小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴

教育巴巴 > 初中教案 > 九年級(jí)教案 > 數(shù)學(xué)教案 >

浙教版2021九年級(jí)數(shù)學(xué)教案

時(shí)間: 曉晴2 數(shù)學(xué)教案

數(shù)學(xué)作為初中教學(xué)中的一門重要學(xué)科,不僅能夠鍛煉學(xué)生的思維能力,而且還有助于培養(yǎng)他們的探究意識(shí)。這次小編給大家整理了浙教版2021九年級(jí)數(shù)學(xué)教案,供大家閱讀參考,希望大家喜歡。

浙教版2021九年級(jí)數(shù)學(xué)教案

浙教版2021九年級(jí)數(shù)學(xué)教案1

一、情境導(dǎo)入

如圖是兩個(gè)自動(dòng)扶梯,甲、乙兩人分別從1、2號(hào)自動(dòng)扶梯上樓,誰(shuí) 先到達(dá)樓頂?如果AB和A′B′相 等而∠α和∠ β大小不同,那么它們的高度AC 和A′C′相等嗎?AB、 AC、BC與∠α,A′B′、A′C′、B′C′與∠β之間有什么關(guān)系呢? --- ---導(dǎo)出新課

二、新課教學(xué)

1、合作探究

見課本

2、三角函數(shù) 的定義在Rt△ABC中,如果銳角A確定,那么∠A的對(duì)邊與斜邊的比、鄰邊與斜邊的比也隨之確定.

∠A 的對(duì)邊與鄰邊的比叫 做∠A的正弦(sine),記作s inA,即s in A=

∠A的鄰邊與斜邊的比叫做∠A的余弦(cosine),記作cosA,即cosA=

∠A的對(duì)邊與∠A的鄰邊的比叫做∠A的正切(tangent) ,記作tanA,即

銳角A的正弦、余弦和正切統(tǒng)稱∠A的三角函數(shù).

注意 :sinA,cosA, tanA都是一個(gè)完整的符號(hào),單獨(dú)的 “sin”沒有意義 ,其中A前面的“∠”一般省略不寫。

師:根據(jù)上面的三角函數(shù)定義,你知道正弦與余弦三角函數(shù)值的取值范圍嗎 ?

師:(點(diǎn)撥)直角三角形中,斜邊大于直角邊.

生:獨(dú)立思考,嘗試回答 ,交流結(jié)果.

明確:0<sina<1,0 p="" <cosa<1.

鞏固練 習(xí):課內(nèi)練習(xí)T1、作業(yè)題T1、2

3、如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.

分析:由勾股定理求出AC的長(zhǎng)度,再根據(jù)直角三角形中銳角三角函數(shù)值與三邊之間的關(guān)系求出各函數(shù)值。

師:觀察以上 計(jì)算結(jié)果,你 發(fā)現(xiàn)了什么?

明確:sinA=cosB,cosA=sinB,tanA?ta nB=1

4 、課堂練習(xí):課本課內(nèi)練習(xí)T2、3,作業(yè)題T3、4、5、6

三、課 堂小結(jié):談?wù)劷裉?的收獲

1、內(nèi)容總結(jié)

(1)在RtΔA BC中,設(shè)∠C= 900,∠α為RtΔABC的一個(gè)銳角,則

∠α的正弦 , ∠α的余弦 ,

∠α的正切

(2)一般地,在Rt△ ABC中, 當(dāng)∠C=90°時(shí),sinA=cosB,cosA=sinB,tanA?tanB=1

2、 方法歸納

在涉及直角三角形邊角關(guān)系時(shí), 常借助三角函數(shù)定義來(lái)解

浙教版2021九年級(jí)數(shù)學(xué)教案2

直接開平方法

理解一元二次方程“降次”——轉(zhuǎn)化的數(shù)學(xué)思想,并能應(yīng)用它解決一些具體問題.

提出問題,列出缺一次項(xiàng)的一元二次方程ax2+c=0,根據(jù)平方根的意義解出這個(gè)方程,然后知識(shí)遷移到解a(ex+f)2+c=0型的一元二次方程.

重點(diǎn)

運(yùn)用開平方法解形如(x+m)2=n(n≥0)的方程,領(lǐng)會(huì)降次——轉(zhuǎn)化的數(shù)學(xué)思想.

難點(diǎn)

通過根據(jù)平方根的意義解形如x2=n的方程,將知識(shí)遷移到根據(jù)平方根的意義解形如(x+m)2=n(n≥0)的方程.

一、復(fù)習(xí)引入

學(xué)生活動(dòng):請(qǐng)同學(xué)們完成下列各題.

問題1:填空

(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.

解:根據(jù)完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.

問題2:目前我們都學(xué)過哪些方程?二元怎樣轉(zhuǎn)化成一元?一元二次方程與一元一次方程有什么不同?二次如何轉(zhuǎn)化成一次?怎樣降次?以前學(xué)過哪些降次的方法?

二、探索新知

上面我們已經(jīng)講了x2=9,根據(jù)平方根的意義,直接開平方得x=±3,如果x換元為2t+1,即(2t+1)2=9,能否也用直接開平方的方法求解呢?

(學(xué)生分組討論)

老師點(diǎn)評(píng):回答是肯定的,把2t+1變?yōu)樯厦娴膞,那么2t+1=±3

即2t+1=3,2t+1=-3

方程的兩根為t1=1,t2=-2

例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2

分析:(1)x2+4x+4是一個(gè)完全平方公式,那么原方程就轉(zhuǎn)化為(x+2)2=1.

(2)由已知,得:(x+3)2=2

直接開平方,得:x+3=±2

即x+3=2,x+3=-2

所以,方程的兩根x1=-3+2,x2=-3-2

解:略.

例2 市政府計(jì)劃2年內(nèi)將人均住房面積由現(xiàn)在的10 m2提高到14.4 m2,求每年人均住房面積增長(zhǎng)率.

分析:設(shè)每年人均住房面積增長(zhǎng)率為x,一年后人均住房面積就應(yīng)該是10+10x=10(1+x);二年后人均住房面積就應(yīng)該是10(1+x)+10(1+x)x=10(1+x)2

解:設(shè)每年人均住房面積增長(zhǎng)率為x,

則:10(1+x)2=14.4

(1+x)2=1.44

直接開平方,得1+x=±1.2

即1+x=1.2,1+x=-1.2

所以,方程的兩根是x1=0.2=20%,x2=-2.2

因?yàn)槊磕耆司》棵娣e的增長(zhǎng)率應(yīng)為正的,因此,x2=-2.2應(yīng)舍去.

所以,每年人均住房面積增長(zhǎng)率應(yīng)為20%.

(學(xué)生小結(jié))老師引導(dǎo)提問:解一元二次方程,它們的共同特點(diǎn)是什么?

共同特點(diǎn):把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元一次方程.我們把這種思想稱為“降次轉(zhuǎn)化思想”.

三、鞏固練習(xí)

教材第6頁(yè) 練習(xí).

四、課堂小結(jié)

本節(jié)課應(yīng)掌握:由應(yīng)用直接開平方法解形如x2=p(p≥0)的方程,那么x=±p轉(zhuǎn)化為應(yīng)用直接開平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,達(dá)到降次轉(zhuǎn)化之目的.若p<0則方程無(wú)解.

五、作業(yè)布置

浙教版2021九年級(jí)數(shù)學(xué)教案3

一、素質(zhì)教育目標(biāo)

(一)知識(shí)教學(xué)點(diǎn)

使學(xué)生知道當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也都固定這一事實(shí).

(二)能力訓(xùn)練點(diǎn)

逐步培養(yǎng)學(xué)生會(huì)觀察、比較、分析、概括等邏輯思維能力.

(三)德育滲透點(diǎn)

引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.

二、教學(xué)重點(diǎn)、難點(diǎn)

1.重點(diǎn):使學(xué)生知道當(dāng)銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也是固定的這一事實(shí).

2.難點(diǎn):學(xué)生很難想到對(duì)任意銳角,它的對(duì)邊、鄰邊與斜邊的比值也是固定的事實(shí),關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.

三、教學(xué)步驟

(一)明確目標(biāo)

1.如圖6-1,長(zhǎng)5米的梯子架在高為3米的墻上,則A、B間距離為多少米?

2.長(zhǎng)5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?

3.若長(zhǎng)5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?

4.若長(zhǎng)5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?

前兩個(gè)問題學(xué)生很容易回答.這兩個(gè)問題的設(shè)計(jì)主要是引起學(xué)生的回憶,并使學(xué)生意識(shí)到,本章要用到這些知識(shí).但后兩個(gè)問題的設(shè)計(jì)卻使學(xué)生感到疑惑,這對(duì)初三年級(jí)這些好奇、好勝的學(xué)生來(lái)說(shuō),起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時(shí)使學(xué)生對(duì)本章所要學(xué)習(xí)的內(nèi)容的特點(diǎn)有一個(gè)初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識(shí)是不能解決的,解決這類問題,關(guān)鍵在于找到一種新方法,求出一條邊或一個(gè)未知銳角,只要做到這一點(diǎn),有關(guān)直角三角形的其他未知邊角就可用學(xué)過的知識(shí)全部求出來(lái).

通過四個(gè)例子引出課題.

(二)整體感知

1.請(qǐng)每一位同學(xué)拿出自己的三角板,分別測(cè)量并計(jì)算30°、45°、60°角的對(duì)邊、鄰邊與斜邊的比值.

學(xué)生很快便會(huì)回答結(jié)果:無(wú)論三角尺大小如何,其比值是一個(gè)固定的值.程度較好的學(xué)生還會(huì)想到,以后在這些特殊直角三角形中,只要知道其中一邊長(zhǎng),就可求出其他未知邊的長(zhǎng).

2.請(qǐng)同學(xué)畫一個(gè)含40°角的直角三角形,并測(cè)量、計(jì)算40°角的對(duì)邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學(xué)生可能會(huì)想到,當(dāng)銳角取其他固定值時(shí),其對(duì)邊、鄰邊與斜邊的比值也是固定的嗎?

這樣做,在培養(yǎng)學(xué)生動(dòng)手能力的同時(shí),也使學(xué)生對(duì)本節(jié)課要研究的知識(shí)有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.

(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過程

1.通過動(dòng)手實(shí)驗(yàn),學(xué)生會(huì)猜想到“無(wú)論直角三角形的銳角為何值,它的對(duì)邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個(gè)命題呢?學(xué)生這時(shí)的思維很活躍.對(duì)于這個(gè)問題,部分學(xué)生可能能解決它.因此教師此時(shí)應(yīng)讓學(xué)生展開討論,獨(dú)立完成.

2.學(xué)生經(jīng)過研究,也許能解決這個(gè)問題.若不能解決,教師可適當(dāng)引導(dǎo):

若一組直角三角形有一個(gè)銳角相等,可以把其

頂點(diǎn)A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學(xué)們能解決這個(gè)問題嗎?引導(dǎo)學(xué)生獨(dú)立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴

形中,∠A的對(duì)邊、鄰邊與斜邊的比值,是一個(gè)固定值.

通過引導(dǎo),使學(xué)生自己獨(dú)立掌握了重點(diǎn),達(dá)到知識(shí)教學(xué)目標(biāo),同時(shí)培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.

而前面導(dǎo)課中動(dòng)手實(shí)驗(yàn)的設(shè)計(jì),實(shí)際上為突破難點(diǎn)而設(shè)計(jì).這一設(shè)計(jì)同時(shí)起到培養(yǎng)學(xué)生思維能力的作用.

練習(xí)題為 作了孕伏同時(shí)使學(xué)生知道任意銳角的對(duì)邊與斜邊的比值都能求出來(lái).

(四)總結(jié)與擴(kuò)展

1.引導(dǎo)學(xué)生作知識(shí)總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過動(dòng)手實(shí)驗(yàn)、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對(duì)邊、鄰邊與斜邊的比值也是固定的.

教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過同學(xué)們自己動(dòng)手實(shí)驗(yàn),大膽猜測(cè)和積極思考,我們發(fā)現(xiàn)了一個(gè)新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動(dòng)學(xué)知識(shí)為主動(dòng)發(fā)現(xiàn)問題,培養(yǎng)自己的創(chuàng)新意識(shí).

2.擴(kuò)展:當(dāng)銳角為30°時(shí),它的對(duì)邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時(shí),它的對(duì)邊與斜邊的比值也是固定的.如果知道這個(gè)比值,已知一邊求其他未知邊的問題就迎刃而解了.看來(lái)這個(gè)比值很重要,下節(jié)課我們就著重研究這個(gè)“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過這種擴(kuò)展,不僅對(duì)正、余弦概念有了初步印象,同時(shí)又激發(fā)了學(xué)生的興趣.

四、布置作業(yè)

本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.

浙教版2021九年級(jí)數(shù)學(xué)教案4

教學(xué)目標(biāo)

1、在把實(shí)際問題轉(zhuǎn)化為一元二次方程的模型的過程中,形成對(duì)一元二次方程的感性認(rèn)識(shí)。

2、理解一元二次方程的定義,能識(shí)別一元二次方程。

3、知道一元二次方程的一般形式,能熟練地把一元二次方程整理成一般形式,能寫出一般形式的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。

重點(diǎn)難點(diǎn)

重點(diǎn):能建立一元二次方程模型,把一元二次方程整理成一般形式。

難點(diǎn):把實(shí)際問題轉(zhuǎn)化為一元二次方程的模型。

教學(xué)過程

(一)創(chuàng)設(shè)情境

前面我們?cè)褜?shí)際問題轉(zhuǎn)化成一元一次方程和二元一次方程組的模型,大家已經(jīng)感受到了方程是刻畫現(xiàn)實(shí)世界數(shù)量關(guān)系的工具。本節(jié)課我們將繼續(xù)進(jìn)行建立方程模型的探究。

1、展示課本P.2問題一

引導(dǎo)學(xué)生設(shè)人行道寬度為xm,表示草坪邊長(zhǎng)為35-2xm,找等量關(guān)系,列出方程。

(35-2x)2=900①

2、展示課本P.2問題二

引導(dǎo)思考:小明與小亮第一次相遇以后要再次相遇,他們走的路程有何關(guān)系?怎樣用他們?cè)俅蜗嘤龅臅r(shí)間表示他們各自行駛的路程?

通過思考上述問題,引導(dǎo)學(xué)生設(shè)經(jīng)過ts小明與小亮相遇,用s表示他們各自行駛的路程,利用路程方面的等量關(guān)系列出方程2t+×0.01t2=3t②

3、能把①,②化成右邊為0,而左邊是只含有一個(gè)未知數(shù)的二次多項(xiàng)式的形式嗎?讓學(xué)生展開討論,并引導(dǎo)學(xué)生把①,②化成下列形式:

4x2-140x+32③

0.01t2-2t=0④

(二)探究新知

1、觀察上述方程③和④,啟發(fā)學(xué)生歸納得出:

如果一個(gè)方程通過移項(xiàng)可以使右邊為0,而左邊是只含有一個(gè)未知數(shù)的二次多項(xiàng)式,那么這樣的方程叫作一元二次方程,它的一般形式是:

ax2+bx+c=0,(a,b,c是已知數(shù)且a≠0),

其中a,b,c分別叫作二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)。

2、讓學(xué)生指出方程③,④中的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。

(三)講解例題

例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)。

[解]去括號(hào),得3x2+5x-12=x2+4x+4,

化簡(jiǎn),得2x2+x-16=0。

二次項(xiàng)系數(shù)是2,一次項(xiàng)系數(shù)是1,常數(shù)項(xiàng)是-16。

點(diǎn)評(píng):一元二次方程的一般形式ax2+bx+c=0(a≠0)具有兩個(gè)特征:一是方程的右邊為0,二是左邊二次項(xiàng)系數(shù)不能為0。此外要使學(xué)生認(rèn)識(shí)到:二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)和常數(shù)項(xiàng)都是包括符號(hào)的。

例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?

(1)2x+3=5x-2;(2)x2=25;

(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。

[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。

點(diǎn)評(píng):通過一元一次方程與一元二次方程的比較,使學(xué)生深刻理解一元二次方程的意義。

(四)應(yīng)用新知

課本P.4,練習(xí)第3題,

(五)課堂小結(jié)

1、一元二次方程的顯著特征是:只有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是2。

2、一元二次方程的一般形式為:ax2+bx+c=0(a≠0),一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng)都是根據(jù)一般形式確定的。

3、在把實(shí)際問題轉(zhuǎn)化為一元二次方程模型的過程中,體會(huì)學(xué)習(xí)一元二次方程的必要性和重要性。

(六)思考與拓展

當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元二次方程?這時(shí)方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)分別是什么?當(dāng)常數(shù)a,b,c滿足什么條件時(shí),方程(a-1)x2-bx+c=0是一元一次方程?

當(dāng)a≠1時(shí)是一元二次方程,這時(shí)方程的二次項(xiàng)系數(shù)是a-1,一次項(xiàng)系數(shù)是-b;當(dāng)a=1,b≠0時(shí)是一元一次方程。

布置作業(yè)

課本習(xí)題1.1中A組第1,2,3題。

教學(xué)后記:

浙教版2021九年級(jí)數(shù)學(xué)教案5

教學(xué)目標(biāo):

1.探索直角三角形中銳角三角函數(shù)值與三邊之間的關(guān)系。

2.掌握三角函數(shù)定義式 : sinA= , cosA= ,tanA= 。

重點(diǎn)和難點(diǎn)

重點(diǎn): 三角函數(shù)定義的理解 。

難點(diǎn):直角三角形中銳角三角函數(shù)值與三邊之間的關(guān)系及求三角函數(shù)值。

【教學(xué)過程】

一、情境導(dǎo)入

如圖是兩個(gè)自動(dòng)扶梯,甲、乙兩人分別從1、2號(hào)自動(dòng)扶梯上樓,誰(shuí) 先到達(dá)樓頂?如果AB和A′B′相 等而∠α和∠ β大小不同,那么它們的高度AC 和A′C′相等嗎?AB、 AC、BC與∠α,A′B′、A′C′、B′C′與∠β之間有什么關(guān)系呢? --- ---導(dǎo)出新課

二、新課教學(xué)

1、合作探究

見課本

2、三角函數(shù) 的定義在Rt△ABC中,如果銳角A確定,那么∠A的對(duì)邊與斜邊的比、鄰邊與斜邊的比也隨之確定.

∠A 的對(duì)邊與鄰邊的比叫 做∠A的正弦(sine),記作s inA,即s in A=

∠A的鄰邊與斜邊的比叫做∠A的余弦(cosine),記作cosA,即cosA=

∠A的對(duì)邊與∠A的鄰邊的比叫做∠A的正切(tangent) ,記作tanA,即

銳角A的正弦、余弦和正切統(tǒng)稱∠A的三角函數(shù).

注意 :sinA,cosA, tanA都是一個(gè)完整的符號(hào),單獨(dú)的 “sin”沒有意義 ,其中A前面的“∠”一般省略不寫。

師:根據(jù)上面的三角函數(shù)定義,你知道正弦與余弦三角函數(shù)值的取值范圍嗎 ?

師:(點(diǎn)撥)直角三角形中,斜邊大于直角邊.

生:獨(dú)立思考,嘗試回答 ,交流結(jié)果.

明確:0<sina<1,0 p="" <cosa<1.

鞏固練 習(xí):課內(nèi)練習(xí)T1、作業(yè)題T1、2

3、如圖,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.

分析:由勾股定理求出AC的長(zhǎng)度,再根據(jù)直角三角形中銳角三角函數(shù)值與三邊之間的關(guān)系求出各函數(shù)值。

師:觀察以上 計(jì)算結(jié)果,你 發(fā)現(xiàn)了什么?

明確:sinA=cosB,cosA=sinB,tanA?ta nB=1

4 、課堂練習(xí):課本課內(nèi)練習(xí)T2、3,作業(yè)題T3、4、5、6

三、課 堂小結(jié):談?wù)劷裉?的收獲

1、內(nèi)容總結(jié)

(1)在RtΔA BC中,設(shè)∠C= 900,∠α為RtΔABC的一個(gè)銳角,則

∠α的正弦 , ∠α的余弦 ,

∠α的正切

(2)一般地,在Rt△ ABC中, 當(dāng)∠C=90°時(shí),sinA=cosB,cosA=sinB,tanA?tanB=1

2、 方法歸納

在涉及直角三角形邊角關(guān)系時(shí), 常借助三角函數(shù)定義來(lái)解

3799 主站蜘蛛池模板: 电缆隧道在线监测-智慧配电站房-升压站在线监测-江苏久创电气科技有限公司 | 杭州中策电线|中策电缆|中策电线|杭州中策电缆|杭州中策电缆永通集团有限公司 | 咖啡加盟-咖啡店加盟-咖啡西餐厅加盟-塞纳左岸咖啡西餐厅官网 | 阴离子聚丙烯酰胺价格_PAM_高分子聚丙烯酰胺厂家-河南泰航净水材料有限公司 | 高通量组织研磨仪-多样品组织研磨仪-全自动组织研磨仪-研磨者科技(广州)有限公司 | 神马影院-实时更新秒播| 玻璃钢型材_拉挤模具_玻璃钢拉挤设备——滑县康百思 | 地脚螺栓_材质_标准-永年县德联地脚螺栓厂家 | 上海公众号开发-公众号代运营公司-做公众号的公司企业服务商-咏熠软件 | 垃圾压缩设备_垃圾处理设备_智能移动式垃圾压缩设备--山东明莱环保设备有限公司 | 合肥网络推广_合肥SEO网站优化-安徽沃龙First | 半容积式换热器_北京浮动盘管换热器厂家|北京亿丰上达 | 危废处理系统,水泥厂DCS集散控制系统,石灰窑设备自动化控制系统-淄博正展工控设备 | 中视电广_短视频拍摄_短视频推广_短视频代运营_宣传片拍摄_影视广告制作_中视电广 | 防爆暖风机_防爆电暖器_防爆电暖风机_防爆电热油汀_南阳市中通智能科技集团有限公司 | 全自动在线分板机_铣刀式在线分板机_曲线分板机_PCB分板机-东莞市亿协自动化设备有限公司 | 布袋除尘器-单机除尘器-脉冲除尘器-泊头市兴天环保设备有限公司 布袋除尘器|除尘器设备|除尘布袋|除尘设备_诺和环保设备 | 旋片真空泵_真空泵_水环真空泵_真空机组-深圳恒才机电设备有限公司 | 自动螺旋上料机厂家价格-斗式提升机定制-螺杆绞龙输送机-杰凯上料机 | 一体化隔油提升设备-餐饮油水分离器-餐厨垃圾处理设备-隔油池-盐城金球环保产业发展有限公司 | 冷水机-工业冷水机-冷水机组-欧科隆品牌保障 | 液压油缸生产厂家-山东液压站-济南捷兴液压机电设备有限公司 | 大连海岛旅游网>>大连旅游,大连海岛游,旅游景点攻略,海岛旅游官网 | 起好名字_取个好名字_好名网免费取好名在线打分 | 青海电动密集架_智能密集架_密集架价格-盛隆柜业青海档案密集架厂家 | 超声波气象站_防爆气象站_空气质量监测站_负氧离子检测仪-风途物联网 | 网站建设,北京网站建设,北京网站建设公司,网站系统开发,北京网站制作公司,响应式网站,做网站公司,海淀做网站,朝阳做网站,昌平做网站,建站公司 | 集装箱箱号识别_自重载重图像识别_铁路车号自动识别_OCR图像识别 | 混合生育酚_醋酸生育酚粉_琥珀酸生育酚-山东新元素生物科技 | 超声波清洗机_超声波清洗机设备_超声波清洗机厂家_鼎泰恒胜 | 水性漆|墙面漆|木器家具漆|水漆涂料_晨阳水漆官网 | 单电机制砂机,BHS制砂机,制沙机设备,制砂机价格-正升制砂机厂家 单级/双级旋片式真空泵厂家,2xz旋片真空泵-浙江台州求精真空泵有限公司 | 艺术涂料|木纹漆施工|稻草漆厂家|马来漆|石桦奴|水泥漆|选加河南天工涂料 | 电动高尔夫球车|电动观光车|电动巡逻车|电动越野车厂家-绿友机械集团股份有限公司 | 右手官网|右手工业设计|外观设计公司|工业设计公司|产品创新设计|医疗产品结构设计|EMC产品结构设计 | 海德莱电力(HYDELEY)-无功补偿元器件生产厂家-二十年专业从事电力电容器 | 南京蜂窝纸箱_南京木托盘_南京纸托盘-南京博恒包装有限公司 | 南京欧陆电气股份有限公司-风力发电机官网 | 铝镁锰板厂家_进口钛锌板_铝镁锰波浪板_铝镁锰墙面板_铝镁锰屋面-杭州军晟金属建筑材料 | 自进式锚杆-自钻式中空注浆锚杆-洛阳恒诺锚固锚杆生产厂家 | 冷藏车-东风吸污车-纯电动环卫车-污水净化车-应急特勤保障车-程力专汽厂家-程力专用汽车股份有限公司销售二十一分公司 |