 有理數

(四)總結反思,拓展升華

提問:今天你獲得了哪些知識?

由學生自己小結,然后教師總結:今天我們學習了有理數的定義和兩種分類的方法.我們要能正確地判斷一個數屬于哪一類,要特別注意“0”的正確說法.

下面兩個圈分別表示負數集合和分數集合,你能說出兩個圖的重疊部分表示什么數的集合嗎?

(五)課堂跟蹤反饋

夯實基礎

1.把下列各數填入相應的大括號內:

-7,0.125, ,-3 ,3,0,50%,-0.3

(1)整數集合{};

(2)分數集合{};

(3)負分數集合{ };

(4)非負數集合{ };

(5)有理數集合{ }.

2.下列說法中正確的是(  )

A.整數就是自然數

B. 0不是自然數

C.正數和負數統稱為有理數

D. 0是整數,而不是正數

提升能力

3.字母a可以表示數,在我們現在所學的范圍內,你能否試著說明a可以表示什么樣的數?




11394 主站蜘蛛池模板: 河南包装袋厂家_河南真空袋批发价格_河南服装袋定制-恒源达包装制品 | 大流量卧式砂磨机_强力分散机_双行星双动力混合机_同心双轴搅拌机-莱州市龙跃化工机械有限公司 | 24位ADC|8位MCU-芯易德科技有限公司 | 专业音响设备_舞台音响设备_会议音响工程-首选深圳一禾科技 | 硅PU球场、篮球场地面施工「水性、环保、弹性」硅PU材料生产厂家-广东中星体育公司 | 捷码低代码平台 - 3D数字孪生_大数据可视化开发平台「免费体验」 | 美的商用净水器_美的直饮机_一级代理经销商_Midea租赁价格-厂家反渗透滤芯-直饮水批发品牌售后 | 北京百度网站优化|北京网站建设公司-百谷网络科技 | 石家庄律师_石家庄刑事辩护律师_石家庄取保候审-河北万垚律师事务所 | 潍坊大集网-潍坊信息港-潍坊信息网 | 二手电脑回收_二手打印机回收_二手复印机回_硒鼓墨盒回收-广州益美二手电脑回收公司 | 浙江华锤电器有限公司_地磅称重设备_防作弊地磅_浙江地磅售后维修_无人值守扫码过磅系统_浙江源头地磅厂家_浙江工厂直营地磅 | 广州市哲铭油墨涂料有限公司,水性漆生产研发基地 | 消防设施操作员考试报名时间,报名入口,报考条件 | 陶瓷砂磨机,盘式砂磨机,棒销式砂磨机-无锡市少宏粉体科技有限公司 | 冷柜风机-冰柜电机-罩极电机-外转子风机-EC直流电机厂家-杭州金久电器有限公司 | 重庆小面培训_重庆小面技术培训学习班哪家好【终身免费复学】 | 散热器-电子散热器-型材散热器-电源散热片-镇江新区宏图电子散热片厂家 | 上海平衡机-单面卧式动平衡机-万向节动平衡机-圈带动平衡机厂家-上海申岢动平衡机制造有限公司 | 洛阳防爆合格证办理-洛阳防爆认证机构-洛阳申请国家防爆合格证-洛阳本安防爆认证代办-洛阳沪南抚防爆电气技术服务有限公司 | 拉力机-万能试验机-材料拉伸试验机-电子拉力机-拉力试验机厂家-冲击试验机-苏州皖仪实验仪器有限公司 | 郑州外墙清洗_郑州玻璃幕墙清洗_郑州开荒保洁-河南三恒清洗服务有限公司 | 上海律师事务所_上海刑事律师免费咨询平台-煊宏律师事务所 | 生产自动包装秤_颗粒包装秤_肥料包装秤等包装机械-郑州鑫晟重工科技有限公司 | 绿萝净除甲醛|深圳除甲醛公司|测甲醛怎么收费|培训机构|电影院|办公室|车内|室内除甲醛案例|原理|方法|价格立马咨询 | 球磨机,节能球磨机价格,水泥球磨机厂家,粉煤灰球磨机-吉宏机械制造有限公司 | 北京遮阳网-防尘盖土网-盖土草坪-迷彩网-防尘网生产厂家-京兴科技 | 体检车_移动CT车_CT检查车_CT车_深圳市艾克瑞电气有限公司移动CT体检车厂家-深圳市艾克瑞电气有限公司 | 广东佛电电器有限公司|防雷开关|故障电弧断路器|智能量测断路器 广东西屋电气有限公司-广东西屋电气有限公司 | 校服厂家,英伦校服定做工厂,园服生产定制厂商-东莞市艾咪天使校服 | 福州时代广告制作装饰有限公司-福州广告公司广告牌制作,福州展厅文化墙广告设计, | 阿米巴企业经营-阿米巴咨询管理-阿米巴企业培训-广东键锋企业管理咨询有限公司 | 阀门智能定位器_电液动执行器_气动执行机构-赫尔法流体技术(北京)有限公司 | 岸电电源-60HZ变频电源-大功率变频电源-济南诚雅电子科技有限公司 | 北京易通慧公司从事北京网站优化,北京网络推广、网站建设一站式服务商-北京网站优化公司 | 玖容气动液压设备有限公司-气液增压缸_压力机_增压机_铆接机_增压器 | 天坛家具官网 | 电动卫生级调节阀,电动防爆球阀,电动软密封蝶阀,气动高压球阀,气动对夹蝶阀,气动V型调节球阀-上海川沪阀门有限公司 | 工业雾炮机_超细雾炮_远程抑尘射雾器-世纪润德环保设备 | 防勒索软件_数据防泄密_Trellix(原McAfee)核心代理商_Trellix(原Fireeye)售后-广州文智信息科技有限公司 | 定硫仪,量热仪,工业分析仪,马弗炉,煤炭化验设备厂家,煤质化验仪器,焦炭化验设备鹤壁大德煤质工业分析仪,氟氯测定仪 |